[isabelle] New AFP article: Expected Shape of Random Binary Search Trees

Expected Shape of Random Binary Search Trees
Manuel Eberl

This entry contains proofs for the textbook results about the distributions of the height and internal path length of random binary search trees (BSTs), i.âe. BSTs that are formed by taking an empty BST and inserting elements from a fixed set in random order.

In particular, we prove a logarithmic upper bound on the expected height and the Î(n log n) closed-form solution for the expected internal path length in terms of the harmonic numbers. We also show how the internal path length relates to the average-case cost of a lookup in a BST.



Attachment: smime.p7s
Description: S/MIME Cryptographic Signature

This archive was generated by a fusion of Pipermail (Mailman edition) and MHonArc.