[isabelle] induction over mutually-inductively-defined predicate


I have a whole bunch of mutually-inductively-defined datatypes, functions and predicates in my theory, and I'm having difficulty doing structural and rule induction over them.

At the end of this email is my (slightly condensed) theory file. Apologies for not creating a minimal example exhibiting my problem -- I thought it better to leave the theory file mostly as-is, to ensure that your solutions apply to my real script and not just to some minimal example.

The problem is the last line ... 
> proof(induct rule: prov_dia_prov_col.induct)

... which gives an error ("Proof command failed"), despite my goal being of the required form "?P ?a \<and> ?Q ?A". My question is: How can I give Isabelle hints to help it work out how to apply the given induction rule? 

Many thanks,


theory Ribbons imports Main


typedecl bool_exp
consts Not :: "bool_exp \<Rightarrow> bool_exp"
consts rd_be :: "bool_exp \<Rightarrow> string set"

typedecl assertion
consts Emp :: "assertion"
consts Pure :: "bool_exp \<Rightarrow> assertion"

  Star :: "assertion \<Rightarrow> assertion \<Rightarrow> assertion"
where star_comm: "Star p q = Star q p"
  and star_assoc: "Star (Star p q) r = Star p (Star q r)"
  and star_emp: "Star p Emp = p"
  and emp_star: "Star Emp p = p"

consts Exists :: "string \<Rightarrow> assertion \<Rightarrow> assertion"

  rd_ass :: "assertion \<Rightarrow> string set"
where rd_emp: "rd_ass Emp = {}"
  and rd_star: "rd_ass (Star p q) = rd_ass p \<union> rd_ass q"
  and rd_exists: "rd_ass (Exists x p) = rd_ass p"

typedecl atomic
consts rd_atm :: "atomic \<Rightarrow> string set"
consts wr_atm :: "atomic \<Rightarrow> string set"

datatype command =
  Atomic "atomic"
| If "bool_exp" "command list" "command list"
| While "bool_exp" "command list"

  interleave_coms :: "(command list \<times> command list) \<Rightarrow> command list set"
  "interleave_coms ([], C2) = {C2}"
| "interleave_coms (C1, []) = {C1}"
| "interleave_coms (c1#C1, c2#C2)
  = {c1#C | C. C \<in> interleave_coms(C1, c2#C2)}
  \<union> {c2#C | C. C \<in> interleave_coms(c1#C1, C2)}"

  prov_com :: "assertion \<times> command \<times> assertion \<Rightarrow> bool"
  prov_comlist :: "assertion \<times> command list \<times> assertion \<Rightarrow> bool"
  "prov_com (p, c, q) 
  \<Longrightarrow> prov_com (Exists x p, c, Exists x q)"
| ifcom: 
  "\<lbrakk>prov_comlist (Star (Pure b) p, C1, q); 
  prov_comlist (Star (Pure (Not b)) p, C2, q)\<rbrakk> 
  \<Longrightarrow> prov_com (p, If b C1 C2, q)"
| while: 
  "prov_comlist (Star (Pure b) p, C, p) 
  \<Longrightarrow> prov_com (p, While b C, Star (Pure (Not b)) p)" 
| frame: 
  "\<lbrakk>prov_com (p, c, q); wr_com(c) \<inter> rd_ass(r) = {}\<rbrakk> 
  \<Longrightarrow> prov_com (Star p r, c, Star q r)"
| skip: 
  "prov_comlist(p, [], p)"
| seq: 
  "\<lbrakk>prov_com (p, c, q); prov_comlist (q, C, r)\<rbrakk> 
  \<Longrightarrow> prov_comlist (p, c#C, r)"

datatype face =
  Ribbon "assertion"
| Exists_int "string" "face list"

type_synonym interface = "face list"

  ass_face :: "face \<Rightarrow> assertion"
  ass :: "interface \<Rightarrow> assertion"
  "ass_face (Ribbon p) = p"
| "ass_face (Exists_int x P) = Exists x (ass P)"
| "ass [] = Emp"
| "ass (f#P) = Star (ass_face f) (ass P)"

datatype column =
  Blank "interface"
| Basic "interface" "command" "interface"
| VComp_dia "column list" "column list"
| Exists_dia "string" "column list"
| If_dia "interface" "bool_exp" "column list" "column list" "interface"
| While_dia "interface" "bool_exp" "column list" "interface"

type_synonym diagram = "column list"

  top :: "diagram \<Rightarrow> interface"
  top_col :: "column \<Rightarrow> interface"
  "top_col (Blank P) = P"
| "top_col (Basic P c Q) = P"
| "top_col (VComp_dia A B) = top A"
| "top_col (Exists_dia x A) = [Exists_int x (top A)]"
| "top_col (If_dia P b A B Q) = P"
| "top_col (While_dia P b A Q) = P"
| "top [] = []"
| "top (a # A) = (top_col a) @ (top A)"

  bot :: "diagram \<Rightarrow> interface"
  bot_col :: "column \<Rightarrow> interface"
  "bot_col (Blank P) = P"
| "bot_col (Basic P c Q) = Q"
| "bot_col (VComp_dia A B) = bot B"
| "bot_col (Exists_dia x A) = [Exists_int x (bot A)]"
| "bot_col (If_dia P b A B Q) = Q"
| "bot_col (While_dia P b A Q) = Q"
| "bot [] = []"
| "bot (a # A) = (bot_col a) @ (bot A)"

  coms :: "diagram \<Rightarrow> command list set"
  coms_col :: "column \<Rightarrow> command list set"
  "coms_col (Blank P) = {}"
| "coms_col (Basic P c Q) = {[c]}"
| "coms_col (VComp_dia A B) 
  = {C @ C' | C C'. C \<in> coms A \<and> C' \<in> coms B}"
| "coms_col (Exists_dia x A) = coms A"
| "coms_col (If_dia P b A B Q) 
  = { [If b C C'] | C C'. C \<in> coms A \<and> C' \<in> coms B}"
| "coms_col (While_dia P b A Q) = { [While b C] | C. C \<in> coms A}"
| "coms [] = {}"
| "coms (a # A) 
  = \<Union>{interleave_coms (C, C') | C C'. C \<in> coms_col a \<and> C' \<in> coms A}"

  disj_col_dia :: "column \<Rightarrow> diagram \<Rightarrow> bool"

  prov_dia :: "diagram \<Rightarrow> bool"
  prov_col :: "column \<Rightarrow> bool"
  "prov_col (Blank P)"
| Basic: 
  "prov_com (ass P, c, ass Q) \<Longrightarrow> prov_col (Basic P c Q)"
| Exists: 
  "prov_dia A \<Longrightarrow> prov_col (Exists_dia x A)"
| VComp: 
  "\<lbrakk>prov_dia A; prov_dia B; bot A = top B\<rbrakk> \<Longrightarrow> prov_col (VComp_dia A B)"
| If: 
  "\<lbrakk>prov_dia A; prov_dia B; top A = (Ribbon (Pure b)) # P; 
  top B = (Ribbon (Pure (Not b))) # P; bot A = Q; bot B = Q\<rbrakk> 
  \<Longrightarrow> prov_col (If_dia P b A B Q)"
| While: 
  "\<lbrakk>prov_dia A; top A = (Ribbon(Pure b)) # P; 
  bot A = P; Q = (Ribbon(Pure (Not b))) # P\<rbrakk> 
  \<Longrightarrow> prov_col (While_dia P b A Q)"
| Nil: 
  "prov_dia []"
| Cons:
  "\<lbrakk>prov_col a; prov_dia A; disj_col_dia a A\<rbrakk> 
  \<Longrightarrow> prov_dia (a # A)"

datatype chain = 
  cNil "assertion"
| cCons "assertion" "command" "chain"

  seq_chains :: "chain \<times> chain \<Rightarrow> chain"
  "seq_chains (cNil _, G') = G'"
| "seq_chains (cCons p c G, G') = cCons p c (seq_chains (G, G'))"

  pre :: "chain \<Rightarrow> assertion"
  "pre(cNil p) = p"
| "pre(cCons p c G) = p"

  post :: "chain \<Rightarrow> assertion"
  "post(cNil p) = p"
| "post(cCons p c G) = post G"

  comlist :: "chain \<Rightarrow> command list"
  "comlist(cNil p) = []"
| "comlist(cCons p c G) = c # (comlist G)"

  ass_map :: "(assertion \<Rightarrow> assertion) \<Rightarrow> chain \<Rightarrow> chain"
  "ass_map f (cNil p) = cNil (f p)"
| "ass_map f (cCons p c G) = cCons (f p) c (ass_map f G)"

  interleave_chains :: "(chain \<times> chain) \<Rightarrow> chain set"
  "interleave_chains (cNil p, G) = {ass_map (\<lambda>q. Star p q) G}"
| "interleave_chains (G, cNil p) = {ass_map (\<lambda>q. Star q p) G}"
| "interleave_chains (cCons p1 c1 G1, cCons p2 c2 G2)
  = {cCons (Star p1 p2) c1 G | G. 
      G \<in> interleave_chains(G1, cCons p2 c2 G2)}
  \<union> {cCons (Star p1 p2) c2 G | G. 
      G \<in> interleave_chains(cCons p1 c1 G1, G2)}"
by pat_completeness auto
termination by lexicographic_order

lemma chainpair_induction [case_names Nil_Cons Cons_Nil Cons_Cons]:
  assumes "\<And>p1 G2. \<Phi> (cNil p1) G2"
  assumes "\<And>p2 G1. \<Phi> G1 (cNil p2)"
  assumes "\<And>p1 p2 c1 c2 G1 G2.
  \<lbrakk>\<Phi> G1 (cCons p2 c2 G2); \<Phi> (cCons p1 c1 G1) G2\<rbrakk> 
  \<Longrightarrow> \<Phi> (cCons p1 c1 G1) (cCons p2 c2 G2)"
  shows "\<Phi> G1 G2"
using assms
by induction_schema (pat_completeness, lexicographic_order)

consts disj_chain :: "chain \<Rightarrow> chain \<Rightarrow> bool"

  prov_chain :: "chain \<Rightarrow> bool"
  skip: "prov_chain(cNil p)"
| seq: "\<lbrakk>prov_com(p, c, pre G); prov_chain G\<rbrakk> 
  \<Longrightarrow> prov_chain(cCons p c G)" 

  chains :: "diagram \<Rightarrow> chain set"
  chains_col :: "column \<Rightarrow> chain set"
  "chains_col (Blank P) = {cNil (ass P)}"
| "chains_col (Basic P c Q) = {cCons (ass P) c (cNil (ass Q))}"
| "chains_col (VComp_dia A B) = {seq_chains (G1, G2) 
  | G1 G2. G1 \<in> chains A \<and> G2 \<in> chains B \<and> post G1 = pre G2}"
| "chains_col (Exists_dia x A) = {ass_map (Exists x) G 
  | G. G \<in> chains A}"
| "chains_col (If_dia P b A B Q) = 
  {cCons (ass P) (If b (comlist G1) (comlist G2)) (cNil (ass Q)) 
  | G1 G2. G1 \<in> chains A \<and> G2 \<in> chains B 
    \<and> pre G1 = Star (Pure b) (ass P) 
    \<and> pre G2 = Star (Pure (Not b)) (ass P) 
    \<and> post G1 = ass Q \<and> post G2 = ass Q }"
| "chains_col (While_dia P b A Q) = 
  { cCons (ass P) (While b (comlist G)) (cNil (ass Q)) 
  | G. G \<in> chains A \<and> post G = ass P
    \<and> pre G = Star (Pure b) (ass P) 
    \<and> ass Q = Star (Pure (Not b)) (ass P) }"
| "chains [] = {}"
| "chains (a # A) = \<Union> {interleave_chains (G1, G2) 
  | G1 G2. G1 \<in> chains_col a \<and> G2 \<in> chains A \<and> disj_chain G1 G2}"

lemma soundness_part_one:
  fixes a and A
  shows "(prov_col a \<longrightarrow> (\<forall>G \<in> chains_col a. prov_chain G)) \<and> (prov_dia A \<longrightarrow> (\<forall>G \<in> chains A. prov_chain G))"
proof(induct rule: prov_dia_prov_col.induct)

This archive was generated by a fusion of Pipermail (Mailman edition) and MHonArc.