From josephcmac at gmail.com Fri Feb 01 03:25:49 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:36554) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gpPSf-0001xy-6N (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 03:25:49 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1852498 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.173 listed in list.dnswl.dnsbl.ja.net] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.166.173 listed in wl.mailspike.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (josephcmac[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta0.cl.cam.ac.uk ([128.232.25.20]:46843) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gpPSe-000XlW-12 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 03:25:49 +0000 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]) by mta0.cl.cam.ac.uk with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1gpPSn-0001kU-1k for isabelle-users at cl.cam.ac.uk; Fri, 01 Feb 2019 03:25:57 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1852498 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.173 listed in list.dnswl.dnsbl.ja.net] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.166.173 listed in wl.mailspike.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (josephcmac[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f173.google.com ([209.85.166.173]:40047) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gpPSc-000sOY-Lm (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Fri, 01 Feb 2019 03:25:48 +0000 Received: by mail-it1-f173.google.com with SMTP id h193so7810667ita.5 for ; Thu, 31 Jan 2019 19:25:46 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:from:date:message-id:subject:to; bh=V28fhMKZW7ovDSDTmjFS0/ZES6i2+VidXJ20DhQpfcw=; b=FA7nTOeW0QRFpX1DPAroP7UWz1OxGEIQb4RnSL407UoaEWwyUOflxMAR+wc+TdOcX4 TXsTVpzkZ5YMkk7oMKqlUg+EWy4RGtye1UmWYrUYRGC68t8o68u5mJO4KVEYsMDYo/FY mJYZJwkjWMonyWXam3K7nJUpEZLAiLcYNBFd/PjLcMpEhe5X807aKMHrjamXCMMsqi1s qQTT345qDSVWC/n/8MdKMgbIJqiPuRsvXeDhmejR8gf/MtxjE5rmpbEbv/hl8C5BMGM2 9RFLozkqAdk+hXWwYyzxpUNlnogoXsWe+igH4+z+z10/h62fTh9Ig/XMRhbVtJe+Xr+F sjHg== X-Gm-Message-State: AHQUAuY3uqwVSQW6Rp7EfWDEX8cKkjgRvLX+P+VJptjb+aNf2q6ntOPr F5LqyWjcrs43791dqJHTCfbytG4kQFZH8glYxIj8wHT0 X-Google-Smtp-Source: AHgI3IbuzCAgHCZbWY+8TC6PWUuZItPbxKnjM19Zls+TsJe8xH9hwJnzJx1oSlhd7+EIb0XP06op+S5jF75KTbDQxVY= X-Received: by 2002:a24:715:: with SMTP id f21mr402336itf.45.1548991545526; Thu, 31 Jan 2019 19:25:45 -0800 (PST) MIME-Version: 1.0 From: =?UTF-8?Q?Jos=C3=A9_Manuel_Rodriguez_Caballero?= Date: Thu, 31 Jan 2019 22:25:34 -0500 Message-ID: To: isabelle-users at cl.cam.ac.uk X-debug-header: local_aliases has suffix Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: Re: [isabelle] oracles X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 01 Feb 2019 03:25:49 -0000 Hello, I tend to be skeptical with respect to the mathematical meaning of the claims of the paper: Liu T, Li Y, Wang S, Ying M, Zhan N. A theorem prover for quantum Hoare logic and its applications. arXiv preprint arXiv:1601.03835. 2016 Jan 15. https://arxiv.org/pdf/1601.03835.pdf https://github.com/ijcar2016/propitious-barnacle I feel that something essential is missing in the space between Isabelle/HOL and Python. For example, in the lemma lemma grover: "valid I ((((Init q0 0);Init q1 1;Init q 2;Init r 3; Utrans Delta 2;Utrans H 0;Utrans H 1;Utrans H 2); While M0 M1 C Q); Cond [(N0,SKIP,p0),(N1,SKIP,p1),(N2,SKIP,p2),(N3,SKIP,p3)] ) P" on the one hand, we have that both I and P are just formal symbols satisfying some axioms, which happens to be satisfied also by square matrices having complex coefficients. On the other hand, in Python, these symbols are interpreted as concrete matrices. I feel a gap. I propose two approaches in order to make sense of this situation. ---Approach I. I think that the rigorous way to justify the use of the oracle in Python is as follows: (a) we need to define I, P, and all the other formal symbols, as matrices having complex numbers as entries in Isabelle/HOL; (b) we need to embed Python in Isabelle/HOL; (c) we need to prove the correctness of the algorithm for deciding the positive semidefiniteness of the matrices (assuming that the entries are algebraic numbers) in the embedding of Python in Isabelle/HOL. Of course, we can forget Python and implement the algorithm for deciding the positive semidefiniteness of the matrices (assuming that the entries are algebraic numbers) in Isabelle/HOL. I recall that for any complex number z, we have: AlgebraicNumber(z) =3D there exists a polynomial P(X) ,having integer coefficients, such that P(z) =3D 0. I think that the hypothesis AlgebraicNumber(z) is essential for the oracle to make sense, because without any restriction, the problem concerning the positive semidefiniteness is undecidable. ---Approach II. Do everything in Python and formally verify what we did in Isabelle/HOL using an embedding of Python. I am not claiming that there is a problem in this paper. I am only pointing out the parts where I am not convinced yet. Suggestions and criticism are welcome. Kind Regards, Jos=C3=A9 M. From mathias.fleury12 at gmail.com Fri Feb 01 17:38:50 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:56750) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gpcmA-0000V2-Gi (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 17:38:50 +0000 X-Cam-SpamDetails: score -0.0 from SpamAssassin-3.4.2-1852579 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.221.46 listed in list.dnswl.dnsbl.ja.net] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.221.46 listed in wl.mailspike.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (mathias.fleury12[at]gmail.com) * 0.2 FREEMAIL_ENVFROM_END_DIGIT Envelope-from freemail username ends in * digit (mathias.fleury12[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta2.cl.cam.ac.uk ([128.232.25.22]:35264) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gpcmA-000DIh-fx (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 17:38:50 +0000 Received: from ppsw-31.csi.cam.ac.uk ([2001:630:212:8::e:f31]) by mta2.cl.cam.ac.uk with esmtp (Exim 4.86_2) (envelope-from ) id 1gpcm9-0007Cl-Um for isabelle-users at cl.cam.ac.uk; Fri, 01 Feb 2019 17:38:49 +0000 X-Cam-SpamDetails: score -0.0 from SpamAssassin-3.4.2-1852579 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.221.46 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.221.46 listed in wl.mailspike.net] * 0.2 FREEMAIL_ENVFROM_END_DIGIT Envelope-from freemail username ends in * digit (mathias.fleury12[at]gmail.com) * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (mathias.fleury12[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-wr1-f46.google.com ([209.85.221.46]:42263) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gpcm9-000yWy-Kh (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Fri, 01 Feb 2019 17:38:49 +0000 Received: by mail-wr1-f46.google.com with SMTP id q18so7951568wrx.9 for ; Fri, 01 Feb 2019 09:38:49 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:mime-version:subject:message-id:date:to; bh=AtlyUdZ/u9p9l3iiEAp8OLtNkp09g7HhSxzblxUmo+I=; b=k4lNEmQc+CV28FKF02yFrDyRMpWXiaC6OOZUNhXH91rJe4XOQCF6j6xMSY7+BqoQUB EsSimHJk/Q5u5AM5sBmOQSK5oOOW5s4dOJO7ObaHYQeBCk+IlhAG+Xch5rr7Jj45r97z oXdsPAY/ATOSZgCVAm79jjFxhDtzsrEtFzy8eYmWmGghq5/hTI/bh1Uu1oOgct5AWqBe 9mvgOa5fRM2A1qjC3K9omfe0iaiewvQUqL2seDOdF8HgXEXffPonpeZWD+h66Do44JPW hdfm7R5Nmw46/7s2pPS9sDk0jfCwEtfduZbYaFfD5H4ej1c9S3ep6M1Yei8i1NW+BeCL q4Cw== X-Gm-Message-State: AJcUukfADtJCMVwGRNAUHp4Kg8dtKs12DGHkNkP+f251DvxDHF4b8RcN q0MANq+QFFcPDgsa4VgrjS1/ey4= X-Google-Smtp-Source: ALg8bN5P68XZSlHyfVVRwEuT6HUffTfQWaqxYXQckKT7jCz4A1PWBT1R+qehmAdvRcn6j7d/Hf3BNA== X-Received: by 2002:adf:c5d3:: with SMTP id v19mr39377656wrg.30.1549042728679; Fri, 01 Feb 2019 09:38:48 -0800 (PST) Received: from ?IPv6:2a02:810c:c140:3448:4439:d472:bfeb:894e? ([2a02:810c:c140:3448:4439:d472:bfeb:894e]) by smtp.gmail.com with ESMTPSA id v133sm3446259wmf.19.2019.02.01.09.38.47 for (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Fri, 01 Feb 2019 09:38:48 -0800 (PST) From: Mathias Fleury Mime-Version: 1.0 (Mac OS X Mail 12.2 \(3445.102.3\)) Message-Id: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> Date: Fri, 1 Feb 2019 18:38:46 +0100 To: Isabelle User X-Mailer: Apple Mail (2.3445.102.3) X-debug-header: local_aliases has suffix Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 01 Feb 2019 17:38:50 -0000 Hi list, after trying to reconstruct more veriT proofs, I found out the following = lemma cannot be discharged by linarith: lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 =C2=AC 10 * int (size lr) < 4 + 14 * int (size rr) =E2=88=A8 10 * int (size lr) =E2=89=A4 15 + 25 * int (size l') =E2=88=A8 =C2=AC 10 * int (size lr) + 10 * int (size rr) =E2=89=A4 30 + = 25 * int (size l') " apply linarith (* fails *) oops However, if I simplify the coefficients by dividing by 5, then linearity = is able to prove the goal: lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 =C2=AC 5 * int (size lr) < 2 + 7 * int (size rr) =E2=88=A8 2 * int (size lr) =E2=89=A4 3 + 5 * int (size l') =E2=88=A8 =C2=AC 2 * int (size lr) + 2 * int (size rr) =E2=89=A4 6 + 5 * = int (size l') " apply linarith done Is there any simproc able to do this simplification automatically? If = there is one, is there any reason why linarith does not use it by = default? Thanks, Mathias= From nipkow at in.tum.de Fri Feb 01 18:49:22 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:52806) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gpdsQ-0000Gc-Ei (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 18:49:22 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852579 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:36857 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gpdsP-000ljb-24 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 18:49:22 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id DC65D1C0495; Fri, 1 Feb 2019 19:49:20 +0100 (CET) Received: (Authenticated sender: nipkow) by mail.in.tum.de (Postfix) with ESMTPSA id AFF1B1C02F1 for ; Fri, 1 Feb 2019 19:49:18 +0100 (CET) (Extended-Queue-bit tech_tqkvy at fff.in.tum.de) To: cl-isabelle-users at lists.cam.ac.uk References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> From: Tobias Nipkow Message-ID: <5139eaa2-bbfa-9c21-cbfe-be77acc34d3b at in.tum.de> Date: Fri, 1 Feb 2019 19:49:17 +0100 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:60.0) Gecko/20100101 Thunderbird/60.5.0 MIME-Version: 1.0 In-Reply-To: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha-256; boundary="------------ms020707060304060901060106" Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 01 Feb 2019 18:49:22 -0000 This is a cryptographically signed message in MIME format. --------------ms020707060304060901060106 Content-Type: text/plain; charset=utf-8; format=flowed Content-Language: en-US Content-Transfer-Encoding: quoted-printable There should be no need to divide by 5, linarith should not need it. Alas= , ... Tobias On 01/02/2019 18:38, Mathias Fleury wrote: > Hi list, >=20 >=20 > after trying to reconstruct more veriT proofs, I found out the followin= g lemma cannot be discharged by linarith: >=20 > lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 > =C2=AC 10 * int (size lr) < 4 + 14 * int (size rr) =E2=88=A8 > 10 * int (size lr) =E2=89=A4 15 + 25 * int (size l') =E2=88=A8= > =C2=AC 10 * int (size lr) + 10 * int (size rr) =E2=89=A4 30 += 25 * int (size l') " > apply linarith (* fails *) > oops >=20 >=20 > However, if I simplify the coefficients by dividing by 5, then linearit= y is able to prove the goal: >=20 > lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 > =C2=AC 5 * int (size lr) < 2 + 7 * int (size rr) =E2=88=A8 > 2 * int (size lr) =E2=89=A4 3 + 5 * int (size l') =E2=88=A8 > =C2=AC 2 * int (size lr) + 2 * int (size rr) =E2=89=A4 6 + 5 = * int (size l') " > apply linarith > done >=20 >=20 > Is there any simproc able to do this simplification automatically? If t= here is one, is there any reason why linarith does not use it by default?= >=20 >=20 > Thanks, > Mathias >=20 --------------ms020707060304060901060106 Content-Type: application/pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7s" Content-Description: S/MIME Cryptographic Signature MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCC EYAwggUSMIID+qADAgECAgkA4wvV+K8l2YEwDQYJKoZIhvcNAQELBQAwgYIxCzAJBgNVBAYT AkRFMSswKQYDVQQKDCJULVN5c3RlbXMgRW50ZXJwcmlzZSBTZXJ2aWNlcyBHbWJIMR8wHQYD VQQLDBZULVN5c3RlbXMgVHJ1c3QgQ2VudGVyMSUwIwYDVQQDDBxULVRlbGVTZWMgR2xvYmFs Um9vdCBDbGFzcyAyMB4XDTE2MDIyMjEzMzgyMloXDTMxMDIyMjIzNTk1OVowgZUxCzAJBgNV BAYTAkRFMUUwQwYDVQQKEzxWZXJlaW4genVyIEZvZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVu IEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNVBAsTB0RGTi1QS0kxLTArBgNVBAMTJERG Ti1WZXJlaW4gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgMjCCASIwDQYJKoZIhvcNAQEBBQAD ggEPADCCAQoCggEBAMtg1/9moUHN0vqHl4pzq5lN6mc5WqFggEcVToyVsuXPztNXS43O+FZs FVV2B+pG/cgDRWM+cNSrVICxI5y+NyipCf8FXRgPxJiZN7Mg9mZ4F4fCnQ7MSjLnFp2uDo0p eQcAIFTcFV9Kltd4tjTTwXS1nem/wHdN6r1ZB+BaL2w8pQDcNb1lDY9/Mm3yWmpLYgHurDg0 WUU2SQXaeMpqbVvAgWsRzNI8qIv4cRrKO+KA3Ra0Z3qLNupOkSk9s1FcragMvp0049ENF4N1 xDkesJQLEvHVaY4l9Lg9K7/AjsMeO6W/VRCrKq4Xl14zzsjz9AkH4wKGMUZrAcUQDBHHWekC AwEAAaOCAXQwggFwMA4GA1UdDwEB/wQEAwIBBjAdBgNVHQ4EFgQUk+PYMiba1fFKpZFK4OpL 4qIMz+EwHwYDVR0jBBgwFoAUv1kgNgB5oKAia4zV8mHSuCzLgkowEgYDVR0TAQH/BAgwBgEB /wIBAjAzBgNVHSAELDAqMA8GDSsGAQQBga0hgiwBAQQwDQYLKwYBBAGBrSGCLB4wCAYGZ4EM AQICMEwGA1UdHwRFMEMwQaA/oD2GO2h0dHA6Ly9wa2kwMzM2LnRlbGVzZWMuZGUvcmwvVGVs ZVNlY19HbG9iYWxSb290X0NsYXNzXzIuY3JsMIGGBggrBgEFBQcBAQR6MHgwLAYIKwYBBQUH MAGGIGh0dHA6Ly9vY3NwMDMzNi50ZWxlc2VjLmRlL29jc3ByMEgGCCsGAQUFBzAChjxodHRw Oi8vcGtpMDMzNi50ZWxlc2VjLmRlL2NydC9UZWxlU2VjX0dsb2JhbFJvb3RfQ2xhc3NfMi5j ZXIwDQYJKoZIhvcNAQELBQADggEBAIcL/z4Cm2XIVi3WO5qYi3FP2ropqiH5Ri71sqQPrhE4 eTizDnS6dl2e6BiClmLbTDPo3flq3zK9LExHYFV/53RrtCyD2HlrtrdNUAtmB7Xts5et6u5/ MOaZ/SLick0+hFvu+c+Z6n/XUjkurJgARH5pO7917tALOxrN5fcPImxHhPalR6D90Bo0fa3S PXez7vTXTf/D6OWST1k+kEcQSrCFWMBvf/iu7QhCnh7U3xQuTY+8npTD5+32GPg8SecmqKc2 2CzeIs2LgtjZeOJVEqM7h0S2EQvVDFKvaYwPBt/QolOLV5h7z/0HJPT8vcP9SpIClxvyt7bP ZYoaorVyGTkwggWsMIIElKADAgECAgcbY7rQHiw9MA0GCSqGSIb3DQEBCwUAMIGVMQswCQYD VQQGEwJERTFFMEMGA1UEChM8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRzY2hl biBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLEwdERk4tUEtJMS0wKwYDVQQDEyRE Rk4tVmVyZWluIENlcnRpZmljYXRpb24gQXV0aG9yaXR5IDIwHhcNMTYwNTI0MTEzODQwWhcN MzEwMjIyMjM1OTU5WjCBjTELMAkGA1UEBhMCREUxRTBDBgNVBAoMPFZlcmVpbiB6dXIgRm9l cmRlcnVuZyBlaW5lcyBEZXV0c2NoZW4gRm9yc2NodW5nc25ldHplcyBlLiBWLjEQMA4GA1UE CwwHREZOLVBLSTElMCMGA1UEAwwcREZOLVZlcmVpbiBHbG9iYWwgSXNzdWluZyBDQTCCASIw DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJ07eRxH3h+Gy8Zp1xCeOdfZojDbchwFfylf S2jxrRnWTOFrG7ELf6Gr4HuLi9gtzm6IOhDuV+UefwRRNuu6cG1joL6WLkDh0YNMZj0cZGnl m6Stcq5oOVGHecwX064vXWNxSzl660Knl5BpBb+Q/6RAcL0D57+eGIgfn5mITQ5HjUhfZZkQ 0tkqSe3BuS0dnxLLFdM/fx5ULzquk1enfnjK1UriGuXtQX1TX8izKvWKMKztFwUkP7agCwf9 TRqaA1KgNpzeJIdl5Of6x5ZzJBTN0OgbaJ4YWa52fvfRCng8h0uwN89Tyjo4EPPLR22MZD08 WkVKusqAfLjz56dMTM0CAwEAAaOCAgUwggIBMBIGA1UdEwEB/wQIMAYBAf8CAQEwDgYDVR0P AQH/BAQDAgEGMCkGA1UdIAQiMCAwDQYLKwYBBAGBrSGCLB4wDwYNKwYBBAGBrSGCLAEBBDAd BgNVHQ4EFgQUazqYi/nyU4na4K2yMh4JH+iqO3QwHwYDVR0jBBgwFoAUk+PYMiba1fFKpZFK 4OpL4qIMz+EwgY8GA1UdHwSBhzCBhDBAoD6gPIY6aHR0cDovL2NkcDEucGNhLmRmbi5kZS9n bG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDBAoD6gPIY6aHR0cDovL2NkcDIu cGNhLmRmbi5kZS9nbG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDCB3QYIKwYB BQUHAQEEgdAwgc0wMwYIKwYBBQUHMAGGJ2h0dHA6Ly9vY3NwLnBjYS5kZm4uZGUvT0NTUC1T ZXJ2ZXIvT0NTUDBKBggrBgEFBQcwAoY+aHR0cDovL2NkcDEucGNhLmRmbi5kZS9nbG9iYWwt cm9vdC1nMi1jYS9wdWIvY2FjZXJ0L2NhY2VydC5jcnQwSgYIKwYBBQUHMAKGPmh0dHA6Ly9j ZHAyLnBjYS5kZm4uZGUvZ2xvYmFsLXJvb3QtZzItY2EvcHViL2NhY2VydC9jYWNlcnQuY3J0 MA0GCSqGSIb3DQEBCwUAA4IBAQCBeEWkTqR/DlXwCbFqPnjMaDWpHPOVnj/z+N9rOHeJLI21 rT7H8pTNoAauusyosa0zCLYkhmI2THhuUPDVbmCNT1IxQ5dGdfBi5G5mUcFCMWdQ5UnnOR7L n8qGSN4IFP8VSytmm6A4nwDO/afr0X9XLchMX9wQEZc+lgQCXISoKTlslPwQkgZ7nu7YRrQb tQMMONncsKk/cQYLsgMHM8KNSGMlJTx6e1du94oFOO+4oK4v9NsH1VuEGMGpuEvObJAaguS5 Pfp38dIfMwK/U+d2+dwmJUFvL6Yb+qQTkPp8ftkLYF3sv8pBoGH7EUkp2KgtdRXYShjqFu9V NCIaE40GMIIGtjCCBZ6gAwIBAgIMHxoBcB9CcQPHriXDMA0GCSqGSIb3DQEBCwUAMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBMB4XDTE4MDUxNTA2NTMyMloXDTE5MTEx NzAyMDAwMFowgcAxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIDAZCYXllcm4xETAPBgNVBAcMCE11 ZW5jaGVuMSkwJwYDVQQKDCBUZWNobmlzY2hlIFVuaXZlcnNpdGFldCBNdWVuY2hlbjEiMCAG A1UECwwZRmFrdWx0YWV0IGZ1ZXIgSW5mb3JtYXRpazEWMBQGA1UEAwwNVG9iaWFzIE5pcGtv dzEmMCQGCSqGSIb3DQEJARYXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGUwggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQCADTpwPRPWfSf9fi2ZhFfIjICiK0m69uj995i1vv8ajdIH XwulShY6KCmrezG6KZULjEi5GyRbZiCon/Ag+/0K/vLg3fIioBPPCw6lbEnhLeTyDfTDQJjo zpnlt24Eqp1Mb3ErO73WvAACYFJtChMZL6aF6WiHsL8MYTE0FhlHeuT9A56JLZvfqfEiuG4N dCf19A0EYvRxQiHk4HyV8ib/idJoTWfQSqBDYM/nLbmF6nVizuHlicNYwftM00hgqA2UM4im LSB4FytvRUSPNdmc0eY9zcHDpSz5nZbDWPjmQeMWAlFuV2sBqNcYUyeTzOuvoXPsSTBFRmcX KlFdysPnAgMBAAGjggLfMIIC2zBABgNVHSAEOTA3MA8GDSsGAQQBga0hgiwBAQQwEQYPKwYB BAGBrSGCLAEBBAMIMBEGDysGAQQBga0hgiwCAQQDCDAJBgNVHRMEAjAAMA4GA1UdDwEB/wQE AwIF4DAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYBBQUHAwQwHQYDVR0OBBYEFP4tlXbsLniS Wq9uFYP/UEre4Ek6MB8GA1UdIwQYMBaAFGs6mIv58lOJ2uCtsjIeCR/oqjt0MIGuBgNVHREE gaYwgaOBEG5pcGtvd0Bpbi50dW0uZGWBEW5pcGtvd0Bjcy50dW0uZWR1gSBuaXBrb3dAaW5m b3JtYXRpay50dS1tdWVuY2hlbi5kZYEXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGWBGHRvYmlh cy5uaXBrb3dAY3MudHVtLmVkdYEndG9iaWFzLm5pcGtvd0BpbmZvcm1hdGlrLnR1LW11ZW5j aGVuLmRlMIGNBgNVHR8EgYUwgYIwP6A9oDuGOWh0dHA6Ly9jZHAxLnBjYS5kZm4uZGUvZGZu LWNhLWdsb2JhbC1nMi9wdWIvY3JsL2NhY3JsLmNybDA/oD2gO4Y5aHR0cDovL2NkcDIucGNh LmRmbi5kZS9kZm4tY2EtZ2xvYmFsLWcyL3B1Yi9jcmwvY2FjcmwuY3JsMIHbBggrBgEFBQcB AQSBzjCByzAzBggrBgEFBQcwAYYnaHR0cDovL29jc3AucGNhLmRmbi5kZS9PQ1NQLVNlcnZl ci9PQ1NQMEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMS5wY2EuZGZuLmRlL2Rmbi1jYS1nbG9i YWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMi5w Y2EuZGZuLmRlL2Rmbi1jYS1nbG9iYWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MA0GCSqG SIb3DQEBCwUAA4IBAQAMTylJt407CL/HwgO4Om/yrpB/yDMKHLj4A1hvkSedvYvTFLk9gVTw U/fAKYrZxqazGcd0mCcRKPhj4lEbXUm5A6emrBRcolPiekw9/uEp1aZUz082cgi7HXnQS+Pi by5BJ4bBeMwt3FrFgdz18nl/+DcxX5KR3LMSujZu4d4ZmD19fifGxcAsOk2emYvA5JAMsmuw DWtYgnI08t+w73QAbkEPLpxqtkxzWK3Djv3aiMC6tA1cZUdgi5EVZGaEh9yZ8qWh2a7LR2ts XvbumZ++H+C0zQjn7FFgp8uQpqxN+dVKPjXx58LmHymKRKU2xMsyKE6W2x32qaVIClKPXdqc MYIECzCCBAcCAQEwgZ4wgY0xCzAJBgNVBAYTAkRFMUUwQwYDVQQKDDxWZXJlaW4genVyIEZv ZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVuIEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNV BAsMB0RGTi1QS0kxJTAjBgNVBAMMHERGTi1WZXJlaW4gR2xvYmFsIElzc3VpbmcgQ0ECDB8a AXAfQnEDx64lwzANBglghkgBZQMEAgEFAKCCAj0wGAYJKoZIhvcNAQkDMQsGCSqGSIb3DQEH ATAcBgkqhkiG9w0BCQUxDxcNMTkwMjAxMTg0OTE3WjAvBgkqhkiG9w0BCQQxIgQgwHK+G2Lq 0H8LvJ4u/Os8cVKGMSvnOs72buIcj8QXNukwbAYJKoZIhvcNAQkPMV8wXTALBglghkgBZQME ASowCwYJYIZIAWUDBAECMAoGCCqGSIb3DQMHMA4GCCqGSIb3DQMCAgIAgDANBggqhkiG9w0D AgIBQDAHBgUrDgMCBzANBggqhkiG9w0DAgIBKDCBrwYJKwYBBAGCNxAEMYGhMIGeMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFwH0JxA8euJcMwgbEGCyqGSIb3 DQEJEAILMYGhoIGeMIGNMQswCQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2Vy ZGVydW5nIGVpbmVzIERldXRzY2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQL DAdERk4tUEtJMSUwIwYDVQQDDBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFw H0JxA8euJcMwDQYJKoZIhvcNAQEBBQAEggEAViMeOcHBvlDuTiLmlC0Jc47TatRN6gBY7WgR ewf0dA3IoiNkODnF+5T9h77QDWbiX1eG9D9BrYSw3dM97CbEvhsAG4Yls+MKAVwj4PqYKLqV 1/OzMK2OD2dDQJZ4liDqEvmwsDi3i0TnnVugfNSOEwNm/qwsgRTa5KeEWQfsQoZwP9CracfX Ar08jkLkYz0Kkqf1kNlAL0xgqvq8Xo0z6hciFaLU11g2sQCfT/ref2kcK3yONyysCHdQl4fb Yq602XDJBCEMnsu4Kk0JIIc4o+7UljIRvp2feiBpobTckdpr1BnR5NPvnacEdDn+IDsdgo9v DVPypVPFu1Ri6bobIQAAAAAAAA== --------------ms020707060304060901060106-- From mathias.fleury12 at gmail.com Fri Feb 01 20:48:22 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:33586) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gpfja-0002YH-Ph (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 20:48:22 +0000 X-Cam-SpamDetails: score -0.0 from SpamAssassin-3.4.2-1852579 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.221.42 listed in list.dnswl.dnsbl.ja.net] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.221.42 listed in wl.mailspike.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (mathias.fleury12[at]gmail.com) * 0.2 FREEMAIL_ENVFROM_END_DIGIT Envelope-from freemail username ends in * digit (mathias.fleury12[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-wr1-f42.google.com ([209.85.221.42]:35338) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gpfjZ-000epj-j1 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 20:48:22 +0000 Received: by mail-wr1-f42.google.com with SMTP id r17so2551209wrp.2 for ; Fri, 01 Feb 2019 12:48:21 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:message-id:mime-version:subject:date :in-reply-to:cc:to:references; bh=SpIyx0W/lrsQzu4al10r/0KLSlTwQ27MKEL7QDO23jY=; b=MnpGOTx36WzTyQkkioCHc3OA+1JChnePOg+gXTfKyeXY/V/39ZQECSQEx/0OtCF9e4 6e4NYsbBQV7j2smgvPM+ucYZMZl8yV6au2PGL7mPTA/nfETLfsovtQh6hg5uuymj2MPj YgKxYmapjJ+SqL9NQH9SCN0ajj7WhE650j+AYK+HTPhV3MVYbfKxAs4H4Ut+XtCX6zie kIPc50nYmmMen/T8qr2qJ46zErfMMPl4+ugTMHhRiphwZtDMdsRPlAwSysw0QTKb/aSx dzEMZbV3aYsPJ5i7TKwBmuZQUUosVGmfgJ0HdDUQ143rTQdZOGUPCAxI3g3HeC+RpKY2 WliA== X-Gm-Message-State: AJcUukfEWEA/0AgDrvQHfDtUKr3Hza0Ch+8Q8Reo/DuAWoQcNCR/Sjz6 BUJXCRdjT+hchMvLCub/LA== X-Google-Smtp-Source: ALg8bN73GLht7jT2VdEUA2aAjARU3feP5ww8wIL7TN6U4h/F2ziYqLOk5VgXHv2l0ej+KpCWEe6KPQ== X-Received: by 2002:adf:e7d0:: with SMTP id e16mr41961831wrn.142.1549054101456; Fri, 01 Feb 2019 12:48:21 -0800 (PST) Received: from ?IPv6:2a02:810c:c140:3448:7dfc:880a:b6d6:509f? ([2a02:810c:c140:3448:7dfc:880a:b6d6:509f]) by smtp.gmail.com with ESMTPSA id m15sm12098054wrr.95.2019.02.01.12.48.20 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Fri, 01 Feb 2019 12:48:20 -0800 (PST) From: Mathias Fleury Message-Id: <9E1E0533-57EB-4FCD-B06B-570088865DD0 at gmail.com> Mime-Version: 1.0 (Mac OS X Mail 12.2 \(3445.102.3\)) Date: Fri, 1 Feb 2019 21:48:19 +0100 In-Reply-To: <5139eaa2-bbfa-9c21-cbfe-be77acc34d3b at in.tum.de> To: Tobias Nipkow References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> <5139eaa2-bbfa-9c21-cbfe-be77acc34d3b at in.tum.de> X-Mailer: Apple Mail (2.3445.102.3) Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Cc: cl-isabelle-users at lists.cam.ac.uk Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 01 Feb 2019 20:48:22 -0000 Hi all, I had a look at the trace. The problems seems to be "=C2=AC 10 * t2 =E2=89= =A4 15 + 25 * t1".=20 * If not simplified, it is transformed to "16 <=3D 10 * t2 + ~25 * t1" = (in the tracing: "16 <=3D 10, 0, ~25") * After simplification, it becomes "=C2=AC 2 * t2 =E2=89=A4 3 + 5 * t1", = which is transformed to "4 <=3D 2 * t2 + ~5 * t1" (in the tracing: "4 <=3D= 2, 0, ~5") The latter yields an equivalent (but slightly stronger at a first = glance) equality: "20 <=3D 10 * t2 + ~25 * t1". This equality is = equivalent to "16 <=3D 10 * t2 + ~25 * t1", but linarith does not = notice. If I replace "10 * t2 =E2=89=A4 15 + 25 * t1" by "10 * t2 =E2=89=A4 19 + = 25 * t1", then the refutation works (and this two expressions are = equivalent). > On 1. Feb 2019, at 19:49, Tobias Nipkow wrote: > There should be no need to divide by 5, linarith should not need it. = Alas, =E2=80=A6 Or is linarith suppose to preprocess the (in)equalities? Mathias The same example without the constants: consts t1 :: int=20 consts t2 :: int consts t3 :: int definition "eq1 =E2=89=A1 =C2=AC 0 =E2=89=A4 t1 =E2=88=A8 =C2=AC 10 * t2 = < 4 + 14 * t3 =E2=88=A8 10 * t2 =E2=89=A4 15 + 25 * t1 =E2=88=A8 =C2=AC 10 * t2 + 10 * = t3 =E2=89=A4 30 + 25 * t1" definition "eq3 =E2=89=A1 =C2=AC 0 =E2=89=A4 t1 =E2=88=A8 =C2=AC 10 * t2 = < 4 + 14 * t3 =E2=88=A8 2 * t2 =E2=89=A4 3 + 5 * t1 =E2=88=A8 =C2=AC 2 * t2 + 2 * t3 = =E2=89=A4 6 + 5 * t1" lemma "eq1 " unfolding eq1_def supply [[linarith_trace]] apply linarith oops (* Trying to refute subgoal 1 =C2=AC 0 =E2=89=A4 t1 =E2=88=A8 =C2=AC 10 * t2 < 4 + 14 * t3 =E2=88=A8 10 * t2 =E2=89=A4 15 + 25 * t1 =E2=88=A8 =C2=AC 10 * t2 + 10 * t3 =E2=89=A4= 30 + 25 * t1=20 prove:=20 Preprocessing yields 1 subgoal(s) total.=20 Splitting of inequalities yields 1 subgoal(s) total.=20 Refutation failed.=20 Trying to refute subgoal 1 0 =E2=89=A4 t1 =E2=9F=B9 10 * t2 < 4 + 14 * t3 =E2=9F=B9 =C2=AC 10 * t2 =E2=89=A4 15 + 25 * t1 =E2=9F=B9 10 * t2 + 10 * t3 =E2=89=A4 30 + 25 * t1 =E2=9F=B9 False=20 prove:=20 Preprocessing yields 1 subgoal(s) total.=20 Splitting of inequalities yields 1 subgoal(s) total.=20 0 <=3D 0, 0, 1 ~3 <=3D ~10, 14, 0 16 <=3D 10, 0, ~25 ~30 <=3D ~10, ~10, 25=20 0 <=3D 0, 0, 1 16 <=3D 10, 0, ~25 ~225 <=3D ~120, 0, 175=20 0 <=3D 0, 0, 1 ~33 <=3D 0, 0, ~125=20 ~33 <=3D 0, 0, 0=20 Refutation failed.=20 *) lemma "eq3 " unfolding eq3_def supply [[linarith_trace]] apply linarith done (* Trying to refute subgoal 1 =C2=AC 0 =E2=89=A4 t1 =E2=88=A8 =C2=AC 10 * t2 < 4 + 14 * t3 =E2=88=A8 2 * t2 =E2=89=A4 3 + 5 * t1 =E2=88=A8 =C2=AC 2 * t2 + 2 * t3 =E2=89=A4 6 = + 5 * t1=20 prove:=20 Preprocessing yields 1 subgoal(s) total.=20 Splitting of inequalities yields 1 subgoal(s) total.=20 Refutation failed.=20 Trying to refute subgoal 1 0 =E2=89=A4 t1 =E2=9F=B9 10 * t2 < 4 + 14 * t3 =E2=9F=B9 =C2=AC 2 * t2 =E2=89=A4 3 + 5 * t1 =E2=9F=B9 2 * t2 + 2 * t3 =E2=89=A4 6 = + 5 * t1 =E2=9F=B9 False=20 prove:=20 Preprocessing yields 1 subgoal(s) total.=20 Splitting of inequalities yields 1 subgoal(s) total.=20 0 <=3D 0, 0, 1 ~3 <=3D ~10, 14, 0 4 <=3D 2, 0, ~5 ~6 <=3D ~2, ~2, 5=20 0 <=3D 0, 0, 1 4 <=3D 2, 0, ~5 ~45 <=3D ~24, 0, 35=20 0 <=3D 0, 0, 1 3 <=3D 0, 0, ~25=20 3 <=3D 0, 0, 0=20 Contradiction! (1)=20 *) > On 1. Feb 2019, at 19:49, Tobias Nipkow wrote: >=20 > There should be no need to divide by 5, linarith should not need it. = Alas, ... >=20 > Tobias >=20 > On 01/02/2019 18:38, Mathias Fleury wrote: >> Hi list, >> after trying to reconstruct more veriT proofs, I found out the = following lemma cannot be discharged by linarith: >> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >> =C2=AC 10 * int (size lr) < 4 + 14 * int (size rr) =E2=88=A8 >> 10 * int (size lr) =E2=89=A4 15 + 25 * int (size l') =E2=88=A8= >> =C2=AC 10 * int (size lr) + 10 * int (size rr) =E2=89=A4 30 = + 25 * int (size l') " >> apply linarith (* fails *) >> oops >> However, if I simplify the coefficients by dividing by 5, then = linearity is able to prove the goal: >> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >> =C2=AC 5 * int (size lr) < 2 + 7 * int (size rr) =E2=88=A8 >> 2 * int (size lr) =E2=89=A4 3 + 5 * int (size l') =E2=88=A8 >> =C2=AC 2 * int (size lr) + 2 * int (size rr) =E2=89=A4 6 + 5 = * int (size l') " >> apply linarith >> done >> Is there any simproc able to do this simplification automatically? If = there is one, is there any reason why linarith does not use it by = default? >> Thanks, >> Mathias >=20 From frederic.blanqui at inria.fr Fri Feb 01 08:01:43 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:44424) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gpTlf-0002qX-Uf (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 08:01:43 +0000 X-Cam-SpamDetails: score -4.1 from SpamAssassin-3.4.2-1852579 * -5.0 RCVD_IN_DNSWL_HI RBL: Sender listed at http://www.dnswl.org/, high * trust * [192.134.164.83 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 1.0 FROM_EXCESS_BASE64 From: base64 encoded unnecessarily X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta1.cl.cam.ac.uk ([128.232.0.57]:37861) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gpTlf-000EDY-0Z (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 08:01:43 +0000 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]) by mta1.cl.cam.ac.uk with esmtp (Exim 4.90_1) (envelope-from ) id 1gpTlf-0001ML-1d for isabelle-users at cl.cam.ac.uk; Fri, 01 Feb 2019 08:01:43 +0000 X-Cam-SpamDetails: score -4.1 from SpamAssassin-3.4.2-1852579 * -5.0 RCVD_IN_DNSWL_HI RBL: Sender listed at http://www.dnswl.org/, high * trust * [192.134.164.83 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 1.0 FROM_EXCESS_BASE64 From: base64 encoded unnecessarily X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail2-relais-roc.national.inria.fr ([192.134.164.83]:65391) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gpTlZ-000fyr-LJ (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Fri, 01 Feb 2019 08:01:43 +0000 X-IronPort-AV: E=Sophos;i="5.56,547,1539640800"; d="scan'208";a="367333472" Received: from 228.108.97.84.rev.sfr.net (HELO [192.168.1.84]) ([84.97.108.228]) by mail2-relais-roc.national.inria.fr with ESMTP/TLS/AES128-SHA; 01 Feb 2019 09:01:04 +0100 References: To: isabelle-users at cl.cam.ac.uk From: =?UTF-8?B?RnLDqWTDqXJpYyBCbGFucXVp?= X-Forwarded-Message-Id: Message-ID: Date: Fri, 1 Feb 2019 09:01:04 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Content-Language: en-US X-debug-header: local_aliases has suffix X-Mailman-Approved-At: Sat, 02 Feb 2019 10:56:55 +0000 Subject: [isabelle] Announcement: 11th International School on Rewriting (ISR'19), 1-6 July 2019, MINES ParisTech, France X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 01 Feb 2019 08:01:44 -0000 -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-      11th International School on Rewriting (ISR'19)          1-6 July 2019, MINES ParisTech, France                https://isr2019.inria.fr/ -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Rewriting is a simple yet powerful model of computation with numerous applications in computer science and many other fields: logic, mathematics, programming languages, model checking, quantum computing, biology, music... ISR'19 is hosted in the center of Paris and proposes to master students, PhD students and researchers, two parallel tracks: - basic track: introduction to first-order term rewriting and λ-calculus   with lectures by Aart Middeldorp, Sarah Winkler and Femke van Raamsdonk - advanced track: lectures on rewriting theory and applications     . Automated complexity analysis of term rewrite systems, Martin Avanzini     . Reachability in logically constrained term rewriting systems, Ștefan Ciobâcă     . Deduction modulo rewriting, Gilles Dowek     . Introduction to graph rewriting, Rachid Echahed     . Rewriting and music, Florent Jacquemard     . Picturing quantum processes, rewriting quantum pictures, Aleks Kissinger     . Stochastic graph rewriting and (executable) knowledge representation for molecular biology, Jean Krivine     . Higher-order term rewriting, Cynthia Kop     . Homotopy and homology of rewriting, Yves Lafont     . Rewriting in theorem proving, Christopher Lynch     . Formal specification and analysis of real-time systems in Real-Time Maude, Peter Csaba Ölveczky     . Infinitary rewriting and streams, Hans Zantema Registration will open in March. The organizers are Frédéric Blanqui (INRIA, LSV and ENS Paris-Saclay) and Olivier Hermant (MINES ParisTech). -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- ISR'19 is promoted by the IFIP WG1.6 and supported by RFSI, Région Ile-de-France, INRIA, LSV and CNRS. From sandra at dcc.fc.up.pt Fri Feb 01 10:55:17 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:59012) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gpWTd-0008Nv-Ch (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 10:55:17 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852579 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [193.136.39.16 listed in list.dnswl.dnsbl.ja.net] * 0.0 HTML_MESSAGE BODY: HTML included in message X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from smtp.dcc.fc.up.pt ([193.136.39.16]:59620) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtp id 1gpWTS-00008z-ha (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 01 Feb 2019 10:55:17 +0000 Received: from eduroam-prg-sg-1-47-176.net.univ-paris-diderot.fr (roam-nat-fw-prg-194-254-61-40.net.univ-paris-diderot.fr [194.254.61.40]) by smtp.dcc.fc.up.pt (Postfix) with ESMTPSA id CEF63C2CDE for ; Fri, 1 Feb 2019 10:55:05 +0000 (WET) From: Sandra Alves Mime-Version: 1.0 (Mac OS X Mail 10.3 \(3273\)) Message-Id: <839F5825-1936-46CF-AA5F-40B48B2533A2 at dcc.fc.up.pt> Date: Fri, 1 Feb 2019 11:54:55 +0100 To: cl-isabelle-users at lists.cam.ac.uk X-Mailer: Apple Mail (2.3273) X-Mailman-Approved-At: Sat, 02 Feb 2019 10:57:06 +0000 Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: [isabelle] FSCD 2019 - Deadline reminder (Abstracts: 8 February, Full Papers: 11 February) X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 01 Feb 2019 10:55:17 -0000 (Apologies for multiple copies of this announcement. Please circulate.) --------------- CALL FOR PAPERS Fourth International Conference on Formal Structures for Computation and Deduction (FSCD 2019) 24 -- 30 June 2019, Dortmund, Germany http://easyconferences.eu/fscd2019/ = IMPORTANT DATES --------------- All deadlines are midnight anywhere-on-earth (AoE); late submissions will not be considered.=20 Titles and Short Abstracts: 8 February 2019=20 Full Papers: 11 February 2019=20 Rebuttal period: 28 March -- 1 April 2019 Authors Notification: 8 April 2019=20 Final version for proceedings: 22 April 2019=20 FSCD covers all aspects of formal structures for computation and deduction from theoretical foundations to applications. Building on two communities, RTA (Rewriting Techniques and Applications) and TLCA (Typed Lambda Calculi and Applications), FSCD embraces their core topics and broadens their scope to closely related areas in logics, models of computation (e.g. quantum computing, probabilistic computing, homotopy type theory), semantics and verification in new challenging areas (e.g. blockchain protocols or deep learning algorithms). Suggested, but not exclusive, list of topics for submission are: 1. Calculi:=20 Rewriting systems, Lambda calculus, Concurrent calculi, Logics, Type theory, Homotopy type theory, Logical frameworks, Quantum calculi 2. Methods in Computation and Deduction: Type systems; Induction and coinduction; Matching, unification, completion and orderings; Strategies; Tree automata; Model checking; Proof search and theorem proving; Constraint solving and decision procedures 3. Semantics: Operational semantics; Abstract machines; Game Semantics; Domain theory; Categorical models; Quantitative models 4. Algorithmic Analysis and Transformations of Formal Systems: Type inference and type checking; Abstract interpretation; Complexity analysis and implicit computational complexity; Checking termination, confluence, derivational complexity and related properties; Symbolic computation 5. Tools and Applications: Programming and proof environments; Verification tools; Proof assistants and interactive theorem provers; Applications in industry (e.g. design and verification of critical systems); Applications in other sciences (e.g. biology) 6. Semantics and verification in new challenging areas: Certification; Security; Blockchain protocols; Data bases; Deep learning and machine learning algorithms; Planning INVITED SPEAKERS ----------- Titles and abstracts available at http://easyconferences.eu/fscd2019/invited-speakers/ =C2=A0 = * Beniamino Accattoli (INRIA, Paris, France) https://sites.google.com/site/beniaminoaccattoli/ = * Amy Felty (University of Ottawa, Canada) http://www.site.uottawa.ca/~afelty/ = * Sarah Winkler (University of Innsbruck, Austria) http://cl-informatik.uibk.ac.at/users/swinkler/ = * Hongseok Yang (KAIST, Korea) https://sites.google.com/view/hongseokyang/ = PUBLICATION ----------- The proceedings will be published as an electronic volume in the Leibniz International Proceedings in Informatics (LIPIcs) of Schloss Dagstuhl. All LIPIcs proceedings are open access. SUBMISSION GUIDELINES=20 --------------------- Submissions can be made in two categories. Regular research papers are limited to 15 pages (including references, with the possibility to add an annex for technical details, e.g.\ proofs) and must present original research which is unpublished and not submitted elsewhere. System descriptions are limited to 15 pages (including references) and must present new software tools in which FSCD topics play an important role, or significantly new versions of such tools. Submissions must be formatted using the LIPIcs style files and submitted via EasyChair. Complete instructions on submitting a paper can be found on the conference web site: http://easyconferences.eu/fscd2019/ = BEST PAPER AWARD BY JUNIOR RESEARCHERS=20 -------------------------------------- The program committee will consider declaring this award to a paper in which at least one author is a junior researcher, i.e. either a student or whose PhD award date is less than three years from the first day of the meeting. Other authors should declare to the PC Chair that at least 50% of contribution is made by the junior researcher(s). SPECIAL ISSUE=20 ------------- Authors of selected papers will be invited to submit an extended version for a special issue of Logical Methods in Computer Science. PROGRAM COMMITTEE ----------------- H. Geuvers, Radboud U. Nijmegen (Chair) Z. Ariola, U. of Oregon M. Ayala Rinc=C3=B3n, U. of Brasilia A. Bauer, U. of Ljubljana F. Bonchi, U. of Pisa S. Broda, U. of Porto U. Dal Lago, U. of Bologna & Inria U. De'Liguoro, U. of Torino D. Kapur, U. of New Mexico P. Dybjer, Chalmers U. of Technology M. Fernandez, King's College London J. Giesl, RWTH Aachen N. Hirokawa, JAIST S. Lucas, U. Politecnica de Valencia A. Middeldorp, U. of Innsbruck F. Pfenning, Carnegie Mellon U. B. Pientka, McGill U. J. van de Pol, Aarhus U. & U. of Twente F. van Raamsdonk, VU Amsterdam=20 C. Sch=C3=BCrmann, ITU Copenhagen P. Severi, U. of Leicester A. Silva, U. College London S. Staton, Oxford U. T. Streicher, TU Darmstadt A. Stump, U. of Iowa N. Tabareau, Inria S. Tison, U. of Lille A. Tiu, Australian National U. T. Tsukada, U. of Tokyo J. Urban, CTU Prague P. Urzyczyn, U. of Warsaw J. Waldmann, Leipzig U. of Applied Sciences CONFERENCE CHAIR ---------------- Jakob Rehof, TU Dortmund LOCAL WORKSHOP CHAIR -------------------- Boris D=C3=BCdder, U. of Copenhagen STEERING COMMITTEE WORKSHOP CHAIR -------------------------------- J. Vicary, Oxford U. PUBLICITY CHAIR --------------- Sandra Alves , Porto U. FSCD STEERING COMMITTEE ----------------------- S. Alves (Porto U.), M. Ayala-Rinc=C3=B3n (Brasilia U.) C. Fuhs (Birkbeck, London U.) D. Kesner (Chair, Paris U.)=20 H. Kirchner (Inria) N. Kobayashi (U. Tokyo) C. Kop (Radboud U. Nijmegen) D. Miller (Inria) L. Ong (Chair, Oxford U.)=20 B. Pientka (McGill U.) S. Staton (Oxford U.) From nipkow at in.tum.de Mon Feb 04 09:45:08 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:39362) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gqaoO-0003qV-J9 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 04 Feb 2019 09:45:08 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852815 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:39889 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gqaoM-00074Y-fc (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 04 Feb 2019 09:45:08 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id 2B4721C0498; Mon, 4 Feb 2019 10:45:06 +0100 (CET) Received: (Authenticated sender: nipkow) by mail.in.tum.de (Postfix) with ESMTPSA id CE3961C02F7 for ; Mon, 4 Feb 2019 10:45:02 +0100 (CET) (Extended-Queue-bit tech_qwgyo at fff.in.tum.de) To: cl-isabelle-users at lists.cam.ac.uk References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> From: Tobias Nipkow Message-ID: Date: Mon, 4 Feb 2019 10:45:02 +0100 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:60.0) Gecko/20100101 Thunderbird/60.5.0 MIME-Version: 1.0 In-Reply-To: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha-256; boundary="------------ms090109080208060801070500" Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Mon, 04 Feb 2019 09:45:08 -0000 This is a cryptographically signed message in MIME format. --------------ms090109080208060801070500 Content-Type: text/plain; charset=utf-8; format=flowed Content-Language: en-US Content-Transfer-Encoding: quoted-printable Dear Mathias, It took me some time to remember the key point: linarith uses Fourier-Mot= zkin=20 elimnation which is complere for rationals and reals but incomplete for=20 integers. For the latter we have Presburger, but it is too slow for the e= xample. The idea of eliminating common factors first is interesting. I have no id= ea if=20 this is always beneficial. Since the existing code is quite delicate, I a= lso=20 don't want to mess with it. Is there a simproc for eliminating common factors? I suspect not in full = generality, because the simplifier leaves "10 * (i::int) =E2=89=A4 25 * j= " alone. There=20 is one by Larry for the simple case "m * t <=3D n * u" where m and n have= a common=20 factor. I have no idea how much work it would be to generalize it. Best regards Tobias On 01/02/2019 18:38, Mathias Fleury wrote: > Hi list, >=20 >=20 > after trying to reconstruct more veriT proofs, I found out the followin= g lemma cannot be discharged by linarith: >=20 > lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 > =C2=AC 10 * int (size lr) < 4 + 14 * int (size rr) =E2=88=A8 > 10 * int (size lr) =E2=89=A4 15 + 25 * int (size l') =E2=88=A8= > =C2=AC 10 * int (size lr) + 10 * int (size rr) =E2=89=A4 30 += 25 * int (size l') " > apply linarith (* fails *) > oops >=20 >=20 > However, if I simplify the coefficients by dividing by 5, then linearit= y is able to prove the goal: >=20 > lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 > =C2=AC 5 * int (size lr) < 2 + 7 * int (size rr) =E2=88=A8 > 2 * int (size lr) =E2=89=A4 3 + 5 * int (size l') =E2=88=A8 > =C2=AC 2 * int (size lr) + 2 * int (size rr) =E2=89=A4 6 + 5 = * int (size l') " > apply linarith > done >=20 >=20 > Is there any simproc able to do this simplification automatically? If t= here is one, is there any reason why linarith does not use it by default?= >=20 >=20 > Thanks, > Mathias >=20 --------------ms090109080208060801070500 Content-Type: application/pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7s" Content-Description: S/MIME Cryptographic Signature MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCC EYAwggUSMIID+qADAgECAgkA4wvV+K8l2YEwDQYJKoZIhvcNAQELBQAwgYIxCzAJBgNVBAYT AkRFMSswKQYDVQQKDCJULVN5c3RlbXMgRW50ZXJwcmlzZSBTZXJ2aWNlcyBHbWJIMR8wHQYD VQQLDBZULVN5c3RlbXMgVHJ1c3QgQ2VudGVyMSUwIwYDVQQDDBxULVRlbGVTZWMgR2xvYmFs Um9vdCBDbGFzcyAyMB4XDTE2MDIyMjEzMzgyMloXDTMxMDIyMjIzNTk1OVowgZUxCzAJBgNV BAYTAkRFMUUwQwYDVQQKEzxWZXJlaW4genVyIEZvZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVu IEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNVBAsTB0RGTi1QS0kxLTArBgNVBAMTJERG Ti1WZXJlaW4gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgMjCCASIwDQYJKoZIhvcNAQEBBQAD ggEPADCCAQoCggEBAMtg1/9moUHN0vqHl4pzq5lN6mc5WqFggEcVToyVsuXPztNXS43O+FZs FVV2B+pG/cgDRWM+cNSrVICxI5y+NyipCf8FXRgPxJiZN7Mg9mZ4F4fCnQ7MSjLnFp2uDo0p eQcAIFTcFV9Kltd4tjTTwXS1nem/wHdN6r1ZB+BaL2w8pQDcNb1lDY9/Mm3yWmpLYgHurDg0 WUU2SQXaeMpqbVvAgWsRzNI8qIv4cRrKO+KA3Ra0Z3qLNupOkSk9s1FcragMvp0049ENF4N1 xDkesJQLEvHVaY4l9Lg9K7/AjsMeO6W/VRCrKq4Xl14zzsjz9AkH4wKGMUZrAcUQDBHHWekC AwEAAaOCAXQwggFwMA4GA1UdDwEB/wQEAwIBBjAdBgNVHQ4EFgQUk+PYMiba1fFKpZFK4OpL 4qIMz+EwHwYDVR0jBBgwFoAUv1kgNgB5oKAia4zV8mHSuCzLgkowEgYDVR0TAQH/BAgwBgEB /wIBAjAzBgNVHSAELDAqMA8GDSsGAQQBga0hgiwBAQQwDQYLKwYBBAGBrSGCLB4wCAYGZ4EM AQICMEwGA1UdHwRFMEMwQaA/oD2GO2h0dHA6Ly9wa2kwMzM2LnRlbGVzZWMuZGUvcmwvVGVs ZVNlY19HbG9iYWxSb290X0NsYXNzXzIuY3JsMIGGBggrBgEFBQcBAQR6MHgwLAYIKwYBBQUH MAGGIGh0dHA6Ly9vY3NwMDMzNi50ZWxlc2VjLmRlL29jc3ByMEgGCCsGAQUFBzAChjxodHRw Oi8vcGtpMDMzNi50ZWxlc2VjLmRlL2NydC9UZWxlU2VjX0dsb2JhbFJvb3RfQ2xhc3NfMi5j ZXIwDQYJKoZIhvcNAQELBQADggEBAIcL/z4Cm2XIVi3WO5qYi3FP2ropqiH5Ri71sqQPrhE4 eTizDnS6dl2e6BiClmLbTDPo3flq3zK9LExHYFV/53RrtCyD2HlrtrdNUAtmB7Xts5et6u5/ MOaZ/SLick0+hFvu+c+Z6n/XUjkurJgARH5pO7917tALOxrN5fcPImxHhPalR6D90Bo0fa3S PXez7vTXTf/D6OWST1k+kEcQSrCFWMBvf/iu7QhCnh7U3xQuTY+8npTD5+32GPg8SecmqKc2 2CzeIs2LgtjZeOJVEqM7h0S2EQvVDFKvaYwPBt/QolOLV5h7z/0HJPT8vcP9SpIClxvyt7bP ZYoaorVyGTkwggWsMIIElKADAgECAgcbY7rQHiw9MA0GCSqGSIb3DQEBCwUAMIGVMQswCQYD VQQGEwJERTFFMEMGA1UEChM8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRzY2hl biBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLEwdERk4tUEtJMS0wKwYDVQQDEyRE Rk4tVmVyZWluIENlcnRpZmljYXRpb24gQXV0aG9yaXR5IDIwHhcNMTYwNTI0MTEzODQwWhcN MzEwMjIyMjM1OTU5WjCBjTELMAkGA1UEBhMCREUxRTBDBgNVBAoMPFZlcmVpbiB6dXIgRm9l cmRlcnVuZyBlaW5lcyBEZXV0c2NoZW4gRm9yc2NodW5nc25ldHplcyBlLiBWLjEQMA4GA1UE CwwHREZOLVBLSTElMCMGA1UEAwwcREZOLVZlcmVpbiBHbG9iYWwgSXNzdWluZyBDQTCCASIw DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJ07eRxH3h+Gy8Zp1xCeOdfZojDbchwFfylf S2jxrRnWTOFrG7ELf6Gr4HuLi9gtzm6IOhDuV+UefwRRNuu6cG1joL6WLkDh0YNMZj0cZGnl m6Stcq5oOVGHecwX064vXWNxSzl660Knl5BpBb+Q/6RAcL0D57+eGIgfn5mITQ5HjUhfZZkQ 0tkqSe3BuS0dnxLLFdM/fx5ULzquk1enfnjK1UriGuXtQX1TX8izKvWKMKztFwUkP7agCwf9 TRqaA1KgNpzeJIdl5Of6x5ZzJBTN0OgbaJ4YWa52fvfRCng8h0uwN89Tyjo4EPPLR22MZD08 WkVKusqAfLjz56dMTM0CAwEAAaOCAgUwggIBMBIGA1UdEwEB/wQIMAYBAf8CAQEwDgYDVR0P AQH/BAQDAgEGMCkGA1UdIAQiMCAwDQYLKwYBBAGBrSGCLB4wDwYNKwYBBAGBrSGCLAEBBDAd BgNVHQ4EFgQUazqYi/nyU4na4K2yMh4JH+iqO3QwHwYDVR0jBBgwFoAUk+PYMiba1fFKpZFK 4OpL4qIMz+EwgY8GA1UdHwSBhzCBhDBAoD6gPIY6aHR0cDovL2NkcDEucGNhLmRmbi5kZS9n bG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDBAoD6gPIY6aHR0cDovL2NkcDIu cGNhLmRmbi5kZS9nbG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDCB3QYIKwYB BQUHAQEEgdAwgc0wMwYIKwYBBQUHMAGGJ2h0dHA6Ly9vY3NwLnBjYS5kZm4uZGUvT0NTUC1T ZXJ2ZXIvT0NTUDBKBggrBgEFBQcwAoY+aHR0cDovL2NkcDEucGNhLmRmbi5kZS9nbG9iYWwt cm9vdC1nMi1jYS9wdWIvY2FjZXJ0L2NhY2VydC5jcnQwSgYIKwYBBQUHMAKGPmh0dHA6Ly9j ZHAyLnBjYS5kZm4uZGUvZ2xvYmFsLXJvb3QtZzItY2EvcHViL2NhY2VydC9jYWNlcnQuY3J0 MA0GCSqGSIb3DQEBCwUAA4IBAQCBeEWkTqR/DlXwCbFqPnjMaDWpHPOVnj/z+N9rOHeJLI21 rT7H8pTNoAauusyosa0zCLYkhmI2THhuUPDVbmCNT1IxQ5dGdfBi5G5mUcFCMWdQ5UnnOR7L n8qGSN4IFP8VSytmm6A4nwDO/afr0X9XLchMX9wQEZc+lgQCXISoKTlslPwQkgZ7nu7YRrQb tQMMONncsKk/cQYLsgMHM8KNSGMlJTx6e1du94oFOO+4oK4v9NsH1VuEGMGpuEvObJAaguS5 Pfp38dIfMwK/U+d2+dwmJUFvL6Yb+qQTkPp8ftkLYF3sv8pBoGH7EUkp2KgtdRXYShjqFu9V NCIaE40GMIIGtjCCBZ6gAwIBAgIMHxoBcB9CcQPHriXDMA0GCSqGSIb3DQEBCwUAMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBMB4XDTE4MDUxNTA2NTMyMloXDTE5MTEx NzAyMDAwMFowgcAxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIDAZCYXllcm4xETAPBgNVBAcMCE11 ZW5jaGVuMSkwJwYDVQQKDCBUZWNobmlzY2hlIFVuaXZlcnNpdGFldCBNdWVuY2hlbjEiMCAG A1UECwwZRmFrdWx0YWV0IGZ1ZXIgSW5mb3JtYXRpazEWMBQGA1UEAwwNVG9iaWFzIE5pcGtv dzEmMCQGCSqGSIb3DQEJARYXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGUwggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQCADTpwPRPWfSf9fi2ZhFfIjICiK0m69uj995i1vv8ajdIH XwulShY6KCmrezG6KZULjEi5GyRbZiCon/Ag+/0K/vLg3fIioBPPCw6lbEnhLeTyDfTDQJjo zpnlt24Eqp1Mb3ErO73WvAACYFJtChMZL6aF6WiHsL8MYTE0FhlHeuT9A56JLZvfqfEiuG4N dCf19A0EYvRxQiHk4HyV8ib/idJoTWfQSqBDYM/nLbmF6nVizuHlicNYwftM00hgqA2UM4im LSB4FytvRUSPNdmc0eY9zcHDpSz5nZbDWPjmQeMWAlFuV2sBqNcYUyeTzOuvoXPsSTBFRmcX KlFdysPnAgMBAAGjggLfMIIC2zBABgNVHSAEOTA3MA8GDSsGAQQBga0hgiwBAQQwEQYPKwYB BAGBrSGCLAEBBAMIMBEGDysGAQQBga0hgiwCAQQDCDAJBgNVHRMEAjAAMA4GA1UdDwEB/wQE AwIF4DAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYBBQUHAwQwHQYDVR0OBBYEFP4tlXbsLniS Wq9uFYP/UEre4Ek6MB8GA1UdIwQYMBaAFGs6mIv58lOJ2uCtsjIeCR/oqjt0MIGuBgNVHREE gaYwgaOBEG5pcGtvd0Bpbi50dW0uZGWBEW5pcGtvd0Bjcy50dW0uZWR1gSBuaXBrb3dAaW5m b3JtYXRpay50dS1tdWVuY2hlbi5kZYEXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGWBGHRvYmlh cy5uaXBrb3dAY3MudHVtLmVkdYEndG9iaWFzLm5pcGtvd0BpbmZvcm1hdGlrLnR1LW11ZW5j aGVuLmRlMIGNBgNVHR8EgYUwgYIwP6A9oDuGOWh0dHA6Ly9jZHAxLnBjYS5kZm4uZGUvZGZu LWNhLWdsb2JhbC1nMi9wdWIvY3JsL2NhY3JsLmNybDA/oD2gO4Y5aHR0cDovL2NkcDIucGNh LmRmbi5kZS9kZm4tY2EtZ2xvYmFsLWcyL3B1Yi9jcmwvY2FjcmwuY3JsMIHbBggrBgEFBQcB AQSBzjCByzAzBggrBgEFBQcwAYYnaHR0cDovL29jc3AucGNhLmRmbi5kZS9PQ1NQLVNlcnZl ci9PQ1NQMEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMS5wY2EuZGZuLmRlL2Rmbi1jYS1nbG9i YWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMi5w Y2EuZGZuLmRlL2Rmbi1jYS1nbG9iYWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MA0GCSqG SIb3DQEBCwUAA4IBAQAMTylJt407CL/HwgO4Om/yrpB/yDMKHLj4A1hvkSedvYvTFLk9gVTw U/fAKYrZxqazGcd0mCcRKPhj4lEbXUm5A6emrBRcolPiekw9/uEp1aZUz082cgi7HXnQS+Pi by5BJ4bBeMwt3FrFgdz18nl/+DcxX5KR3LMSujZu4d4ZmD19fifGxcAsOk2emYvA5JAMsmuw DWtYgnI08t+w73QAbkEPLpxqtkxzWK3Djv3aiMC6tA1cZUdgi5EVZGaEh9yZ8qWh2a7LR2ts XvbumZ++H+C0zQjn7FFgp8uQpqxN+dVKPjXx58LmHymKRKU2xMsyKE6W2x32qaVIClKPXdqc MYIECzCCBAcCAQEwgZ4wgY0xCzAJBgNVBAYTAkRFMUUwQwYDVQQKDDxWZXJlaW4genVyIEZv ZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVuIEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNV BAsMB0RGTi1QS0kxJTAjBgNVBAMMHERGTi1WZXJlaW4gR2xvYmFsIElzc3VpbmcgQ0ECDB8a AXAfQnEDx64lwzANBglghkgBZQMEAgEFAKCCAj0wGAYJKoZIhvcNAQkDMQsGCSqGSIb3DQEH ATAcBgkqhkiG9w0BCQUxDxcNMTkwMjA0MDk0NTAyWjAvBgkqhkiG9w0BCQQxIgQg1CF04f5o evGWke6jKjQqYa6rjUX1/LvZOcFcjrA1/1EwbAYJKoZIhvcNAQkPMV8wXTALBglghkgBZQME ASowCwYJYIZIAWUDBAECMAoGCCqGSIb3DQMHMA4GCCqGSIb3DQMCAgIAgDANBggqhkiG9w0D AgIBQDAHBgUrDgMCBzANBggqhkiG9w0DAgIBKDCBrwYJKwYBBAGCNxAEMYGhMIGeMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFwH0JxA8euJcMwgbEGCyqGSIb3 DQEJEAILMYGhoIGeMIGNMQswCQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2Vy ZGVydW5nIGVpbmVzIERldXRzY2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQL DAdERk4tUEtJMSUwIwYDVQQDDBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFw H0JxA8euJcMwDQYJKoZIhvcNAQEBBQAEggEACQkAH8Ss452qJnq1x5oqmVHoZQE2pnwAu1R/ e3iSt+G5KLM07ve+1dbDZFLec59JSDJ3LtwwnhbNyjnsrlSQAntdn+W74JA+v/EJkfEPfBkm uwwxdG9X6jxtpBGscDpAv9rdVXSjgzI2xejDD4xI+X38yryrfSvyvsM6IYu5IE4DLJS2NKob ZyD46KD0IBufKUaFxPnNItLIw59i7FS6UixJ/1Q1K5EMjfSIJCl58Mbp78hvAvpvkVG+mZ+A I3XFXcxVvh2unkjhGIIWK6TMyhEWsoZ9SJwPgmI6q9nQZ28/M6AIURSbpHVxqQfdxrwRN5Mv +QcU59oyFcaEAsiLqwAAAAAAAA== --------------ms090109080208060801070500-- From josh at joshchen.io Sun Feb 03 23:55:20 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:55304) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gqRbc-00040G-O5 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 03 Feb 2019 23:55:20 +0000 X-Cam-SpamDetails: score -0.8 from SpamAssassin-3.4.2-1852784 * -0.7 RCVD_IN_DNSWL_LOW RBL: Sender listed at http://www.dnswl.org/, low * trust * [80.241.60.215 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [80.241.60.215 listed in wl.mailspike.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mx2.mailbox.org ([80.241.60.215]:35870) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gqRbc-000ThA-0r (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 03 Feb 2019 23:55:20 +0000 Received: from smtp2.mailbox.org (smtp2.mailbox.org [IPv6:2001:67c:2050:105:465:1:2:0]) (using TLSv1.2 with cipher ECDHE-RSA-CHACHA20-POLY1305 (256/256 bits)) (No client certificate requested) by mx2.mailbox.org (Postfix) with ESMTPS id DA7D1A10C8 for ; Mon, 4 Feb 2019 00:55:19 +0100 (CET) X-Virus-Scanned: amavisd-new at heinlein-support.de Received: from smtp2.mailbox.org ([80.241.60.241]) by gerste.heinlein-support.de (gerste.heinlein-support.de [91.198.250.173]) (amavisd-new, port 10030) with ESMTP id 3sxuDCT9Z1Lm for ; Mon, 4 Feb 2019 00:55:18 +0100 (CET) References: To: Cl-isabelle-users From: Joshua Chen X-Forwarded-Message-Id: Message-ID: Date: Mon, 4 Feb 2019 00:55:18 +0100 MIME-Version: 1.0 In-Reply-To: Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Content-Language: en-US X-Mailman-Approved-At: Mon, 04 Feb 2019 10:03:33 +0000 Subject: [isabelle] Automatic attribute assignment after axiomatization/proof X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 03 Feb 2019 23:55:20 -0000 Dear all, I am trying to add a particular functionality to a type theory object logic. I have a single judgment has_type :: "[t, t] ⇒ prop"  (infix ":") and to support object-level typechecking, I want to explicitly record all theorems with head has_type that are introduced via "axiomatization" or "qed". To do this I would like to automatically declare such theorems to have some attribute "typinfo" at the point in the theory at which they are stated (for axioms) or proved (for theorems). Is there a way to do this, other than defining my own outer syntax keywords? Apparently hooking directly into the existing keywords is not possible, but perhaps I can piggyback off some other function that is called when the kernel checks/certifies the theorems? Best, Josh From chantal.keller at wanadoo.fr Mon Feb 04 10:37:24 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:53758) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gqbcy-00020Y-Nf (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 04 Feb 2019 10:37:24 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1852815 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [129.175.15.10 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta1.cl.cam.ac.uk ([128.232.0.57]:46643) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gqbcx-000xrQ-2S (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 04 Feb 2019 10:37:24 +0000 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]) by mta1.cl.cam.ac.uk with esmtp (Exim 4.90_1) (envelope-from ) id 1gqbcx-0003ei-KJ for isabelle-users at cl.cam.ac.uk; Mon, 04 Feb 2019 10:37:23 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1852815 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [129.175.15.10 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mailext.lri.fr ([129.175.15.10]:40248) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with smtp id 1gqbcw-000Fcq-iF (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Mon, 04 Feb 2019 10:37:23 +0000 Received: from [129.175.15.10] (mailext.lri.fr [129.175.15.10]) (using TLSv1.2 with cipher ECDHE-RSA-AES128-GCM-SHA256 (128/128 bits)) (No client certificate requested) by mailext.lri.fr (Postfix) with ESMTPSA id 4C447C298D; Mon, 4 Feb 2019 11:37:22 +0100 (CET) To: types-announce at lists.seas.upenn.edu, isabelle-users at cl.cam.ac.uk From: Chantal Keller Message-ID: <828d401c-4028-25f6-740f-e7a8cf72bb04 at wanadoo.fr> Date: Mon, 4 Feb 2019 11:37:17 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 Content-Type: text/plain; charset=utf-8 Content-Language: en-US Content-Transfer-Encoding: quoted-printable X-debug-header: local_aliases has suffix Subject: [isabelle] TAP 2019 - First CFP X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Mon, 04 Feb 2019 10:37:24 -0000 [Please accept our apologies for duplicates] =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D First Call for Papers 13th International Conference on Tests And Proofs TAP 2019 Porto (Portugal), October 9-11, 2019 https://tap.sosy-lab.org/2019/ Part of the 3rd World Congress on Formal Methods =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D Important Dates --------------- Abstract: March 28, 2019 Paper: April 11, 2019 Notification: June 11, 2019 Camera-Ready Version: July 9, 2019 Conference: October 9-11, 2019 Aim and Scope ------------- The TAP conference promotes research in verification and formal methods that targets the interplay of proofs and testing: the advancement of techniques of each kind and their combination, with the ultimate goal of improving software and system dependability. Research in verification has recently seen a steady convergence of heterogeneous techniques and a synergy between the traditionally distinct areas of testing (and dynamic analysis) and of proving (and static analysis). Formal techniques for counter-example generation based on, for example, symbolic execution, SAT/SMT-solving or model checking, furnish evidence for the potential of a combination of test and proof. The combination of predicate abstraction with testing-lik= e techniques based on exhaustive enumeration opens the perspective for novel techniques of proving correctness. On the practical side, testing offers cost-effective debugging techniques of specifications or crucial parts of program proofs (such as invariants). Last but not least, testing is indispensable when it comes to the validation of the underlying assumptions of complex system models involving hardware and/or system environments. Over the years, there is growing acceptance in research communities that testing and proving are complementary rather than mutually exclusive techniques. The TAP conference aims to promote research in the intersection of testing and proving by bringing together researchers and practitioners from both areas of verification. Topics of Interest ------------------ TAP's scope encompasses many aspects of verification technology, including foundational work, tool development, and empirical research. Its topics of interest center around the connection between proofs (and other static techniques) and testing (and other dynamic techniques). Papers are solicited on, but not limited to, the following topics: - Verification and analysis techniques combining proofs and tests - Program proving with the aid of testing techniques - Deductive techniques supporting the automated generation of test vectors and oracles (theorem proving, model checking, symbolic execution, SAT/SMT solving, constraint logic programming, etc.) - Deductive techniques supporting novel definitions of coverage criteria, - Program analysis techniques combining static and dynamic analysis - Specification inference by deductive and dynamic methods - Testing and runtime analysis of formal specifications - Search-based technics for proving and testing - Verification of verification tools and environments - Applications of test and proof techniques in new domains, such as security, configuration management, learning - Combined approaches of test and proof in the context of formal certifications (Common Criteria, CENELEC, =E2=80=A6) - Case studies, tool and framework descriptions, and experience reports about combining tests and proofs Submission Instructions ------------------- TAP 2019 accepts papers of three kinds: - Regular research papers: full submissions describing original research, of up to 16 pages (excluding references). - Tool demonstration papers: submissions describing the design and implementation of an analysis/verification tool or framework, of up to 8 pages (excluding references). The tool/framework described in a tool demonstration paper should be available for public use. - Short papers: submissions describing preliminary findings, proofs of concepts, and exploratory studies, of up to 6 pages (excluding references). We are planning to publish the proceedings in the Formal Methods subline of Springer's LNCS series. Papers must be submitted in PDF format at the EasyChair submission site: https://easychair.org/conferences/?conf=3Dtap2019 Committees ---------- Information about all committees can be found at https://tap.sosy-lab.org/2019/committee.php Program Chairs : Dirk Beyer (LMU Munich, Germany) Chantal Keller (LRI Paris, France) Program Committee: Bernhard Beckert (KIT, Germany) Marcel B=C3=B6hme (Monash University, Australia) Achim D. Brucker (University of Sheffield, UK) Catherine Dubois (ENSIIE, France) Reiner H=C3=A4hnle (TU Darmstadt, Germany) Klaus Havelund (Jet Propulsion, USA) Marieke Huisman (University of Twente, Netherlands) Marie-Christine Jakobs (LMU Munich, Germany) Nikolai Kosmatov (CEA List, France) Laura Kovacs (TU Vienna, Austria) Peter Lammich (TUM, Germany) Caroline Lemieux (UC Berkeley, USA) Martin Nowack (Imperial College London, UK) Corina Pasareanu (CMU/NASA Ames, USA) Fran=C3=A7ois Pessaux (ENSTA ParisTech, France) Alexander K. Petrenko (ISP RAS, Russia) Michael Tautschnig (Queen Mary University of London, UK) Burkhart Wolff (Univ Paris-Sud, France) Contact ------- mailto:tap2019 at easychair.org From mathias.fleury12 at gmail.com Mon Feb 04 14:29:52 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:55314) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gqfFw-0007US-Np (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 04 Feb 2019 14:29:52 +0000 X-Cam-SpamDetails: score -0.0 from SpamAssassin-3.4.2-1852815 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.221.44 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (mathias.fleury12[at]gmail.com) * 0.2 FREEMAIL_ENVFROM_END_DIGIT Envelope-from freemail username ends in * digit (mathias.fleury12[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-wr1-f44.google.com ([209.85.221.44]:42637) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gqfFv-000Yra-ha (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 04 Feb 2019 14:29:52 +0000 Received: by mail-wr1-f44.google.com with SMTP id q18so5435wrx.9 for ; Mon, 04 Feb 2019 06:29:51 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:message-id:mime-version:subject:date :in-reply-to:cc:to:references; bh=alJxAIacN9Zc4inpiF/Zf9DphSRZqdWU0QQxkQrs8S4=; b=VfyBgjrOAPnEYLacj1/9viJOVzn6EBaJGW0B38YwcKLS6P4MbFVKGwaNXHxRBanMtB A4N3nwY/ohq45GLMO4ffZGAjnMUn1HkfzVaq4BNt/5rW6Qu7VMUMREgTH3Z7P/gFIf+t 2Nv/mYWMgs1h8AtLqZEe1eWKDrpx0va0WNDMeBdZged2n9dItk3bYlzvzZHB8E9yoTSh nt2QPeeDG4kOHp0ZErQyW4cV5ez9bvXl4NxPsKyscjpHDw5h88FsPcHOnxNC9GL8ZqIs VfKOuTWaqdQFThrtOVYcMR1i4gI/QSUNwytKTJtfxz+66xnXVuMmKz7bYAnneaPMumJ6 ZWdg== X-Gm-Message-State: AJcUukeE4k6+HoRpCLLwG9CXiV9WZm/F0LRRoC5v8gpqbs3cM5fjGPPR Xgv8afsQF+VFgemk9vMmQQ== X-Google-Smtp-Source: ALg8bN7hOQlBB7zH6hCJosAW33UGp03u3z0WR1BmroFRl6qmqg1HVURlGQgm2EeBTwKg1+HPmdj2wQ== X-Received: by 2002:a5d:6850:: with SMTP id o16mr50571686wrw.123.1549290591101; Mon, 04 Feb 2019 06:29:51 -0800 (PST) Received: from mbk-21-51.mpi-inf.mpg.de (mbk-21-51.mpi-inf.mpg.de. [139.19.76.17]) by smtp.gmail.com with ESMTPSA id i184sm6708540wmd.26.2019.02.04.06.29.50 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Mon, 04 Feb 2019 06:29:50 -0800 (PST) From: Mathias Fleury Message-Id: Mime-Version: 1.0 (Mac OS X Mail 12.2 \(3445.102.3\)) Date: Mon, 4 Feb 2019 15:29:49 +0100 In-Reply-To: To: Tobias Nipkow References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> X-Mailer: Apple Mail (2.3445.102.3) Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Cc: cl-isabelle-users at lists.cam.ac.uk Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Mon, 04 Feb 2019 14:29:52 -0000 Dear Tobias, > On 4. Feb 2019, at 10:45, Tobias Nipkow wrote: >=20 > Dear Mathias, >=20 > It took me some time to remember the key point: linarith uses = Fourier-Motzkin elimnation which is complere for rationals and reals but = incomplete for integers. For the latter we have Presburger, but it is = too slow for the example. >=20 > The idea of eliminating common factors first is interesting. I have no = idea if this is always beneficial.=20 I asked our local expert of linear arithmetics, Martin Bromberger: > tl;dr: Eliminating common factors helps much more than it hurts, = especially for linear integer arithmetic; but there are cases, although = rare, where it might be harmful. >=20 > Detailed explanation: >=20 > Fourier-Motzkin transformation over the reals/rationals: is just a = projection. And the projection does not change if we eliminate common = factors because this elimination is equivalence preserving. (There is = one exception... Your projection may change because your Fourier-Motzkin = implementation might change the variable elimination order. Yay = heuristics...) What changes, however, is the run time needed to compute = the projection. Whether you are faster or worse depends on the overhead = of eliminating common factors vs. the speed-up you gain by having = smaller coefficients. Personally, I think you would gain a speed-up. >=20 > Fourier-Motzkin transformation over the integers: eliminating = common factors alone should not change whether a problem is solvable or = unsolvable. Because the projection stays the same :-) Unless, (i) you = combine it with rounding ("2 * x:int + 4 * y:int <=3D 1" simplifies to = "x:int + 2 * y:int <=3D 0 =3D \floor(1/2)") or (ii) if you simplify = strict inequalities over integer variables ("a:int < 1" simplifies to = "a:int <=3D 0", but "2 * a:int < 2" simplifies to "2 * a:int <=3D 1"). I = assume (ii) is what happened in your example (because (i) is a form of = eliminating common factors) and thanks to eliminating common factors you = removed some rational/real solutions and made the problem solvable. And = because this is possible (i) and (ii) are also normally done for = arithmetic inequalities. (Still, you might very rarely get worse results = because your Fourier-Motzkin implementation changes the variable = elimination order due to heuristic shenanigans=E2=80=A6) >=20 > PS: Eliminating common factors and (i) and (ii) are not just = preprocessing steps but inprocessing steps. You should apply them after = every intermediate step of Fourier-Motzkin transformation=E2=80=A6 >=20 > Since the existing code is quite delicate, I also don't want to mess = with it. I was more thinking of a preprocessing step, than a change to linarith = itself. Which I expect to be a much bigger task. > Is there a simproc for eliminating common factors? I suspect not in = full generality, because the simplifier leaves "10 * (i::int) =E2=89=A4 = 25 * j" alone. There is one by Larry for the simple case "m * t <=3D n * = u" where m and n have a common factor. I have no idea how much work it = would be to generalize it. Thanks for the pointer. Best regards, Mathias > Best regards > Tobias >=20 > On 01/02/2019 18:38, Mathias Fleury wrote: >> Hi list, >> after trying to reconstruct more veriT proofs, I found out the = following lemma cannot be discharged by linarith: >> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >> =C2=AC 10 * int (size lr) < 4 + 14 * int (size rr) =E2=88=A8 >> 10 * int (size lr) =E2=89=A4 15 + 25 * int (size l') =E2=88=A8= >> =C2=AC 10 * int (size lr) + 10 * int (size rr) =E2=89=A4 30 = + 25 * int (size l') " >> apply linarith (* fails *) >> oops >> However, if I simplify the coefficients by dividing by 5, then = linearity is able to prove the goal: >> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >> =C2=AC 5 * int (size lr) < 2 + 7 * int (size rr) =E2=88=A8 >> 2 * int (size lr) =E2=89=A4 3 + 5 * int (size l') =E2=88=A8 >> =C2=AC 2 * int (size lr) + 2 * int (size rr) =E2=89=A4 6 + 5 = * int (size l') " >> apply linarith >> done >> Is there any simproc able to do this simplification automatically? If = there is one, is there any reason why linarith does not use it by = default? >> Thanks, >> Mathias >=20 From nipkow at in.tum.de Mon Feb 04 16:20:45 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:43238) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gqgzF-00057a-9V (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 04 Feb 2019 16:20:45 +0000 X-Cam-SpamDetails: score -1.4 from SpamAssassin-3.4.2-1852815 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 1.0 MISSING_HEADERS Missing To: header X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:54058 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gqgzE-000962-gl (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 04 Feb 2019 16:20:45 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id 8A4961C0498; Mon, 4 Feb 2019 17:20:43 +0100 (CET) Received: (Authenticated sender: nipkow) by mail.in.tum.de (Postfix) with ESMTPSA id E27101C02F7 for ; Mon, 4 Feb 2019 17:20:40 +0100 (CET) (Extended-Queue-bit tech_itwjq at fff.in.tum.de) Cc: cl-isabelle-users at lists.cam.ac.uk References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> From: Tobias Nipkow Message-ID: <9c1c60d0-82e5-301b-0858-6d5cc9eb9ccd at in.tum.de> Date: Mon, 4 Feb 2019 17:20:39 +0100 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:60.0) Gecko/20100101 Thunderbird/60.5.0 MIME-Version: 1.0 In-Reply-To: Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha-256; boundary="------------ms060004080201030304020603" Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Mon, 04 Feb 2019 16:20:45 -0000 This is a cryptographically signed message in MIME format. --------------ms060004080201030304020603 Content-Type: text/plain; charset=utf-8; format=flowed Content-Language: en-US Content-Transfer-Encoding: quoted-printable Mathias, Actually, a simproc to cancel all common factors is easy: Givem t1 <=3D t= 2, where=20 t1 and t2 are sums, compute the common factor m of t1 and t2 and the rema= inders=20 t1' and t2'. Prove by rewriting with distributivity that (t1 <=3D t2) =3D= (m*t1' <=3D=20 m*t2'). Prove by simproc that (m*t1' <=3D m*t2') =3D (t1' <=3D t2') - see= =20 Tools/numeral_simprocs.ML. Tobias On 04/02/2019 15:29, Mathias Fleury wrote: > Dear Tobias, >=20 >=20 >> On 4. Feb 2019, at 10:45, Tobias Nipkow > > wrote: >> >> Dear Mathias, >> >> It took me some time to remember the key point: linarith uses Fourier-= Motzkin=20 >> elimnation which is complere for rationals and reals but incomplete fo= r=20 >> integers. For the latter we have Presburger, but it is too slow for th= e example. >> >> The idea of eliminating common factors first is interesting. I have no= idea if=20 >> this is always beneficial. >=20 > I asked our local expert of linear arithmetics, Martin Bromberger: >=20 >> tl;dr: Eliminating common factors helps much more than it hurts, >> especially for linear integer arithmetic; but there are cases, alt= hough >> rare, where it might be harmful. >> >> Detailed explanation: >> >> Fourier-Motzkin transformation over the reals/rationals: is just a= >> projection. And the projection does not change if we eliminate com= mon >> factors because this elimination is equivalence preserving. (There= is one >> exception... Your projection may change because your Fourier-Motzk= in >> implementation might change the variable elimination order. Yay >> heuristics...) What changes, however, is the run time needed to co= mpute >> the projection. Whether you are faster or worse depends on the ove= rhead of >> eliminating common factors vs. the speed-up you gain by having sma= ller >> coefficients. Personally, I think you would gain a speed-up. >> >> Fourier-Motzkin transformation over the integers: eliminating =C2=A0= =C2=A0=C2=A0 =C2=A0common >> factors alone should not change whether a problem is solvable or >> unsolvable. Because the projection stays the same :-) Unless, (i) = you >> combine it with rounding ("2 * x:int + 4 * y:int <=3D 1" simplifie= s to >> "x:int + 2 * y:int <=3D 0 =3D \floor(1/2)") or (ii) if you simplif= y strict >> inequalities over integer variables ("a:int < 1" simplifies to "a:= int <=3D >> 0", but "2 * a:int < 2" simplifies to "2 * a:int <=3D 1"). I assum= e (ii) is >> what happened in your example (because (i) is a form of eliminatin= g common >> factors) and thanks to eliminating common factors you removed some= >> rational/real solutions and made the problem solvable. And because= this is >> possible (i) and (ii) are also normally done for arithmetic inequa= lities. >> (Still, you might very rarely get worse results because your >> Fourier-Motzkin implementation changes the variable elimination or= der due >> to heuristic shenanigans=E2=80=A6) >> >> PS: Eliminating common factors and (i) and (ii) are not just prepr= ocessing >> steps but inprocessing steps. You should apply them after every >> intermediate step of Fourier-Motzkin transformation=E2=80=A6 >> >=20 >=20 >=20 >=20 >> Since the existing code is quite delicate, I also don't want to mess w= ith it. >=20 > I was more thinking of a preprocessing step, than a change to linarith = itself.=20 > Which I expect to be a much bigger task. >=20 >=20 >> Is there a simproc for eliminating common factors? I suspect not in fu= ll=20 >> generality, because the simplifier leaves "10 * (i::int) =E2=89=A4 25 = * j" alone.=20 >> There is one by Larry for the simple case "m * t <=3D n * u" where m a= nd n have=20 >> a common factor. I have no idea how much work it would be to generaliz= e it. >=20 > Thanks for the pointer. >=20 >=20 > Best regards, > Mathias >=20 >=20 >=20 >> Best regards >> Tobias >> >> On 01/02/2019 18:38, Mathias Fleury wrote: >>> Hi list, >>> after trying to reconstruct more veriT proofs, I found out the follow= ing=20 >>> lemma cannot be discharged by linarith: >>> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=AC 10 * int= (size lr) < 4 + 14 * int (size rr) =E2=88=A8 >>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A010 * int (size = lr) =E2=89=A4 15 + 25 * int (size l') =E2=88=A8 >>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=AC 10 * int= (size lr) + 10 * int (size rr) =E2=89=A4 30 + 25 * int (size l') " >>> =C2=A0=C2=A0apply linarith (* fails *) >>> =C2=A0=C2=A0oops >>> However, if I simplify the coefficients by dividing by 5, then linear= ity is=20 >>> able to prove the goal: >>> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=AC 5 * int = (size lr) < 2 + 7 * int (size rr) =E2=88=A8 >>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A02 * int (size l= r) =E2=89=A4 3 + 5 * int (size l') =E2=88=A8 >>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=AC 2 * int = (size lr) + 2 * int (size rr) =E2=89=A4 6 + 5 * int (size l') " >>> =C2=A0=C2=A0apply linarith >>> =C2=A0=C2=A0done >>> Is there any simproc able to do this simplification automatically? If= there=20 >>> is one, is there any reason why linarith does not use it by default? >>> Thanks, >>> Mathias >> >=20 --------------ms060004080201030304020603 Content-Type: application/pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7s" Content-Description: S/MIME Cryptographic Signature MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCC EYAwggUSMIID+qADAgECAgkA4wvV+K8l2YEwDQYJKoZIhvcNAQELBQAwgYIxCzAJBgNVBAYT AkRFMSswKQYDVQQKDCJULVN5c3RlbXMgRW50ZXJwcmlzZSBTZXJ2aWNlcyBHbWJIMR8wHQYD VQQLDBZULVN5c3RlbXMgVHJ1c3QgQ2VudGVyMSUwIwYDVQQDDBxULVRlbGVTZWMgR2xvYmFs Um9vdCBDbGFzcyAyMB4XDTE2MDIyMjEzMzgyMloXDTMxMDIyMjIzNTk1OVowgZUxCzAJBgNV BAYTAkRFMUUwQwYDVQQKEzxWZXJlaW4genVyIEZvZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVu IEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNVBAsTB0RGTi1QS0kxLTArBgNVBAMTJERG Ti1WZXJlaW4gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgMjCCASIwDQYJKoZIhvcNAQEBBQAD ggEPADCCAQoCggEBAMtg1/9moUHN0vqHl4pzq5lN6mc5WqFggEcVToyVsuXPztNXS43O+FZs FVV2B+pG/cgDRWM+cNSrVICxI5y+NyipCf8FXRgPxJiZN7Mg9mZ4F4fCnQ7MSjLnFp2uDo0p eQcAIFTcFV9Kltd4tjTTwXS1nem/wHdN6r1ZB+BaL2w8pQDcNb1lDY9/Mm3yWmpLYgHurDg0 WUU2SQXaeMpqbVvAgWsRzNI8qIv4cRrKO+KA3Ra0Z3qLNupOkSk9s1FcragMvp0049ENF4N1 xDkesJQLEvHVaY4l9Lg9K7/AjsMeO6W/VRCrKq4Xl14zzsjz9AkH4wKGMUZrAcUQDBHHWekC AwEAAaOCAXQwggFwMA4GA1UdDwEB/wQEAwIBBjAdBgNVHQ4EFgQUk+PYMiba1fFKpZFK4OpL 4qIMz+EwHwYDVR0jBBgwFoAUv1kgNgB5oKAia4zV8mHSuCzLgkowEgYDVR0TAQH/BAgwBgEB /wIBAjAzBgNVHSAELDAqMA8GDSsGAQQBga0hgiwBAQQwDQYLKwYBBAGBrSGCLB4wCAYGZ4EM AQICMEwGA1UdHwRFMEMwQaA/oD2GO2h0dHA6Ly9wa2kwMzM2LnRlbGVzZWMuZGUvcmwvVGVs ZVNlY19HbG9iYWxSb290X0NsYXNzXzIuY3JsMIGGBggrBgEFBQcBAQR6MHgwLAYIKwYBBQUH MAGGIGh0dHA6Ly9vY3NwMDMzNi50ZWxlc2VjLmRlL29jc3ByMEgGCCsGAQUFBzAChjxodHRw Oi8vcGtpMDMzNi50ZWxlc2VjLmRlL2NydC9UZWxlU2VjX0dsb2JhbFJvb3RfQ2xhc3NfMi5j ZXIwDQYJKoZIhvcNAQELBQADggEBAIcL/z4Cm2XIVi3WO5qYi3FP2ropqiH5Ri71sqQPrhE4 eTizDnS6dl2e6BiClmLbTDPo3flq3zK9LExHYFV/53RrtCyD2HlrtrdNUAtmB7Xts5et6u5/ MOaZ/SLick0+hFvu+c+Z6n/XUjkurJgARH5pO7917tALOxrN5fcPImxHhPalR6D90Bo0fa3S PXez7vTXTf/D6OWST1k+kEcQSrCFWMBvf/iu7QhCnh7U3xQuTY+8npTD5+32GPg8SecmqKc2 2CzeIs2LgtjZeOJVEqM7h0S2EQvVDFKvaYwPBt/QolOLV5h7z/0HJPT8vcP9SpIClxvyt7bP ZYoaorVyGTkwggWsMIIElKADAgECAgcbY7rQHiw9MA0GCSqGSIb3DQEBCwUAMIGVMQswCQYD VQQGEwJERTFFMEMGA1UEChM8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRzY2hl biBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLEwdERk4tUEtJMS0wKwYDVQQDEyRE Rk4tVmVyZWluIENlcnRpZmljYXRpb24gQXV0aG9yaXR5IDIwHhcNMTYwNTI0MTEzODQwWhcN MzEwMjIyMjM1OTU5WjCBjTELMAkGA1UEBhMCREUxRTBDBgNVBAoMPFZlcmVpbiB6dXIgRm9l cmRlcnVuZyBlaW5lcyBEZXV0c2NoZW4gRm9yc2NodW5nc25ldHplcyBlLiBWLjEQMA4GA1UE CwwHREZOLVBLSTElMCMGA1UEAwwcREZOLVZlcmVpbiBHbG9iYWwgSXNzdWluZyBDQTCCASIw DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJ07eRxH3h+Gy8Zp1xCeOdfZojDbchwFfylf S2jxrRnWTOFrG7ELf6Gr4HuLi9gtzm6IOhDuV+UefwRRNuu6cG1joL6WLkDh0YNMZj0cZGnl m6Stcq5oOVGHecwX064vXWNxSzl660Knl5BpBb+Q/6RAcL0D57+eGIgfn5mITQ5HjUhfZZkQ 0tkqSe3BuS0dnxLLFdM/fx5ULzquk1enfnjK1UriGuXtQX1TX8izKvWKMKztFwUkP7agCwf9 TRqaA1KgNpzeJIdl5Of6x5ZzJBTN0OgbaJ4YWa52fvfRCng8h0uwN89Tyjo4EPPLR22MZD08 WkVKusqAfLjz56dMTM0CAwEAAaOCAgUwggIBMBIGA1UdEwEB/wQIMAYBAf8CAQEwDgYDVR0P AQH/BAQDAgEGMCkGA1UdIAQiMCAwDQYLKwYBBAGBrSGCLB4wDwYNKwYBBAGBrSGCLAEBBDAd BgNVHQ4EFgQUazqYi/nyU4na4K2yMh4JH+iqO3QwHwYDVR0jBBgwFoAUk+PYMiba1fFKpZFK 4OpL4qIMz+EwgY8GA1UdHwSBhzCBhDBAoD6gPIY6aHR0cDovL2NkcDEucGNhLmRmbi5kZS9n bG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDBAoD6gPIY6aHR0cDovL2NkcDIu cGNhLmRmbi5kZS9nbG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDCB3QYIKwYB BQUHAQEEgdAwgc0wMwYIKwYBBQUHMAGGJ2h0dHA6Ly9vY3NwLnBjYS5kZm4uZGUvT0NTUC1T ZXJ2ZXIvT0NTUDBKBggrBgEFBQcwAoY+aHR0cDovL2NkcDEucGNhLmRmbi5kZS9nbG9iYWwt cm9vdC1nMi1jYS9wdWIvY2FjZXJ0L2NhY2VydC5jcnQwSgYIKwYBBQUHMAKGPmh0dHA6Ly9j ZHAyLnBjYS5kZm4uZGUvZ2xvYmFsLXJvb3QtZzItY2EvcHViL2NhY2VydC9jYWNlcnQuY3J0 MA0GCSqGSIb3DQEBCwUAA4IBAQCBeEWkTqR/DlXwCbFqPnjMaDWpHPOVnj/z+N9rOHeJLI21 rT7H8pTNoAauusyosa0zCLYkhmI2THhuUPDVbmCNT1IxQ5dGdfBi5G5mUcFCMWdQ5UnnOR7L n8qGSN4IFP8VSytmm6A4nwDO/afr0X9XLchMX9wQEZc+lgQCXISoKTlslPwQkgZ7nu7YRrQb tQMMONncsKk/cQYLsgMHM8KNSGMlJTx6e1du94oFOO+4oK4v9NsH1VuEGMGpuEvObJAaguS5 Pfp38dIfMwK/U+d2+dwmJUFvL6Yb+qQTkPp8ftkLYF3sv8pBoGH7EUkp2KgtdRXYShjqFu9V NCIaE40GMIIGtjCCBZ6gAwIBAgIMHxoBcB9CcQPHriXDMA0GCSqGSIb3DQEBCwUAMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBMB4XDTE4MDUxNTA2NTMyMloXDTE5MTEx NzAyMDAwMFowgcAxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIDAZCYXllcm4xETAPBgNVBAcMCE11 ZW5jaGVuMSkwJwYDVQQKDCBUZWNobmlzY2hlIFVuaXZlcnNpdGFldCBNdWVuY2hlbjEiMCAG A1UECwwZRmFrdWx0YWV0IGZ1ZXIgSW5mb3JtYXRpazEWMBQGA1UEAwwNVG9iaWFzIE5pcGtv dzEmMCQGCSqGSIb3DQEJARYXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGUwggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQCADTpwPRPWfSf9fi2ZhFfIjICiK0m69uj995i1vv8ajdIH XwulShY6KCmrezG6KZULjEi5GyRbZiCon/Ag+/0K/vLg3fIioBPPCw6lbEnhLeTyDfTDQJjo zpnlt24Eqp1Mb3ErO73WvAACYFJtChMZL6aF6WiHsL8MYTE0FhlHeuT9A56JLZvfqfEiuG4N dCf19A0EYvRxQiHk4HyV8ib/idJoTWfQSqBDYM/nLbmF6nVizuHlicNYwftM00hgqA2UM4im LSB4FytvRUSPNdmc0eY9zcHDpSz5nZbDWPjmQeMWAlFuV2sBqNcYUyeTzOuvoXPsSTBFRmcX KlFdysPnAgMBAAGjggLfMIIC2zBABgNVHSAEOTA3MA8GDSsGAQQBga0hgiwBAQQwEQYPKwYB BAGBrSGCLAEBBAMIMBEGDysGAQQBga0hgiwCAQQDCDAJBgNVHRMEAjAAMA4GA1UdDwEB/wQE AwIF4DAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYBBQUHAwQwHQYDVR0OBBYEFP4tlXbsLniS Wq9uFYP/UEre4Ek6MB8GA1UdIwQYMBaAFGs6mIv58lOJ2uCtsjIeCR/oqjt0MIGuBgNVHREE gaYwgaOBEG5pcGtvd0Bpbi50dW0uZGWBEW5pcGtvd0Bjcy50dW0uZWR1gSBuaXBrb3dAaW5m b3JtYXRpay50dS1tdWVuY2hlbi5kZYEXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGWBGHRvYmlh cy5uaXBrb3dAY3MudHVtLmVkdYEndG9iaWFzLm5pcGtvd0BpbmZvcm1hdGlrLnR1LW11ZW5j aGVuLmRlMIGNBgNVHR8EgYUwgYIwP6A9oDuGOWh0dHA6Ly9jZHAxLnBjYS5kZm4uZGUvZGZu LWNhLWdsb2JhbC1nMi9wdWIvY3JsL2NhY3JsLmNybDA/oD2gO4Y5aHR0cDovL2NkcDIucGNh LmRmbi5kZS9kZm4tY2EtZ2xvYmFsLWcyL3B1Yi9jcmwvY2FjcmwuY3JsMIHbBggrBgEFBQcB AQSBzjCByzAzBggrBgEFBQcwAYYnaHR0cDovL29jc3AucGNhLmRmbi5kZS9PQ1NQLVNlcnZl ci9PQ1NQMEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMS5wY2EuZGZuLmRlL2Rmbi1jYS1nbG9i YWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMi5w Y2EuZGZuLmRlL2Rmbi1jYS1nbG9iYWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MA0GCSqG SIb3DQEBCwUAA4IBAQAMTylJt407CL/HwgO4Om/yrpB/yDMKHLj4A1hvkSedvYvTFLk9gVTw U/fAKYrZxqazGcd0mCcRKPhj4lEbXUm5A6emrBRcolPiekw9/uEp1aZUz082cgi7HXnQS+Pi by5BJ4bBeMwt3FrFgdz18nl/+DcxX5KR3LMSujZu4d4ZmD19fifGxcAsOk2emYvA5JAMsmuw DWtYgnI08t+w73QAbkEPLpxqtkxzWK3Djv3aiMC6tA1cZUdgi5EVZGaEh9yZ8qWh2a7LR2ts XvbumZ++H+C0zQjn7FFgp8uQpqxN+dVKPjXx58LmHymKRKU2xMsyKE6W2x32qaVIClKPXdqc MYIECzCCBAcCAQEwgZ4wgY0xCzAJBgNVBAYTAkRFMUUwQwYDVQQKDDxWZXJlaW4genVyIEZv ZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVuIEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNV BAsMB0RGTi1QS0kxJTAjBgNVBAMMHERGTi1WZXJlaW4gR2xvYmFsIElzc3VpbmcgQ0ECDB8a AXAfQnEDx64lwzANBglghkgBZQMEAgEFAKCCAj0wGAYJKoZIhvcNAQkDMQsGCSqGSIb3DQEH ATAcBgkqhkiG9w0BCQUxDxcNMTkwMjA0MTYyMDM5WjAvBgkqhkiG9w0BCQQxIgQgJ7wi+VSy A/tlGVw8x/1mFnJkxcoRF8veHbbtxcm4a5swbAYJKoZIhvcNAQkPMV8wXTALBglghkgBZQME ASowCwYJYIZIAWUDBAECMAoGCCqGSIb3DQMHMA4GCCqGSIb3DQMCAgIAgDANBggqhkiG9w0D AgIBQDAHBgUrDgMCBzANBggqhkiG9w0DAgIBKDCBrwYJKwYBBAGCNxAEMYGhMIGeMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFwH0JxA8euJcMwgbEGCyqGSIb3 DQEJEAILMYGhoIGeMIGNMQswCQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2Vy ZGVydW5nIGVpbmVzIERldXRzY2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQL DAdERk4tUEtJMSUwIwYDVQQDDBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFw H0JxA8euJcMwDQYJKoZIhvcNAQEBBQAEggEAYGpJMy6uwkfWYzD2itnoeOGwA+La5MZhw0BE R5vrPNX+tXJHJBCHJSErwt7wtIlN1bd4MnIo8oftChzVRaB9XD0Zlmb89eMx1aWyxyJtd2vx P1vXz3mltAVVZs8fmCFVs4uX+YTWf724x2vf3OfThW3bIiXlAS3Ev5rU9yOOrlCke920oEpi 2tGdeI2nZhX3Su4d1SkR5X6w0vwxRS7IPSLB4XuliWyxfEi/f8+F2XJr6GLR+2mwWCEZM9If jwraJm9o0sxEEf9+I4tfdVgVAIYgfCIOm7pEttiTLiBbJtoHuxaXapu0Ta8YQDRqb6o1yMcw c4vBoNbUWLNtWHa92wAAAAAAAA== --------------ms060004080201030304020603-- From A.Popescu at mdx.ac.uk Tue Feb 05 10:58:05 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:46430) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gqyQX-0004Hw-Lc (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 05 Feb 2019 10:58:05 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1852879 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [40.107.8.104 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.0 DKIMWL_WL_MED DKIMwl.org - Whitelisted Medium sender X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta0.cl.cam.ac.uk ([128.232.25.20]:56699) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gqyQW-000QqD-KU (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 05 Feb 2019 10:58:05 +0000 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]) by mta0.cl.cam.ac.uk with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1gqyQf-0002zL-F9 for isabelle-users at cl.cam.ac.uk; Tue, 05 Feb 2019 10:58:13 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1852879 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [40.107.8.104 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.0 DKIMWL_WL_MED DKIMwl.org - Whitelisted Medium sender X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-eopbgr80104.outbound.protection.outlook.com ([40.107.8.104]:43952 helo=EUR04-VI1-obe.outbound.protection.outlook.com) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-SHA384:256) id 1gqyQU-0011Wz-dc (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Tue, 05 Feb 2019 10:58:04 +0000 Received: from VI1PR01MB4240.eurprd01.prod.exchangelabs.com (20.177.53.81) by VI1PR01MB1773.eurprd01.prod.exchangelabs.com (10.166.40.7) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.1580.20; Tue, 5 Feb 2019 10:57:50 +0000 Received: from VI1PR01MB4240.eurprd01.prod.exchangelabs.com ([fe80::ccc6:d06d:35a9:4fd0]) by VI1PR01MB4240.eurprd01.prod.exchangelabs.com ([fe80::ccc6:d06d:35a9:4fd0%4]) with mapi id 15.20.1580.019; Tue, 5 Feb 2019 10:57:50 +0000 From: Andrei Popescu To: isabelle-users Thread-Topic: TABLEAUX 2019 (London) call for papers Thread-Index: AQHUvUEf6QRIO6k+pkG1tPX45MuEPw== Date: Tue, 5 Feb 2019 10:57:50 +0000 Message-ID: Accept-Language: en-GB, en-US Content-Language: en-GB X-MS-Has-Attach: X-MS-TNEF-Correlator: authentication-results: spf=none (sender IP is ) smtp.mailfrom=A.Popescu at mdx.ac.uk; x-originating-ip: [81.136.15.247] x-ms-publictraffictype: Email x-microsoft-exchange-diagnostics: 1; VI1PR01MB1773; 6:suzz2Rp3sD5BPatvgudSoynSwVg8KKWwuMpPv+Azp9/b30pmwC4hPfg4Y7sadNDZe2IAzwQ3AeqQyc2+eFLYWaRyf5AyQlACF9FoySmTswzhqKC0UjXWRb6OOTAsaU+mCDQz0XT+8LOOEwVwM/kQ+hZL5y54pbsiANaZzxjHU4MdUovkiUOCr+H7Sg4siCmTlC3ZQFn9oSiKW6VsrBwX2SzXf30vdKxqdvM1J4BWd7DXzdHqH8Dg7rjZYSEYIW7nVi/S89Mh3H0228DGoaLmuUFvThM/A7DOCB6gToFTJsmVGJw8KKiJFySw8ct2Dq0Luu5SyHjknsgMN8IKK8HEzGd3gZXV2XThAR/pVJSRS6ndAy6GI7rYOyJ5NwSvDHZwI7kvpDI4T1eJttL6qkqCGnuVhhrpu6eaLzAipIEEmwJ318L5OzTRjuSe6YjEgXSPaaJsN8coIs/gLVM1s6oBSA==; 5:HITfElStKb37ReIwUmriOoPvk0uiYjS/q6XXq6DWCbOb1qc6LFe654TWoZbcQWfUPXnQqOo+kP059a73ZFdhmL3kg8oWwqqiP+w2+heltMzWTiwjf9MAKJtB2+1dp7fab0A/+260TeEKR25mB5FuU81O6gXKZjmhzJDxajq5lV+4XuRd6+o1sttiGr3CRjsfcZAxmVLEs7LRLym/OVJmwQ==; 7:rjUiAiq5XopaeARvaK9KFCNfrGsQeU0pG7Y1olrJCuBW5YsquaNibJKO5VkKjndxfHkg/+SOY3tkG4/XE2m5V90V9jbc+th3WlBvAgPG4KWS62fK3qet2TuRVyN9MrlQXgwHx8bQbSZCd0SSqZi/fg== x-ms-office365-filtering-correlation-id: c943df9b-48f0-4020-7103-08d68b58c542 x-microsoft-antispam: BCL:0; PCL:0; RULEID:(2390118)(7020095)(4652040)(8989299)(4534185)(4627221)(201703031133081)(201702281549075)(8990200)(5600110)(711020)(4605077)(2017052603328)(7153060)(7193020); SRVR:VI1PR01MB1773; x-ms-traffictypediagnostic: VI1PR01MB1773: x-microsoft-antispam-prvs: x-forefront-prvs: 0939529DE2 x-forefront-antispam-report: SFV:NSPM; SFS:(10019020)(396003)(346002)(376002)(136003)(39860400002)(366004)(189003)(199004)(71200400001)(33656002)(486006)(86362001)(19627405001)(6916009)(476003)(6606003)(105586002)(26005)(53936002)(106356001)(99286004)(7696005)(6506007)(102836004)(25786009)(53376002)(66574012)(316002)(786003)(74482002)(66066001)(68736007)(97736004)(14444005)(256004)(6436002)(74316002)(186003)(14454004)(8676002)(478600001)(9686003)(81156014)(81166006)(8936002)(7736002)(6116002)(3846002)(6306002)(54896002)(55016002)(966005)(72206003)(2906002)(71190400001)(225293001); DIR:OUT; SFP:1102; SCL:1; SRVR:VI1PR01MB1773; H:VI1PR01MB4240.eurprd01.prod.exchangelabs.com; FPR:; SPF:None; LANG:en; PTR:InfoNoRecords; MX:1; A:1; received-spf: None (protection.outlook.com: mdx.ac.uk does not designate permitted sender hosts) x-ms-exchange-senderadcheck: 1 x-microsoft-antispam-message-info: BbCiTowoE0HqEdFPUQJNG5bPF1xNs+PzbG40jIjH+bnNh6BqSErHLajhCD1F16ytvl4WotN+d/fpBR1Qv7g3xZ4anmHehCP4r4c5a7mtAO7PvShLXiyjEgj7zzeT498iIcmmb7OHS376v/jS+PkMsZGKWSdYL3hgAsvKNYe4mSCx8JJR6crhi3ddPx9Y4M88LW3TSUPmWAItCrLGpHcKj+lFCMhj7V4vS/q4mB2WoDMLv/FrZ1CXoND36Hyt7OHkGjeOMnbvOLtd1AN6cdgB2aXIJr1LudmCccb2oDBXWLTJtilPSv1XA1ES5oKtMi6Z8T6C9/1IC2opvTIg2sshf6HsQWKkfVWmdz6ukKqgN5HTT5XsEaB/BUGM+tyqpfDZfWoW4vRWqooxzVX80vc6/E0LJ3dfKmdo9+/q+5jN4W0= MIME-Version: 1.0 X-OriginatorOrg: mdx.ac.uk X-MS-Exchange-CrossTenant-Network-Message-Id: c943df9b-48f0-4020-7103-08d68b58c542 X-MS-Exchange-CrossTenant-originalarrivaltime: 05 Feb 2019 10:57:50.0861 (UTC) X-MS-Exchange-CrossTenant-fromentityheader: Hosted X-MS-Exchange-CrossTenant-id: 38e37b88-a3a1-48cf-9f05-6537427fed24 X-MS-Exchange-CrossTenant-mailboxtype: HOSTED X-MS-Exchange-Transport-CrossTenantHeadersStamped: VI1PR01MB1773 X-debug-header: local_aliases has suffix Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: [isabelle] TABLEAUX 2019 (London) call for papers X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Tue, 05 Feb 2019 10:58:05 -0000 TABLEAUX 2019 The 28th International Conference on Automated Reasoning with Analytic Tabl= eaux and Related Methods London, UK, September 3-5, 2019 Website: https://www.tableaux2019.org Contact: chair at tableaux2019.org Submission deadlines: 21 Apr 2019 (abstract), 24 Apr 2019 (paper) GENERAL INFORMATION The 28th International Conference on Automated Reasoning with Analytic Tabl= eaux and Related Methods (TABLEAUX 2019) will take place in London. It will= be hosted by the Department of Computer Science at the Middlesex Universit= y London, on 3-5 September 2019. TABLEAUX is the main international conference at which research on all aspe= cts -- theoretical foundations, implementation techniques, systems developm= ent and applications -- of the mechanization of tableaux-based reasoning an= d related methods is presented. The first TABLEAUX conference was held in L= autenbach near Karlsruhe, Germany, in 1992. Since then it has been organize= d on an annual basis; in 2001, 2004, 2006, 2008, 2010, 2012, 2014, 2016 and= 2018 as a constituent of IJCAR. TABLEAUX 2019 will be co-located with the 12th International Symposium on F= rontiers of Combining Systems (FroCoS 2019). The conferences will provide a= rich programme of workshops, tutorials, invited talks, paper presentations= and system descriptions. SCOPE OF CONFERENCE Tableau methods offer a convenient and flexible set of tools for automated = reasoning in classical logic, extensions of classical logic, and a large nu= mber of non-classical logics. For many logics, tableau methods can be gener= ated automatically. Areas of application include verification of software a= nd computer systems, deductive databases, knowledge representation and its = required inference engines, teaching, and system diagnosis. Topics of interest include but are not limited to: * tableau methods for classical and non-classical logics (including firs= t-order, higher-order, modal, temporal, description, hybrid, intuitionistic= , substructural, fuzzy, relevance and non-monotonic logics) and their proof= -theoretic foundations; * sequent calculi and natural deduction calculi for classical and non-cl= assical logics, as tools for proof search and proof representation ; * related methods (SMT, model elimination, model checking, connection me= thods, resolution, BDDs, translation approaches); * flexible, easily extendable, light-weight methods for theorem proving;= novel types of calculi for theorem proving and verification in classical a= nd non-classical logics; * systems, tools, implementations, empirical evaluations and application= s (provers, proof assistants, logical frameworks, model checkers, etc.); * implementation techniques (data structures, efficient algorithms, perf= ormance measurement, extensibility, etc.); * extensions of tableau procedures with conflict-driven learning; * techniques for proof generation and compact (or humanly readable) proo= f representation; * theoretical and practical aspects of decision procedures; * applications of automated deduction to mathematics, software developme= nt, verification, deductive and temporal databases, knowledge representatio= n, ontologies, fault diagnosis or teaching. We also welcome papers describing applications of tableau procedures to rea= l-world examples. Such papers should be tailored to the tableau community a= nd should focus on the role of reasoning and on logical aspects of the solu= tion. SUBMISSION GUIDELINES Submissions are invited in three categories: (A) research papers reporting original theoretical research or applications= , with length up to 15 pages; (B) system descriptions, with length up to 9 pages; (C) position papers and brief reports on work in progress, with length up t= o 9 pages. All page limits include references and figures. Submissions will be reviewe= d by the PC, possibly with the help of external reviewers, taking into acco= unt readability, relevance and originality. Any additional material (going = beyond the page limit) can be included in a clearly marked appendix, which = will be read at the discretion of the committee and must be removed for the= camera-ready version. For category A submissions, the reported results must be original and not s= ubmitted for publication elsewhere. For category B submissions, a working i= mplementation must be accessible via the internet. Authors are encouraged t= o publish the implementation under an open source license. The aim of a sys= tem description is to make the system available in such a way that people c= an use it, understand it, and build on it. Accepted papers in categories A = and B will be published in the conference proceedings. Accepted papers in c= ategory C will be published as a Technical Report of the Middlesex Universi= ty London. Papers must be edited in LaTeX using the llncs style and must be submitted = electronically as PDF files via the EasyChair system: http://easychair.org/= conferences/?conf=3Dtableaux2019 For all accepted papers at least one author is required to attend the confe= rence and present the paper. A title and a short abstract of about 100 word= s must be submitted before the paper submission deadline. Formatting instru= ctions and the LNCS style files can be obtained at http://www.springer.com/= br/computer-science/lncs/conference-proceedings-guidelines IMPORTANT DATES Abstract submission: 21 Apr 2019 Paper submission: 24 Apr 2019 Notification of paper decisions: 6 Jun 2019 Camera-ready papers due: 1 Jul 2019 TABLEAUX conference: 3-5 Sep 2019 PUBLICATION DETAILS The conference proceedings will be published in the Springer series Lecture= Notes in Artificial Intelligence (LNAI/LNCS). BEST PAPER AWARDS The program committee will select (1) the TABLEAUX 2019 Best Paper and (2) = the TABLEAUX 2019 Best Paper by a Junior Researcher, of which the latter wi= ll be supported by 500 Euros. Researchers will be considered "junior" if ei= ther they are students or their PhD degree date is less than two years from= the first day of the meeting. The two awards will be presented at the conf= erence. TRAVEL GRANTS FOR STUDENTS Some funding will be available to support students traveling to TABLEAUX 20= 19. More details will be given on the conference website in due time. PROGRAM COMMITTEE The PC will soon be listed on the conference website. PC CHAIRS Serenella Cerrito, IBISC, Univ. Evry, Paris Saclay University, France Andrei Popescu, Middlesex University London, UK From mathias.fleury12 at gmail.com Tue Feb 05 13:22:10 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:46034) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gr0fy-0000vy-FM (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 05 Feb 2019 13:22:10 +0000 X-Cam-SpamDetails: score -0.0 from SpamAssassin-3.4.2-1852879 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.221.68 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (mathias.fleury12[at]gmail.com) * 0.2 FREEMAIL_ENVFROM_END_DIGIT Envelope-from freemail username ends in * digit (mathias.fleury12[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-wr1-f68.google.com ([209.85.221.68]:43676) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gr0fx-0005C9-hO (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 05 Feb 2019 13:22:10 +0000 Received: by mail-wr1-f68.google.com with SMTP id r2so3556378wrv.10 for ; Tue, 05 Feb 2019 05:22:09 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:message-id:mime-version:subject:date :in-reply-to:cc:to:references; bh=hxNfiJi0TFkYuz6qNlc+TSI7V//+X4Oxbo+UZXzMUwk=; b=ofAzcMXXZ4anz/DH5okZD3iJze7ysQRsf0uU7gBFBNWcCGKNzvb67JiaSUfnRVBhGF 4WI3r+ywb+EHNlA8FLjvbskmCXOEFTbYAahX0D76mRM6nuTQ1G7UCSCuZ3bpz/bF4NQN 4zxcC1YBMt5yn911sKLdGaOz/fxFIT2bTokUBlaOuO3ooxx5ptQw3AZmRJZpHUw6xzU1 ZI3oa03tgx5F9F9cwqfXnpDanHOFuPD0eBVs2skz8wQfR9Hx7yCb/2A5sGf65oqupYqi BRhbASFkVZT4eVNI3nwfRxKelU9cIy35hgFCF0xQTQpSyIe8PBEc7tmwITmZiAevcYBp YxYw== X-Gm-Message-State: AHQUAubWOFV5WngFCCjfurP6p7C9D8XPeu7BDUVVp50zruwXtQBTghSR 9leDXVfSmA+Wues28rpTuA== X-Google-Smtp-Source: AHgI3IYrI/PrI+f1AsJnk/1tqYi1BW9/78iD3rXOfY3gFZjYeXAIpjQw8AfrNDupn7J8llkQjUvtyg== X-Received: by 2002:adf:f211:: with SMTP id p17mr3605156wro.293.1549372928998; Tue, 05 Feb 2019 05:22:08 -0800 (PST) Received: from mbk-21-51.mpi-inf.mpg.de (mbk-21-51.mpi-inf.mpg.de. [139.19.76.17]) by smtp.gmail.com with ESMTPSA id t4sm11841181wrm.6.2019.02.05.05.22.07 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Tue, 05 Feb 2019 05:22:07 -0800 (PST) From: Mathias Fleury Message-Id: <2E2B5B06-70AD-4B71-9603-E76641F94D73 at gmail.com> Mime-Version: 1.0 (Mac OS X Mail 12.2 \(3445.102.3\)) Date: Tue, 5 Feb 2019 14:22:06 +0100 In-Reply-To: <9c1c60d0-82e5-301b-0858-6d5cc9eb9ccd at in.tum.de> To: Tobias Nipkow References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> <9c1c60d0-82e5-301b-0858-6d5cc9eb9ccd at in.tum.de> X-Mailer: Apple Mail (2.3445.102.3) Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Cc: cl-isabelle-users at lists.cam.ac.uk Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Tue, 05 Feb 2019 13:22:10 -0000 Hi all, > On 4. Feb 2019, at 17:20, Tobias Nipkow wrote: >=20 > Mathias, >=20 > Actually, a simproc to cancel all common factors is easy: Givem t1 <=3D = t2, where t1 and t2 are sums, compute the common factor m of t1 and t2 = and the remainders t1' and t2'. Prove by rewriting with distributivity = that (t1 <=3D t2) =3D (m*t1' <=3D m*t2'). Prove by simproc that (m*t1' = <=3D m*t2') =3D (t1' <=3D t2') - see Tools/numeral_simprocs.ML. >=20 I implemented that. I followed what was already in = Tools/numeral_simprocs.ML. Then I activated the=20 procedure as simproc on nat and 'a :: linordered_ring_strict (which = includes int and reals) and run it on the (non-slow part of) AFP. When trying it out on the AFP, some proofs broke because of the = reordering meaning. So if we want to activate such simproc, we would = have to adapt some proofs: by (clarsimp simp add: cos_one_2pi) (metis mult_minus_right = of_int_of_nat) ~> by (clarsimp simp add: cos_one_2pi) (metis mult_minus_left = of_int_of_nat) Nevertheless, it turns out things are a bit more complicated than I = expected. They are already two different simprocs that can cancel terms, = but do different things: * eq_cancel_numeral_factor: it cancels term, but on the way, it = reorders terms.=20 (2::int) * a * b =3D 2 * b' * a' ~> a * b =3D a' * b' * eq_cancel_factor: it cancels a terms, but without reordering terms: (2::int) * a * b =3D 2 * b' * a' ~> 2 =3D 0 =E2=88=A8 a * b =3D b' = * a' [2 =3D 0 can be simplified to false later, yielding a * b =3D b' * a'] I have a few questions: * Does anyone know why some cancelation simprocs sort terms? * Are simprocs supposed to be confluent, i.e., reach the same = conclusion independently of the order they are applied? Best, Mathias > Tobias >=20 > On 04/02/2019 15:29, Mathias Fleury wrote: >> Dear Tobias, >>> On 4. Feb 2019, at 10:45, Tobias Nipkow > wrote: >>>=20 >>> Dear Mathias, >>>=20 >>> It took me some time to remember the key point: linarith uses = Fourier-Motzkin elimnation which is complere for rationals and reals but = incomplete for integers. For the latter we have Presburger, but it is = too slow for the example. >>>=20 >>> The idea of eliminating common factors first is interesting. I have = no idea if this is always beneficial. >> I asked our local expert of linear arithmetics, Martin Bromberger: >>> tl;dr: Eliminating common factors helps much more than it hurts, >>> especially for linear integer arithmetic; but there are cases, = although >>> rare, where it might be harmful. >>>=20 >>> Detailed explanation: >>>=20 >>> Fourier-Motzkin transformation over the reals/rationals: is just = a >>> projection. And the projection does not change if we eliminate = common >>> factors because this elimination is equivalence preserving. = (There is one >>> exception... Your projection may change because your = Fourier-Motzkin >>> implementation might change the variable elimination order. Yay >>> heuristics...) What changes, however, is the run time needed to = compute >>> the projection. Whether you are faster or worse depends on the = overhead of >>> eliminating common factors vs. the speed-up you gain by having = smaller >>> coefficients. Personally, I think you would gain a speed-up. >>>=20 >>> Fourier-Motzkin transformation over the integers: eliminating = common >>> factors alone should not change whether a problem is solvable or >>> unsolvable. Because the projection stays the same :-) Unless, (i) = you >>> combine it with rounding ("2 * x:int + 4 * y:int <=3D 1" = simplifies to >>> "x:int + 2 * y:int <=3D 0 =3D \floor(1/2)") or (ii) if you = simplify strict >>> inequalities over integer variables ("a:int < 1" simplifies to = "a:int <=3D >>> 0", but "2 * a:int < 2" simplifies to "2 * a:int <=3D 1"). I = assume (ii) is >>> what happened in your example (because (i) is a form of = eliminating common >>> factors) and thanks to eliminating common factors you removed = some >>> rational/real solutions and made the problem solvable. And = because this is >>> possible (i) and (ii) are also normally done for arithmetic = inequalities. >>> (Still, you might very rarely get worse results because your >>> Fourier-Motzkin implementation changes the variable elimination = order due >>> to heuristic shenanigans=E2=80=A6) >>>=20 >>> PS: Eliminating common factors and (i) and (ii) are not just = preprocessing >>> steps but inprocessing steps. You should apply them after every >>> intermediate step of Fourier-Motzkin transformation=E2=80=A6 >>>=20 >>> Since the existing code is quite delicate, I also don't want to mess = with it. >> I was more thinking of a preprocessing step, than a change to = linarith itself. Which I expect to be a much bigger task. >>> Is there a simproc for eliminating common factors? I suspect not in = full generality, because the simplifier leaves "10 * (i::int) =E2=89=A4 = 25 * j" alone. There is one by Larry for the simple case "m * t <=3D n * = u" where m and n have a common factor. I have no idea how much work it = would be to generalize it. >> Thanks for the pointer. >> Best regards, >> Mathias >>> Best regards >>> Tobias >>>=20 >>> On 01/02/2019 18:38, Mathias Fleury wrote: >>>> Hi list, >>>> after trying to reconstruct more veriT proofs, I found out the = following lemma cannot be discharged by linarith: >>>> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >>>> =C2=AC 10 * int (size lr) < 4 + 14 * int (size rr) =E2=88=A8= >>>> 10 * int (size lr) =E2=89=A4 15 + 25 * int (size l') =E2=88=A8= >>>> =C2=AC 10 * int (size lr) + 10 * int (size rr) =E2=89=A4 = 30 + 25 * int (size l') " >>>> apply linarith (* fails *) >>>> oops >>>> However, if I simplify the coefficients by dividing by 5, then = linearity is able to prove the goal: >>>> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >>>> =C2=AC 5 * int (size lr) < 2 + 7 * int (size rr) =E2=88=A8 >>>> 2 * int (size lr) =E2=89=A4 3 + 5 * int (size l') =E2=88=A8 >>>> =C2=AC 2 * int (size lr) + 2 * int (size rr) =E2=89=A4 6 + = 5 * int (size l') " >>>> apply linarith >>>> done >>>> Is there any simproc able to do this simplification automatically? = If there is one, is there any reason why linarith does not use it by = default? >>>> Thanks, >>>> Mathias >>>=20 >=20 From nipkow at in.tum.de Tue Feb 05 19:33:05 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:43214) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gr6Sv-0006OT-6O (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 05 Feb 2019 19:33:05 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852879 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:35414 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gr6Su-000yXK-g3 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 05 Feb 2019 19:33:05 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id 259D01C0483; Tue, 5 Feb 2019 20:33:03 +0100 (CET) Received: (Authenticated sender: nipkow) by mail.in.tum.de (Postfix) with ESMTPSA id 203E31C047F; Tue, 5 Feb 2019 20:33:00 +0100 (CET) (Extended-Queue-bit tech_fbwni at fff.in.tum.de) To: Mathias Fleury References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> <9c1c60d0-82e5-301b-0858-6d5cc9eb9ccd at in.tum.de> <2E2B5B06-70AD-4B71-9603-E76641F94D73 at gmail.com> From: Tobias Nipkow Message-ID: <1af0cf0d-2206-fdd6-7c1c-8555b49875bb at in.tum.de> Date: Tue, 5 Feb 2019 20:32:59 +0100 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:60.0) Gecko/20100101 Thunderbird/60.5.0 MIME-Version: 1.0 In-Reply-To: <2E2B5B06-70AD-4B71-9603-E76641F94D73 at gmail.com> Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha-256; boundary="------------ms090403000800030607060207" Cc: cl-isabelle-users at lists.cam.ac.uk Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Tue, 05 Feb 2019 19:33:05 -0000 This is a cryptographically signed message in MIME format. --------------ms090403000800030607060207 Content-Type: text/plain; charset=utf-8; format=flowed Content-Language: en-US Content-Transfer-Encoding: quoted-printable I don't believe we have a master plan for arithmetic simprocs. Or only fo= r some=20 of them. It is all grown historically, with sometimes odd interactions. Tobias On 05/02/2019 14:22, Mathias Fleury wrote: > Hi all, >=20 >=20 >> On 4. Feb 2019, at 17:20, Tobias Nipkow > > wrote: >> >> Mathias, >> >> Actually, a simproc to cancel all common factors is easy: Givem t1 <=3D= t2,=20 >> where t1 and t2 are sums, compute the common factor m of t1 and t2 and= the=20 >> remainders t1' and t2'. Prove by rewriting with distributivity that (t= 1 <=3D t2)=20 >> =3D (m*t1' <=3D m*t2'). Prove by simproc that (m*t1' <=3D m*t2') =3D (= t1' <=3D t2') -=20 >> see Tools/numeral_simprocs.ML. >> >=20 > I implemented that. I followed what was already in Tools/numeral_simpro= cs.ML.=20 > Then I activated the > procedure as simproc on nat and 'a :: linordered_ring_strict (which inc= ludes int=20 > and reals) and run it on the (non-slow part of) AFP. >=20 >=20 > When trying it out on the AFP, some proofs broke because of the reorder= ing=20 > meaning. So if we want to activate such simproc, we would have to adapt= some proofs: > =C2=A0 by (clarsimp simp add: cos_one_2pi) (metis *mult_minus_right*=C2= =A0of_int_of_nat) > ~> > =C2=A0 by (clarsimp simp add: cos_one_2pi) (metis *mult_minus_left*=C2= =A0of_int_of_nat) >=20 >=20 > Nevertheless, it turns out things are a bit more complicated than I exp= ected.=20 > They are already two different simprocs that can cancel terms, but do d= ifferent=20 > things: > =C2=A0 * eq_cancel_numeral_factor: it cancels term, but on the way, it= reorders terms. > =C2=A0 =C2=A0 =C2=A0(2::int) * a * b =3D 2 * b' * a' ~> a * b =3D a' *= b' >=20 > =C2=A0 *=C2=A0eq_cancel_factor: it cancels a terms, but without reorde= ring terms: > =C2=A0 =C2=A0 =C2=A0(2::int) * a * b =3D 2 * b' * a' ~> 2 =3D 0 =E2=88= =A8 a * b =3D b' * a' >=20 > [2 =3D 0 can be simplified to false later, yielding a * b =3D b' * = a'] >=20 >=20 >=20 > I have a few questions: > =C2=A0 * Does anyone know why some cancelation simprocs sort terms? > =C2=A0 * Are simprocs supposed to be confluent, i.e., reach the same c= onclusion=20 > independently of the order they are applied? >=20 >=20 > Best, > Mathias >=20 >=20 >=20 >> Tobias >> >> On 04/02/2019 15:29, Mathias Fleury wrote: >>> Dear Tobias, >>>> On 4. Feb 2019, at 10:45, Tobias Nipkow >>> > wrote: >>>> >>>> Dear Mathias, >>>> >>>> It took me some time to remember the key point: linarith uses=20 >>>> Fourier-Motzkin elimnation which is complere for rationals and reals= but=20 >>>> incomplete for integers. For the latter we have Presburger, but it i= s too=20 >>>> slow for the example. >>>> >>>> The idea of eliminating common factors first is interesting. I have = no idea=20 >>>> if this is always beneficial. >>> I asked our local expert of linear arithmetics, Martin Bromberger: >>>> =C2=A0=C2=A0=C2=A0tl;dr: Eliminating common factors helps much more = than it hurts, >>>> =C2=A0=C2=A0=C2=A0especially for linear integer arithmetic; but ther= e are cases, although >>>> =C2=A0=C2=A0=C2=A0rare, where it might be harmful. >>>> >>>> =C2=A0=C2=A0=C2=A0Detailed explanation: >>>> >>>> =C2=A0=C2=A0=C2=A0Fourier-Motzkin transformation over the reals/rati= onals: is just a >>>> =C2=A0=C2=A0=C2=A0projection. And the projection does not change if = we eliminate common >>>> =C2=A0=C2=A0=C2=A0factors because this elimination is equivalence pr= eserving. (There is one >>>> =C2=A0=C2=A0=C2=A0exception... Your projection may change because yo= ur Fourier-Motzkin >>>> =C2=A0=C2=A0=C2=A0implementation might change the variable eliminati= on order. Yay >>>> =C2=A0=C2=A0=C2=A0heuristics...) What changes, however, is the run t= ime needed to compute >>>> =C2=A0=C2=A0=C2=A0the projection. Whether you are faster or worse de= pends on the overhead of >>>> =C2=A0=C2=A0=C2=A0eliminating common factors vs. the speed-up you ga= in by having smaller >>>> =C2=A0=C2=A0=C2=A0coefficients. Personally, I think you would gain a= speed-up. >>>> >>>> =C2=A0=C2=A0=C2=A0Fourier-Motzkin transformation over the integers: = eliminating =C2=A0 =C2=A0=C2=A0 =C2=A0common >>>> =C2=A0=C2=A0=C2=A0factors alone should not change whether a problem = is solvable or >>>> =C2=A0=C2=A0=C2=A0unsolvable. Because the projection stays the same = :-) Unless, (i) you >>>> =C2=A0=C2=A0=C2=A0combine it with rounding ("2 * x:int + 4 * y:int <= =3D 1" simplifies to >>>> =C2=A0=C2=A0=C2=A0"x:int + 2 * y:int <=3D 0 =3D \floor(1/2)") or (ii= ) if you simplify strict >>>> =C2=A0=C2=A0=C2=A0inequalities over integer variables ("a:int < 1" s= implifies to "a:int <=3D >>>> =C2=A0=C2=A0=C2=A00", but "2 * a:int < 2" simplifies to "2 * a:int <= =3D 1"). I assume (ii) is >>>> =C2=A0=C2=A0=C2=A0what happened in your example (because (i) is a fo= rm of eliminating common >>>> =C2=A0=C2=A0=C2=A0factors) and thanks to eliminating common factors = you removed some >>>> =C2=A0=C2=A0=C2=A0rational/real solutions and made the problem solva= ble. And because this is >>>> =C2=A0=C2=A0=C2=A0possible (i) and (ii) are also normally done for a= rithmetic inequalities. >>>> =C2=A0=C2=A0=C2=A0(Still, you might very rarely get worse results be= cause your >>>> =C2=A0=C2=A0=C2=A0Fourier-Motzkin implementation changes the variabl= e elimination order due >>>> =C2=A0=C2=A0=C2=A0to heuristic shenanigans=E2=80=A6) >>>> >>>> =C2=A0=C2=A0=C2=A0PS: Eliminating common factors and (i) and (ii) ar= e not just preprocessing >>>> =C2=A0=C2=A0=C2=A0steps but inprocessing steps. You should apply the= m after every >>>> =C2=A0=C2=A0=C2=A0intermediate step of Fourier-Motzkin transformatio= n=E2=80=A6 >>>> >>>> Since the existing code is quite delicate, I also don't want to mess= with it. >>> I was more thinking of a preprocessing step, than a change to linarit= h=20 >>> itself. Which I expect to be a much bigger task. >>>> Is there a simproc for eliminating common factors? I suspect not in = full=20 >>>> generality, because the simplifier leaves "10 * (i::int) =E2=89=A4 2= 5 * j" alone.=20 >>>> There is one by Larry for the simple case "m * t <=3D n * u" where m= and n=20 >>>> have a common factor. I have no idea how much work it would be to ge= neralize it. >>> Thanks for the pointer. >>> Best regards, >>> Mathias >>>> Best regards >>>> Tobias >>>> >>>> On 01/02/2019 18:38, Mathias Fleury wrote: >>>>> Hi list, >>>>> after trying to reconstruct more veriT proofs, I found out the foll= owing=20 >>>>> lemma cannot be discharged by linarith: >>>>> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >>>>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=AC 10 * i= nt (size lr) < 4 + 14 * int (size rr) =E2=88=A8 >>>>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A010 * int (siz= e lr) =E2=89=A4 15 + 25 * int (size l') =E2=88=A8 >>>>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=AC 10 * i= nt (size lr) + 10 * int (size rr) =E2=89=A4 30 + 25 * int (size l') " >>>>> =C2=A0=C2=A0apply linarith (* fails *) >>>>> =C2=A0=C2=A0oops >>>>> However, if I simplify the coefficients by dividing by 5, then line= arity is=20 >>>>> able to prove the goal: >>>>> lemma "=C2=AC 0 =E2=89=A4 int (size l') =E2=88=A8 >>>>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=AC 5 * in= t (size lr) < 2 + 7 * int (size rr) =E2=88=A8 >>>>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A02 * int (size= lr) =E2=89=A4 3 + 5 * int (size l') =E2=88=A8 >>>>> =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=AC 2 * in= t (size lr) + 2 * int (size rr) =E2=89=A4 6 + 5 * int (size l') " >>>>> =C2=A0=C2=A0apply linarith >>>>> =C2=A0=C2=A0done >>>>> Is there any simproc able to do this simplification automatically? = If there=20 >>>>> is one, is there any reason why linarith does not use it by default= ? >>>>> Thanks, >>>>> Mathias >>>> >> >=20 --------------ms090403000800030607060207 Content-Type: application/pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7s" Content-Description: S/MIME Cryptographic Signature MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCC EYAwggUSMIID+qADAgECAgkA4wvV+K8l2YEwDQYJKoZIhvcNAQELBQAwgYIxCzAJBgNVBAYT AkRFMSswKQYDVQQKDCJULVN5c3RlbXMgRW50ZXJwcmlzZSBTZXJ2aWNlcyBHbWJIMR8wHQYD VQQLDBZULVN5c3RlbXMgVHJ1c3QgQ2VudGVyMSUwIwYDVQQDDBxULVRlbGVTZWMgR2xvYmFs Um9vdCBDbGFzcyAyMB4XDTE2MDIyMjEzMzgyMloXDTMxMDIyMjIzNTk1OVowgZUxCzAJBgNV BAYTAkRFMUUwQwYDVQQKEzxWZXJlaW4genVyIEZvZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVu IEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNVBAsTB0RGTi1QS0kxLTArBgNVBAMTJERG Ti1WZXJlaW4gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgMjCCASIwDQYJKoZIhvcNAQEBBQAD ggEPADCCAQoCggEBAMtg1/9moUHN0vqHl4pzq5lN6mc5WqFggEcVToyVsuXPztNXS43O+FZs FVV2B+pG/cgDRWM+cNSrVICxI5y+NyipCf8FXRgPxJiZN7Mg9mZ4F4fCnQ7MSjLnFp2uDo0p eQcAIFTcFV9Kltd4tjTTwXS1nem/wHdN6r1ZB+BaL2w8pQDcNb1lDY9/Mm3yWmpLYgHurDg0 WUU2SQXaeMpqbVvAgWsRzNI8qIv4cRrKO+KA3Ra0Z3qLNupOkSk9s1FcragMvp0049ENF4N1 xDkesJQLEvHVaY4l9Lg9K7/AjsMeO6W/VRCrKq4Xl14zzsjz9AkH4wKGMUZrAcUQDBHHWekC AwEAAaOCAXQwggFwMA4GA1UdDwEB/wQEAwIBBjAdBgNVHQ4EFgQUk+PYMiba1fFKpZFK4OpL 4qIMz+EwHwYDVR0jBBgwFoAUv1kgNgB5oKAia4zV8mHSuCzLgkowEgYDVR0TAQH/BAgwBgEB /wIBAjAzBgNVHSAELDAqMA8GDSsGAQQBga0hgiwBAQQwDQYLKwYBBAGBrSGCLB4wCAYGZ4EM AQICMEwGA1UdHwRFMEMwQaA/oD2GO2h0dHA6Ly9wa2kwMzM2LnRlbGVzZWMuZGUvcmwvVGVs ZVNlY19HbG9iYWxSb290X0NsYXNzXzIuY3JsMIGGBggrBgEFBQcBAQR6MHgwLAYIKwYBBQUH MAGGIGh0dHA6Ly9vY3NwMDMzNi50ZWxlc2VjLmRlL29jc3ByMEgGCCsGAQUFBzAChjxodHRw Oi8vcGtpMDMzNi50ZWxlc2VjLmRlL2NydC9UZWxlU2VjX0dsb2JhbFJvb3RfQ2xhc3NfMi5j ZXIwDQYJKoZIhvcNAQELBQADggEBAIcL/z4Cm2XIVi3WO5qYi3FP2ropqiH5Ri71sqQPrhE4 eTizDnS6dl2e6BiClmLbTDPo3flq3zK9LExHYFV/53RrtCyD2HlrtrdNUAtmB7Xts5et6u5/ MOaZ/SLick0+hFvu+c+Z6n/XUjkurJgARH5pO7917tALOxrN5fcPImxHhPalR6D90Bo0fa3S PXez7vTXTf/D6OWST1k+kEcQSrCFWMBvf/iu7QhCnh7U3xQuTY+8npTD5+32GPg8SecmqKc2 2CzeIs2LgtjZeOJVEqM7h0S2EQvVDFKvaYwPBt/QolOLV5h7z/0HJPT8vcP9SpIClxvyt7bP ZYoaorVyGTkwggWsMIIElKADAgECAgcbY7rQHiw9MA0GCSqGSIb3DQEBCwUAMIGVMQswCQYD VQQGEwJERTFFMEMGA1UEChM8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRzY2hl biBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLEwdERk4tUEtJMS0wKwYDVQQDEyRE Rk4tVmVyZWluIENlcnRpZmljYXRpb24gQXV0aG9yaXR5IDIwHhcNMTYwNTI0MTEzODQwWhcN MzEwMjIyMjM1OTU5WjCBjTELMAkGA1UEBhMCREUxRTBDBgNVBAoMPFZlcmVpbiB6dXIgRm9l cmRlcnVuZyBlaW5lcyBEZXV0c2NoZW4gRm9yc2NodW5nc25ldHplcyBlLiBWLjEQMA4GA1UE CwwHREZOLVBLSTElMCMGA1UEAwwcREZOLVZlcmVpbiBHbG9iYWwgSXNzdWluZyBDQTCCASIw DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJ07eRxH3h+Gy8Zp1xCeOdfZojDbchwFfylf S2jxrRnWTOFrG7ELf6Gr4HuLi9gtzm6IOhDuV+UefwRRNuu6cG1joL6WLkDh0YNMZj0cZGnl m6Stcq5oOVGHecwX064vXWNxSzl660Knl5BpBb+Q/6RAcL0D57+eGIgfn5mITQ5HjUhfZZkQ 0tkqSe3BuS0dnxLLFdM/fx5ULzquk1enfnjK1UriGuXtQX1TX8izKvWKMKztFwUkP7agCwf9 TRqaA1KgNpzeJIdl5Of6x5ZzJBTN0OgbaJ4YWa52fvfRCng8h0uwN89Tyjo4EPPLR22MZD08 WkVKusqAfLjz56dMTM0CAwEAAaOCAgUwggIBMBIGA1UdEwEB/wQIMAYBAf8CAQEwDgYDVR0P AQH/BAQDAgEGMCkGA1UdIAQiMCAwDQYLKwYBBAGBrSGCLB4wDwYNKwYBBAGBrSGCLAEBBDAd BgNVHQ4EFgQUazqYi/nyU4na4K2yMh4JH+iqO3QwHwYDVR0jBBgwFoAUk+PYMiba1fFKpZFK 4OpL4qIMz+EwgY8GA1UdHwSBhzCBhDBAoD6gPIY6aHR0cDovL2NkcDEucGNhLmRmbi5kZS9n bG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDBAoD6gPIY6aHR0cDovL2NkcDIu cGNhLmRmbi5kZS9nbG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDCB3QYIKwYB BQUHAQEEgdAwgc0wMwYIKwYBBQUHMAGGJ2h0dHA6Ly9vY3NwLnBjYS5kZm4uZGUvT0NTUC1T ZXJ2ZXIvT0NTUDBKBggrBgEFBQcwAoY+aHR0cDovL2NkcDEucGNhLmRmbi5kZS9nbG9iYWwt cm9vdC1nMi1jYS9wdWIvY2FjZXJ0L2NhY2VydC5jcnQwSgYIKwYBBQUHMAKGPmh0dHA6Ly9j ZHAyLnBjYS5kZm4uZGUvZ2xvYmFsLXJvb3QtZzItY2EvcHViL2NhY2VydC9jYWNlcnQuY3J0 MA0GCSqGSIb3DQEBCwUAA4IBAQCBeEWkTqR/DlXwCbFqPnjMaDWpHPOVnj/z+N9rOHeJLI21 rT7H8pTNoAauusyosa0zCLYkhmI2THhuUPDVbmCNT1IxQ5dGdfBi5G5mUcFCMWdQ5UnnOR7L n8qGSN4IFP8VSytmm6A4nwDO/afr0X9XLchMX9wQEZc+lgQCXISoKTlslPwQkgZ7nu7YRrQb tQMMONncsKk/cQYLsgMHM8KNSGMlJTx6e1du94oFOO+4oK4v9NsH1VuEGMGpuEvObJAaguS5 Pfp38dIfMwK/U+d2+dwmJUFvL6Yb+qQTkPp8ftkLYF3sv8pBoGH7EUkp2KgtdRXYShjqFu9V NCIaE40GMIIGtjCCBZ6gAwIBAgIMHxoBcB9CcQPHriXDMA0GCSqGSIb3DQEBCwUAMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBMB4XDTE4MDUxNTA2NTMyMloXDTE5MTEx NzAyMDAwMFowgcAxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIDAZCYXllcm4xETAPBgNVBAcMCE11 ZW5jaGVuMSkwJwYDVQQKDCBUZWNobmlzY2hlIFVuaXZlcnNpdGFldCBNdWVuY2hlbjEiMCAG A1UECwwZRmFrdWx0YWV0IGZ1ZXIgSW5mb3JtYXRpazEWMBQGA1UEAwwNVG9iaWFzIE5pcGtv dzEmMCQGCSqGSIb3DQEJARYXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGUwggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQCADTpwPRPWfSf9fi2ZhFfIjICiK0m69uj995i1vv8ajdIH XwulShY6KCmrezG6KZULjEi5GyRbZiCon/Ag+/0K/vLg3fIioBPPCw6lbEnhLeTyDfTDQJjo zpnlt24Eqp1Mb3ErO73WvAACYFJtChMZL6aF6WiHsL8MYTE0FhlHeuT9A56JLZvfqfEiuG4N dCf19A0EYvRxQiHk4HyV8ib/idJoTWfQSqBDYM/nLbmF6nVizuHlicNYwftM00hgqA2UM4im LSB4FytvRUSPNdmc0eY9zcHDpSz5nZbDWPjmQeMWAlFuV2sBqNcYUyeTzOuvoXPsSTBFRmcX KlFdysPnAgMBAAGjggLfMIIC2zBABgNVHSAEOTA3MA8GDSsGAQQBga0hgiwBAQQwEQYPKwYB BAGBrSGCLAEBBAMIMBEGDysGAQQBga0hgiwCAQQDCDAJBgNVHRMEAjAAMA4GA1UdDwEB/wQE AwIF4DAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYBBQUHAwQwHQYDVR0OBBYEFP4tlXbsLniS Wq9uFYP/UEre4Ek6MB8GA1UdIwQYMBaAFGs6mIv58lOJ2uCtsjIeCR/oqjt0MIGuBgNVHREE gaYwgaOBEG5pcGtvd0Bpbi50dW0uZGWBEW5pcGtvd0Bjcy50dW0uZWR1gSBuaXBrb3dAaW5m b3JtYXRpay50dS1tdWVuY2hlbi5kZYEXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGWBGHRvYmlh cy5uaXBrb3dAY3MudHVtLmVkdYEndG9iaWFzLm5pcGtvd0BpbmZvcm1hdGlrLnR1LW11ZW5j aGVuLmRlMIGNBgNVHR8EgYUwgYIwP6A9oDuGOWh0dHA6Ly9jZHAxLnBjYS5kZm4uZGUvZGZu LWNhLWdsb2JhbC1nMi9wdWIvY3JsL2NhY3JsLmNybDA/oD2gO4Y5aHR0cDovL2NkcDIucGNh LmRmbi5kZS9kZm4tY2EtZ2xvYmFsLWcyL3B1Yi9jcmwvY2FjcmwuY3JsMIHbBggrBgEFBQcB AQSBzjCByzAzBggrBgEFBQcwAYYnaHR0cDovL29jc3AucGNhLmRmbi5kZS9PQ1NQLVNlcnZl ci9PQ1NQMEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMS5wY2EuZGZuLmRlL2Rmbi1jYS1nbG9i YWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMi5w Y2EuZGZuLmRlL2Rmbi1jYS1nbG9iYWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MA0GCSqG SIb3DQEBCwUAA4IBAQAMTylJt407CL/HwgO4Om/yrpB/yDMKHLj4A1hvkSedvYvTFLk9gVTw U/fAKYrZxqazGcd0mCcRKPhj4lEbXUm5A6emrBRcolPiekw9/uEp1aZUz082cgi7HXnQS+Pi by5BJ4bBeMwt3FrFgdz18nl/+DcxX5KR3LMSujZu4d4ZmD19fifGxcAsOk2emYvA5JAMsmuw DWtYgnI08t+w73QAbkEPLpxqtkxzWK3Djv3aiMC6tA1cZUdgi5EVZGaEh9yZ8qWh2a7LR2ts XvbumZ++H+C0zQjn7FFgp8uQpqxN+dVKPjXx58LmHymKRKU2xMsyKE6W2x32qaVIClKPXdqc MYIECzCCBAcCAQEwgZ4wgY0xCzAJBgNVBAYTAkRFMUUwQwYDVQQKDDxWZXJlaW4genVyIEZv ZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVuIEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNV BAsMB0RGTi1QS0kxJTAjBgNVBAMMHERGTi1WZXJlaW4gR2xvYmFsIElzc3VpbmcgQ0ECDB8a AXAfQnEDx64lwzANBglghkgBZQMEAgEFAKCCAj0wGAYJKoZIhvcNAQkDMQsGCSqGSIb3DQEH ATAcBgkqhkiG9w0BCQUxDxcNMTkwMjA1MTkzMjU5WjAvBgkqhkiG9w0BCQQxIgQg0KNZ63EL ojgm4kVQhjx3I7qCBOg+DkOu3+jGqCEVNv0wbAYJKoZIhvcNAQkPMV8wXTALBglghkgBZQME ASowCwYJYIZIAWUDBAECMAoGCCqGSIb3DQMHMA4GCCqGSIb3DQMCAgIAgDANBggqhkiG9w0D AgIBQDAHBgUrDgMCBzANBggqhkiG9w0DAgIBKDCBrwYJKwYBBAGCNxAEMYGhMIGeMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFwH0JxA8euJcMwgbEGCyqGSIb3 DQEJEAILMYGhoIGeMIGNMQswCQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2Vy ZGVydW5nIGVpbmVzIERldXRzY2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQL DAdERk4tUEtJMSUwIwYDVQQDDBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFw H0JxA8euJcMwDQYJKoZIhvcNAQEBBQAEggEABC8JjV1UvJClkMBn3r33Vd2/DIOWrlk3GwKJ vfVyLpXYcJ/q5ZA+rTs5N/MvlhpYc8I8mYDvQgs3Gq84qsloIPT+Jmmd52w4hJX53AAH2RFN YWZ4cR/mP3Ua43BmbGUBxQxaPU7UAY/ePnXmqqLesxfmy7bKZbxUK+gTBJo4DlCyP6E4rmMZ fzZ2+BspzpgZaC79AixiW8UU1h0lR9RnIniVjQ/uHOi17/Zc5OXxCyx0ucqzipRs5UGf9fyS iignQnu3iXrpavsgd6ME8YeXo/mwdfyb4n2FRcAz38VJ1x8IgG85IUHlBHMYHhNVAWkRtTP3 O/ASX+iDs33nnsuB/AAAAAAAAA== --------------ms090403000800030607060207-- From afelty at uottawa.ca Tue Feb 05 20:16:26 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:59068) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gr78s-00084P-0c (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 05 Feb 2019 20:16:26 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852879 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [137.122.8.105 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.0 DKIMWL_WL_MED DKIMwl.org - Whitelisted Medium sender X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta1.cl.cam.ac.uk ([128.232.0.57]:49695) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gr78r-000N9T-0A (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 05 Feb 2019 20:16:26 +0000 Received: from ppsw-30.csi.cam.ac.uk ([2001:630:212:8::e:f30]) by mta1.cl.cam.ac.uk with esmtp (Exim 4.90_1) (envelope-from ) id 1gr78q-0003A2-Rf for isabelle-users at cl.cam.ac.uk; Tue, 05 Feb 2019 20:16:24 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852879 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [137.122.8.105 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.0 DKIMWL_WL_MED DKIMwl.org - Whitelisted Medium sender X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mx95.uottawa.ca ([137.122.8.105]:59259) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtp id 1gr78p-000fjt-dh (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Tue, 05 Feb 2019 20:16:24 +0000 Received: from CAN01-QB1-obe.outbound.protection.outlook.com (mail-qb1can01lp2053.outbound.protection.outlook.com [104.47.60.53]) by mx95.uottawa.ca (Postfix) with ESMTPS id 4EF6D2660469 for ; Tue, 5 Feb 2019 15:10:33 -0500 (EST) Received: from YTXPR0101MB1438.CANPRD01.PROD.OUTLOOK.COM (52.132.35.16) by YTXPR0101MB1598.CANPRD01.PROD.OUTLOOK.COM (52.132.38.153) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.1580.22; Tue, 5 Feb 2019 20:16:21 +0000 Received: from YTXPR0101MB1438.CANPRD01.PROD.OUTLOOK.COM ([fe80::bc61:24c0:8a23:ec3d]) by YTXPR0101MB1438.CANPRD01.PROD.OUTLOOK.COM ([fe80::bc61:24c0:8a23:ec3d%3]) with mapi id 15.20.1580.019; Tue, 5 Feb 2019 20:16:20 +0000 From: Amy Felty To: "isabelle-users at cl.cam.ac.uk" Thread-Topic: WiL 2019: Women in Logic Workshop Call for Papers Thread-Index: AQHUvY+oocJkcIkCikGo/g4Cr0p3ig== Date: Tue, 5 Feb 2019 20:16:20 +0000 Message-ID: <32B87CEE-8754-488E-BA1D-31E3744B369A at uottawa.ca> Accept-Language: en-US Content-Language: en-US X-MS-Has-Attach: X-MS-TNEF-Correlator: x-mailer: Apple Mail (2.3273) authentication-results: spf=none (sender IP is ) smtp.mailfrom=afelty at uottawa.ca; x-originating-ip: [137.122.64.8] x-ms-publictraffictype: Email x-microsoft-exchange-diagnostics: 1; YTXPR0101MB1598; 6:YSW/1thKF24fTAATK2LZChqe886PyOSUNGBmJAMTuf+Vr49vgn7ePVAlRaygKO9YF1/jF8sZfDZLqw97N4Ax0v9vgLLwaZ3OsFaqremPuik5fz+vN2NsHLfw7vIXFqpnzorAhc8B/AqHnzsVQjo1xDJ4ELv1gX6hhE67/bZ32E/TVgTHKlT+EtZNdy0K2OXWhCGbEeKE1ddhvymUqip71639skdbBzo0r3ya7intP68hz5oZFCgWpMP3/dJ39ZisdH1UBZl0DYfpH/GBjEw/ORlW7SpQR13RYiUpHlKU7AV84/Nw5UHNzKP9GC+akBB5fGev94X0w64AEZu4zMLxqILqZqLxztaVRSlhuC8u3mXSy/WPEx90DVq63ZbffttGKz+6gSHnGR8vQ80aaOK3zwzdEoxjFvWtfpNW7om3MhUez5kBJR2h/mC3mH3uMp5KMojStZSMNER4Oc70FYIVaw==; 5:CSjM4WoOelGSd1VPi7P37L80qmbZvn7AmzUpypTUK4jA+Ce5NncD1Nn/3P/tvPhPW6eeI8p8o7XcLXCpgF8mABRK0kFAUsnHGDYD11J2+MquYevHDl3IsPbWzXrZ40CDdec05bnbKUiL3Qy6Td46gwjlphX+3lFPnD1mrrw+yxj/BFQn9/z6ON9Pr7vOwUXFwmggKs3/HDYNRuE4GnkjrQ==; 7:35S52UEvme9+ajvOgXmLZ9VRnPNgrcHmGUgDXjMkdJFTEH56pYQ2pSO52+8Ldel5yrxSU9kTWpkXTrwbaXduE3fWLBhpq2gpkN2+3mE76uW6gdodNDjEeg6fs1/F7crFEd8EDbibzYCj4prvQ7bYpw== x-ms-office365-filtering-correlation-id: f72270e4-b232-4e5d-c0f6-08d68ba6cb3a x-microsoft-antispam: BCL:0; PCL:0; RULEID:(2390118)(7020095)(4652040)(8989299)(5600110)(711020)(4605077)(4534185)(4627221)(201703031133081)(201702281549075)(8990200)(2017052603328)(7153060)(7193020); SRVR:YTXPR0101MB1598; x-ms-traffictypediagnostic: YTXPR0101MB1598: x-microsoft-antispam-prvs: x-forefront-prvs: 0939529DE2 x-forefront-antispam-report: SFV:NSPM; SFS:(10019020)(396003)(39860400002)(346002)(366004)(376002)(136003)(199004)(189003)(2501003)(66066001)(7736002)(305945005)(57306001)(3846002)(6116002)(15974865002)(6486002)(486006)(14444005)(6512007)(476003)(74482002)(99286004)(82746002)(102836004)(2616005)(5640700003)(186003)(6306002)(256004)(26005)(6506007)(6436002)(105586002)(106356001)(2351001)(8936002)(81156014)(97736004)(316002)(966005)(53936002)(66574012)(8676002)(786003)(86362001)(71190400001)(83716004)(68736007)(6916009)(71200400001)(478600001)(2906002)(33656002)(14454004)(81166006)(36756003)(50226002)(25786009)(225293001)(16351025005); DIR:OUT; SFP:1102; SCL:1; SRVR:YTXPR0101MB1598; H:YTXPR0101MB1438.CANPRD01.PROD.OUTLOOK.COM; FPR:; SPF:None; LANG:en; PTR:InfoNoRecords; A:1; MX:1; received-spf: None (protection.outlook.com: uottawa.ca does not designate permitted sender hosts) x-ms-exchange-senderadcheck: 1 x-microsoft-antispam-message-info: WpTYBWblv/JJ/ghrA5Irw0c/9BoWSrpbENOfQcEXPzrgMFwEqCt8xe10ZnxOHB9RXtW7JkimjI/IoyRB41Xltjhkjmmy9zaBetehCkE8QwoOmyn7WSJiiUTQybFwwEQc//FZ5gZwlrwmEj19pMDVadkbJ6mFo1hDFXBANVZT+hUwlogrAjzuAtC9l1HkhdK/3mszQfOXXRvTuuFhNKMUP8AHpY9V+aBOqFgISMT+kdmXLXTR6415o0+kVGLuAAb7RSQwOVcfv5XiDtwhkbxWoqiSAoXjW5XniC8fdv2ns1yHMzCJagK5qqkcrz9SDMpVtSNMByQIJWGOn6ZQAgiE5D0GhYno3uMSfGCfGx97FrYpdRA3+YAaeOuxeeoraCj2lhAJQw9DKfrRuEg11eZ2G/D3RaRZHT8maiuZo6OTvnM= Content-Type: text/plain; charset="utf-8" Content-ID: Content-Transfer-Encoding: base64 MIME-Version: 1.0 X-OriginatorOrg: uottawa.ca X-MS-Exchange-CrossTenant-Network-Message-Id: f72270e4-b232-4e5d-c0f6-08d68ba6cb3a X-MS-Exchange-CrossTenant-originalarrivaltime: 05 Feb 2019 20:16:20.9190 (UTC) X-MS-Exchange-CrossTenant-fromentityheader: Hosted X-MS-Exchange-CrossTenant-id: d41fdab1-7e15-4cfd-b5fa-7200e54deb6b X-MS-Exchange-CrossTenant-mailboxtype: HOSTED X-MS-Exchange-Transport-CrossTenantHeadersStamped: YTXPR0101MB1598 X-debug-header: local_aliases has suffix Subject: [isabelle] WiL 2019: Women in Logic Workshop Call for Papers X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Tue, 05 Feb 2019 20:16:26 -0000 ICAgICAgICAgICAgICAgICBDYWxsIGZvciBUYWxrcyBhbmQgUGFwZXJzDQogICAgICAgICAgIFdp TCAyMDE5OiAzcmQgV29tZW4gaW4gTG9naWMgV29ya3Nob3ANCiAgICAgICAgICAgICAgICAgICAg IFZhbmNvdXZlciwgQ2FuYWRhDQogICAgICAgICAgICAgICAgICAgICAgIDIzIEp1bmUgMjAxOQ0K ICAgIGh0dHBzOi8vc2l0ZXMuZ29vZ2xlLmNvbS9zaXRlL3dvbWVuaW5sb2dpYzIwMTkvaG9tZQ0K DQoNCkFmZmlsaWF0ZWQgd2l0aCB0aGUgVGhpcnR5LUZvdXJ0aCBBbm51YWwgQUNNL0lFRUUgU3lt cG9zaXVtIG9uIExvZ2ljIGluDQpDb21wdXRlciBTY2llbmNlIChMSUNTKSwgMjQtMjcgSnVuZSAy MDE5IChodHRwczovL2xpY3Muc2lnbG9nLm9yZy9saWNzMTkvKS4NCg0KV2UgYXJlIGhvbGRpbmcg dGhlIHRoaXJkIFdvbWVuIGluIExvZ2ljIFdvcmtzaG9wIChXaUwgMjAxOSkgYXMgYSBMSUNTDQph c3NvY2lhdGVkIHdvcmtzaG9wIG9uIDIzIEp1bmUgMjAxOS4gVGhlIHdvcmtzaG9wIGZvbGxvd3Mg dGhlIHBhdHRlcm4NCm9mIG1lZXRpbmdzIHN1Y2ggYXMgV29tZW4gaW4gTWFjaGluZSBMZWFybmlu ZyAoV2lNTCwNCndpbWx3b3Jrc2hvcC5vcmcvKSBvciBXb21lbiBpbiBFbmdpbmVlcmluZyAoV0lF LA0Kd3d3LmllZWUtcmFzLm9yZy9tZW1iZXJzaGlwL3dvbWVuLWluLWVuZ2luZWVyaW5nKSB0aGF0 IGhhdmUgYmVlbg0KdGFraW5nIHBsYWNlIGZvciBxdWl0ZSBhIGZldyB5ZWFycy4NCg0KV29tZW4g YXJlIGNocm9uaWNhbGx5IHVuZGVycmVwcmVzZW50ZWQgaW4gdGhlIExpQ1MgY29tbXVuaXR5LiBU aGUNCndvcmtzaG9wIHdpbGwgcHJvdmlkZSBhbiBvcHBvcnR1bml0eSBmb3Igd29tZW4gaW4gdGhl IGZpZWxkIHRvDQppbmNyZWFzZSBhd2FyZW5lc3Mgb2Ygb25lIGFub3RoZXIgYW5kIG9uZSBhbm90 aGVy4oCZcyB3b3JrLCB0byBjb21iYXQNCnRoZSBmZWVsaW5nIG9mIGlzb2xhdGlvbi4gSXQgd2ls bCBhbHNvIHByb3ZpZGUgYW4gZW52aXJvbm1lbnQgd2hlcmUNCndvbWVuIGNhbiBwcmVzZW50IHRv IGFuIGF1ZGllbmNlIGNvbXByaXNpbmcgbW9zdGx5IHdvbWVuLCByZXBsaWNhdGluZw0KdGhlIGV4 cGVyaWVuY2UgdGhhdCBtb3N0IG1lbiBoYXZlIGF0IG1vc3QgTGlDUyBtZWV0aW5ncywgYW5kIGxv d2VyaW5nDQp0aGUgc3RyZXNzIG9mIHRoZSBvY2Nhc2lvbjsgd2UgaG9wZSB0aGF0IHRoaXMgd2ls bCBiZSBwYXJ0aWN1bGFybHkNCmF0dHJhY3RpdmUgdG8gZWFybHktY2FyZWVyIHdvbWVuLg0KDQpQ cmV2aW91cyB2ZXJzaW9ucyBvZiBXb21lbiBpbiBMb2dpYyAoUmV5a2phdmlrLCBJY2VsYW5kIDIw MTcgYW5kDQpPeGZvcmQsIFVLIDIwMTgpIHdlcmUgdmVyeSBzdWNjZXNzZnVsIGluIHNob3djYXNp bmcgd29tZW4ncyB3b3JrIGFuZA0KYXMgY2F0YWx5c3RzIGZvciByZWNvZ25pdGlvbiBvZiB0aGUg bmVlZCBmb3IgY2hhbmdlIGluIHRoZQ0KY29tbXVuaXR5LiBPdXIgZXh0ZW5kZWQgcHJvZ3JhbSBj b21taXR0ZWUgdHJpZXMgdG8gY292ZXIgbW9zdCBhcmVhcyBvZg0KTG9naWMgaW4gQ29tcHV0ZXIg U2NpZW5jZS4gIFRoZXNlIGluY2x1ZGUgYnV0IGFyZSBub3QgbGltaXRlZCB0byB0aGUNCnVzdWFs IExvZ2ljIGluIENvbXB1dGVyIFNjaWVuY2UgKExJQ1MpIHRvcGljcy4gVGhlc2UgYXJlOiBhdXRv bWF0YQ0KdGhlb3J5LCBhdXRvbWF0ZWQgZGVkdWN0aW9uLCBjYXRlZ29yaWNhbCBtb2RlbHMgYW5k IGxvZ2ljcywNCmNvbmN1cnJlbmN5IGFuZCBkaXN0cmlidXRlZCBjb21wdXRhdGlvbiwgY29uc3Ry YWludCBwcm9ncmFtbWluZywNCmNvbnN0cnVjdGl2ZSBtYXRoZW1hdGljcywgZGF0YWJhc2UgdGhl b3J5LCBkZWNpc2lvbiBwcm9jZWR1cmVzLA0KZGVzY3JpcHRpb24gbG9naWNzLCBkb21haW4gdGhl b3J5LCBmaW5pdGUgbW9kZWwgdGhlb3J5LCBmb3JtYWwgYXNwZWN0cw0Kb2YgcHJvZ3JhbSBhbmFs eXNpcywgZm9ybWFsIG1ldGhvZHMsIGZvdW5kYXRpb25zIG9mIGNvbXB1dGFiaWxpdHksDQpnYW1l cyBhbmQgbG9naWMsIGhpZ2hlci1vcmRlciBsb2dpYywgbGFtYmRhIGFuZCBjb21iaW5hdG9yeSBj YWxjdWxpLA0KbGluZWFyIGxvZ2ljLCBsb2dpYyBpbiBhcnRpZmljaWFsIGludGVsbGlnZW5jZSwg bG9naWMgcHJvZ3JhbW1pbmcsDQpsb2dpY2FsIGFzcGVjdHMgb2YgYmlvaW5mb3JtYXRpY3MsIGxv Z2ljYWwgYXNwZWN0cyBvZiBjb21wdXRhdGlvbmFsDQpjb21wbGV4aXR5LCBsb2dpY2FsIGFzcGVj dHMgb2YgcXVhbnR1bSBjb21wdXRhdGlvbiwgbG9naWNhbA0KZnJhbWV3b3JrcywgbG9naWNzIG9m IHByb2dyYW1zLCBtb2RhbCBhbmQgdGVtcG9yYWwgbG9naWNzLCBtb2RlbA0KY2hlY2tpbmcsIHBy b2JhYmlsaXN0aWMgc3lzdGVtcywgcHJvY2VzcyBjYWxjdWxpLCBwcm9ncmFtbWluZyBsYW5ndWFn ZQ0Kc2VtYW50aWNzLCBwcm9vZiB0aGVvcnksIHJlYWwtdGltZSBzeXN0ZW1zLCByZWFzb25pbmcg YWJvdXQgc2VjdXJpdHkNCmFuZCBwcml2YWN5LCByZXdyaXRpbmcsIHR5cGUgc3lzdGVtcyBhbmQg dHlwZSB0aGVvcnksIGFuZA0KdmVyaWZpY2F0aW9uLg0KDQpJTlZJVEVEIFNQRUFLRVJTDQoqIEFu bmUgQ29uZG9uIChVbml2ZXJzaXR5IG9mIEJyaXRpc2ggQ29sdW1iaWEsIENhbmFkYSkNCiogWmVu YSBBcmlvbGEgKFVuaXZlcnNpdHkgb2YgT3JlZ29uLCBVU0EpDQogIA0KSU1QT1JUQU5UIERBVEVT DQpQYXBlciBzdWJtaXNzaW9uIGRlYWRsaW5lOiAgNyBBcHJpbCAyMDE5DQpBdXRob3Igbm90aWZp Y2F0aW9uOiAgMjMgQXByaWwgMjAxOQ0KQ29udHJpYnV0aW9uIGZvciBJbmZvcm1hbCBQcm9jZWVk aW5nczogIDkgTWF5IDIwMTkNCg0KU1VCTUlTU0lPTlMNCkNvbnRyaWJ1dGlvbnMgc2hvdWxkIGJl IHdyaXR0ZW4gaW4gRW5nbGlzaCBhbmQgY2FuIGJlIHN1Ym1pdHRlZCBpbiB0aGUNCmZvcm0gb2Yg ZnVsbCBwYXBlcnMgKHdpdGggYSBtYXhpbXVtIG9mIDEwIHBhZ2VzKSwgc2hvcnQgcGFwZXJzICh3 aXRoIGENCm1heGltdW0gb2YgNSBwYWdlcyksIG9yIHRhbGsgYWJzdHJhY3RzICgxIHBhZ2UpLg0K DQpGb3JtYXR0aW5nIGluc3RydWN0aW9uczogUGFwZXJzIGFuZCBhYnN0cmFjdHMgc2hvdWxkIGJl DQpwcmVwYXJlZCB1c2luZyB0aGUgRWFzeWNoYWlyIHN0eWxlDQooaHR0cHM6Ly9lYXN5Y2hhaXIu b3JnL3B1YmxpY2F0aW9ucy9mb3JfYXV0aG9ycykuDQoNClRoZSBzdWJtaXNzaW9uIHNob3VsZCBi ZSBpbiB0aGUgZm9ybSBvZiBhIFBERiBmaWxlIHVwbG9hZGVkIHRvIHRoZSBXaUwNCjIwMTkgRWFz eWNoYWlyIHBhZ2UgKGh0dHBzOi8vZWFzeWNoYWlyLm9yZy9jb25mZXJlbmNlcy8/Y29uZj13aWwy MDE5KQ0KYmVmb3JlIHRoZSBzdWJtaXNzaW9uIGRlYWRsaW5lIG9mIDcgQXByaWwgMjAxOSwgYW55 d2hlcmUgb24gRWFydGguDQoNClBST0NFRURJTkdTDQpXZSBwbGFuIHRvIHB1Ymxpc2ggYW4gaW5m b3JtYWwgcG9zdCBjb25mZXJlbmNlIHZvbHVtZSBhdCBFTlRDUyBvcg0Kb3RoZXIgZXF1YWxseSB2 aXNpYmxlIG91dGxldC4NCg0KT1JHQU5JWklORyBBTkQgUFJPR1JBTSBDT01NSVRURUUNClNpbmNl IG91ciB3b3Jrc2hvcCBpcyBlc3BlY2lhbGx5IGtlZW4gb24gbWFraW5nIHN1cmUgdGhhdCB3b21l biBnZXQgdG8NCmtub3cgdGhlIHdvcmsgb2Ygb3RoZXIgd29tZW4sIHdlIGhhdmUgYSBsYXJnZSBw cm9ncmFtIGNvbW1pdHRlZS4NCiogU2FuZHJhIEFsdmVzIChVbml2ZXJzaWRhZGUgZG8gUG9ydG8s IFBvcnR1Z2FsKQ0KKiBBZ2F0YSBDaWFiYXR0b25pIChUVS1XaWVuLCBBdXN0cmlhKQ0KKiBBbXkg RmVsdHkgKENvLUNoYWlyLCBVbml2ZXJzaXR5IG9mIE90dGF3YSwgQ2FuYWRhKQ0KKiBNYXJpYmVs IEZlcm5hbmRleiAoS2luZydzIENvbGxlZ2UgTG9uZG9uLCBVSykNCiogU2FyYSBLYWx2YWxhIChV bml2ZXJzaXR5IG9mIFdhcndpY2ssIFVLKQ0KKiBEZWxpYSBLZXNuZXIgKFVuaXZlcnNpdMOpIFBh cmlzIERpZGVyb3QsIEZyYW5jZSkNCiogVXJzdWxhIE1hcnRpbiAoVW5pdmVyc2l0eSBvZiBPeGZv cmQsIFVLKQ0KKiBWYWxlcmlhIGRlIFBhaXZhIChDby1DaGFpciwgTnVhbmNlLCBVU0EpDQoqIENh dHVzY2lhIFBhbGFtaWRlc3NpICjDiWNvbGUgUG9seXRlY2huaXF1ZSwgRnJhbmNlKQ0KKiBCcmln aXR0ZSBQaWVudGthIChDby1DaGFpciwgTWNHaWxsIFVuaXZlcnNpdHksIENhbmFkYSkNCiogRWxh aW5lIFBpbWVudGVsIChVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRl LCBCcmF6aWwpDQoqIEdpc2VsbGUgUmVpcyAoQ2FybmVnaWUgTWVsbG9uIFVuaXZlcnNpdHksIFFh dGFyKQ0KKiBTaW1vbmEgUm9uY2hpIERlbGxhIFJvY2NhIChVbml2ZXJzaXTDoCBkZWdsaSBTdHVk aSBkaSBUb3Jpbm8sIEl0YWx5KQ0KKiBBbGV4YW5kcmEgU2lsdmEgKFVuaXZlcnNpdHkgQ29sbGVn ZSBMb25kb24sIFVLKQ0KKiBQZXJkaXRhIFN0ZXZlbnMgKFVuaXZlcnNpdHkgb2YgRWRpbmJ1cmdo LCBVSykNCiogVmFsZXJpYSBWaWdudWRlbGxpIChFY29sZSBOb3JtYWxlIFN1cMOpcmlldXJlIGRl IEx5b24sIEZyYW5jZSkNCg0K From eberlm at in.tum.de Wed Feb 06 09:12:30 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:48842) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grJFu-00042k-Ok (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 09:12:30 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:45125 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grJFt-000EH2-io (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 09:12:30 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id 0FC011C0005; Wed, 6 Feb 2019 10:12:29 +0100 (CET) Received: (Authenticated sender: eberlm) by mail.in.tum.de (Postfix) with ESMTPSA id F16C81C047F for ; Wed, 6 Feb 2019 10:12:26 +0100 (CET) (Extended-Queue-bit tech_ucdvu at fff.in.tum.de) To: cl-isabelle-users at lists.cam.ac.uk References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> <9c1c60d0-82e5-301b-0858-6d5cc9eb9ccd at in.tum.de> <2E2B5B06-70AD-4B71-9603-E76641F94D73 at gmail.com> <1af0cf0d-2206-fdd6-7c1c-8555b49875bb at in.tum.de> From: Manuel Eberl Openpgp: preference=signencrypt Autocrypt: addr=eberlm at in.tum.de; prefer-encrypt=mutual; keydata= mQINBFnXYyYBEADCLx1xTJEx34IA2n1uH2xGOXNlYA5MRecNLArLyF1bOx5Gjex1ilmZJzj2 mhonPfwpP98QsQDL4N4Nbi+MFpBJGrDATN56GPBQh8a4ttndlp0+srOeNA4kLSE48gp4YdTX zUCXeutse3eHBRtBSqelCoU9VwFc0QmAyiHnnwVy4AgZwiMCbrSvgBSvx/gcyZhYYuOVekTg JN1aZCGpedpTwhH2f7XH8X1Bw4AhjexHPSRZYI+E7eek+QFJTdXndXApHWGQajswrFZQ5W5p q3zS2XAOSMZdquAu0XC7CZzJHV8xzoWQC9XLdV7DltOmASWrLMi2FUrNr/O/uPV08ZIzZxZX 9T+WynujrWwEZPwkcNFM1EUyxIMqaOvJNA5r1Is89SL4rArk8M3MzpF4xqVguAYFxSHyCpZ5 Ijjn1XrYgR/VCqTAhDNXSeOlomd6fFxdDmIo35g/GZZs7giQGi7XocnZegnleeHyJwZdPkie 7zz5cjvFuwrSTvEHybfMIA4pyC2XnVFpCS4y5sCOSemHNEbXQYwJqG1pIj+tH0ncF/O2e9x6 ygW4dKp43aY7E+CMHzQBEuZZo4JLDMmnoGuPPWrjFZA6EmJNIvHUf4uzzdiFJVEuRNqh82R6 HvDvxQkjhuRQvC8cP31pRbf51M8j5W77f0WZ/rFnkIx9hh53EQARAQABtB9NYW51ZWwgRWJl cmwgPGViZXJsbUBpbi50dW0uZGU+iQJUBBMBCAA+FiEEN1tratkE0f8X2q+Y59G0ZJvnKoQF AlnXY18CGwMFCQlmAYAFCwkIBwIGFQgJCgsCBBYCAwECHgECF4AACgkQ59G0ZJvnKoTDEA/+ KY5vnLMwy/WhMaV3r3sl8+L2r75zmIVvatyevVEnfLYunghOO6AurT9S5egwNqOGjuW2FXju NVukQ2/sFqjodUNBdkeMjCSgBG0puGEdTkf9JA2dWAs5cCzQRyFVzwYx9SuHO+gdpxliV/ba 6tHQewoV0BZNtgvu4dlLAaOQw5JPip38tEa0FdMCwpaoPtOTdhwCcDOTDf0sLivi5Eo7zTjP 8edhJoxa0UuWAMWTaPE8UlXSJqN/ufFS5MP1n1eCuSJOkM3ELewjmKddm4/TycxUtvrd4aHp jqJfbm5gh0Xj3l6K7clykqtvrnv5PSydaZvi/THwvlcqlRSekKfBlRYbZUykzZ8xryjNToh/ tbCv19vPlLDm1K2hPfljrMfr5PZj35Ca7v1o2WYQRlYFSIbmY5amUyptsUi1934clybq8lhg lwQCIO4w0gpcMEKyq1hZK4PNvpnac9IcW2G48vjoMCyEJpTrJLO23eEVYGqRBpJGl94b2H6A eWek1Z/3znr+ph0S4tddcfe1Tz5qCOeD5UI0BCMHYw+6uM4Q6NMVwXz1+czcgMJUzbT0FYti EqXMOnh/DC5C1evV1lcyHuI/jEOfpOMfgjKwN/bTQkmzXf3d/Cyf2h4+K4JKZUjT4Wteac+o 3tHLX/2MamTXcqsaU2vrMz+Q6OlDEwY4GXO5Ag0EWddjJgEQANO9foaUMRzjVeniynCTLul/ gDztIR3G9d0aYM4sQ2Sv1hV3xcV+EWyrEPmOjhOYfCEtzW4MBhAKvKFHGMyTz1fIFYvEeBFH AflFnpD5r69B38nv/TkDx2hcrY7ZJ98/2YkE2l5pz8aAU4B2NSgLwpr2eISpAMDZ+Y7Y+G1d n6g5tdlZTdPBSBXVIam1axbKJdRLlAdL4yZNRAqiVaC6kfwkB0O3+4Zhh6NbL8vEkKQB/tOv 6QkJZLBO7kNGtoJP5dc4UnlbSgu5Gq3csbbJsdFFdJETqSDgVrO/2gVxulQjmA6UCzYoXBcn fOioSJQ+4Zu76kBFPRotQ5goAA7JjtHWoLdZ7hTorBy4M5o02OqA9VayZsmiA060oINaS+Kp UQZEUq7i/G+Al5FNqcG8Gq5GBZSAuORYP2KGaAJcrv0tVDbF3BBEdtkPQeLBxb2mVqn8rLQI NDZUdzKr6S19qj2knJFA0dY/jceFSHG4EV8Fr0oEoAfD9opyaduGAJDmO/Zq4xOOJPvIYalB aekPxMbWNmrDmeuK7HQ1IqOx65EoNoOzqqYHnae21NyMSV+h3Wsqq7DJAWiDFqx/ebHpRS25 SyD5Pe89iaC9Cr9X2h3gK2dfgd3UpOTUjRJE1A82c1jEZCvSNDouFY6fiUgFycBrxKa5XzrC nWF7c8soh+YJABEBAAGJAjwEGAEIACYWIQQ3W2tq2QTR/xfar5jn0bRkm+cqhAUCWddjJgIb DAUJCWYBgAAKCRDn0bRkm+cqhIJFEACpRkf/NC+OeYyXmWUja0fVDKoTOmXcBVNdeptnz2Rr QrDZy8Di+DfWmz8VqEkI6PomAWjO3xDU/5yCs7A+gQrt8ioTPJbUCSQNRJGmFSEiLJ0/l9Sq iqjQsUjZbTNYAt2F/RDj7eQYh6c1smXpkbIyCQUfkOtafW9QFCnq06EPuuLOZeh35cphZ7W0 AcCrel2KLvX7PDNQxPmLuP/y2E787YySA/2f7dDjEgvrpNS9WOnWUekFSc3oWtN/dnmn0kXw AK6TYV1C9jUdGVQmjI8JcK4NUEJhVHV4N205EWivBU74L5QMXHHsA3YukYQTYXQOUWlP4x7G Jr4whSKeVh3xZpl2EvF/9Rp9rbwhqTxcBe/oAOeWR98puguCcKQkgANETArKLd3+e1KLeimT OMtgEA4srbuqBh7BtTcbdz4bbjIfKyYFxH/I9ZKpaO6J8DJxNJYQKZfpfs86tv9znfpYWJcB HeSN3ilKW0CBcboQ3Zcs0qycWYLHgMH7DNB49DTCfSMMKGLFmvarAtjkaX5NZraY32PgPvlT ZFTM2SHd14WlC8lwDQgEsYvcItKWped2+XRYfgxGX9SDWwAKr4q/yUAmBaXQyPf519IEcmNe qtIOXZlrjgSw1Kgk1JRlbFkMnlJ5EEkEdBsXP1RCQ8hkwYBzdZURPSeRM+CU2IKREg== Message-ID: <7cc3c369-03ae-d9c4-de89-e0948ea68396 at in.tum.de> Date: Wed, 6 Feb 2019 10:12:26 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: <1af0cf0d-2206-fdd6-7c1c-8555b49875bb at in.tum.de> Content-Type: text/plain; charset=utf-8 Content-Language: fr-classic Content-Transfer-Encoding: 8bit Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 09:12:30 -0000 I've been mentioning this issue occasionally over the last few years. Considering how well computer algebra systems can handle equations and inequalities, there /must/ be room for improvement in Isabelle/HOL. Unfortunately, I've had little luck finding out what exactly it is that these systems do, and in any case it is probably a lot of work. To make matters worse, it might well break a lot of existing proofs if we switch it on by default, and no one will use it if we don't. Manuel On 05/02/2019 20:32, Tobias Nipkow wrote: > I don't believe we have a master plan for arithmetic simprocs. Or only > for some of them. It is all grown historically, with sometimes odd > interactions. > > Tobias > > On 05/02/2019 14:22, Mathias Fleury wrote: >> Hi all, >> >> >>> On 4. Feb 2019, at 17:20, Tobias Nipkow >> > wrote: >>> >>> Mathias, >>> >>> Actually, a simproc to cancel all common factors is easy: Givem t1 <= >>> t2, where t1 and t2 are sums, compute the common factor m of t1 and >>> t2 and the remainders t1' and t2'. Prove by rewriting with >>> distributivity that (t1 <= t2) = (m*t1' <= m*t2'). Prove by simproc >>> that (m*t1' <= m*t2') = (t1' <= t2') - see Tools/numeral_simprocs.ML. >>> >> >> I implemented that. I followed what was already in >> Tools/numeral_simprocs.ML. Then I activated the >> procedure as simproc on nat and 'a :: linordered_ring_strict (which >> includes int and reals) and run it on the (non-slow part of) AFP. >> >> >> When trying it out on the AFP, some proofs broke because of the >> reordering meaning. So if we want to activate such simproc, we would >> have to adapt some proofs: >>    by (clarsimp simp add: cos_one_2pi) (metis >> *mult_minus_right* of_int_of_nat) >> ~> >>    by (clarsimp simp add: cos_one_2pi) (metis >> *mult_minus_left* of_int_of_nat) >> >> >> Nevertheless, it turns out things are a bit more complicated than I >> expected. They are already two different simprocs that can cancel >> terms, but do different things: >>    * eq_cancel_numeral_factor: it cancels term, but on the way, it >> reorders terms. >>       (2::int) * a * b = 2 * b' * a' ~> a * b = a' * b' >> >>    * eq_cancel_factor: it cancels a terms, but without reordering terms: >>       (2::int) * a * b = 2 * b' * a' ~> 2 = 0 ∨ a * b = b' * a' >> >>     [2 = 0 can be simplified to false later, yielding a * b = b' * a'] >> >> >> >> I have a few questions: >>    * Does anyone know why some cancelation simprocs sort terms? >>    * Are simprocs supposed to be confluent, i.e., reach the same >> conclusion independently of the order they are applied? >> >> >> Best, >> Mathias >> >> >> >>> Tobias >>> >>> On 04/02/2019 15:29, Mathias Fleury wrote: >>>> Dear Tobias, >>>>> On 4. Feb 2019, at 10:45, Tobias Nipkow >>>> > wrote: >>>>> >>>>> Dear Mathias, >>>>> >>>>> It took me some time to remember the key point: linarith uses >>>>> Fourier-Motzkin elimnation which is complere for rationals and >>>>> reals but incomplete for integers. For the latter we have >>>>> Presburger, but it is too slow for the example. >>>>> >>>>> The idea of eliminating common factors first is interesting. I have >>>>> no idea if this is always beneficial. >>>> I asked our local expert of linear arithmetics, Martin Bromberger: >>>>>    tl;dr: Eliminating common factors helps much more than it hurts, >>>>>    especially for linear integer arithmetic; but there are cases, >>>>> although >>>>>    rare, where it might be harmful. >>>>> >>>>>    Detailed explanation: >>>>> >>>>>    Fourier-Motzkin transformation over the reals/rationals: is just a >>>>>    projection. And the projection does not change if we eliminate >>>>> common >>>>>    factors because this elimination is equivalence preserving. >>>>> (There is one >>>>>    exception... Your projection may change because your >>>>> Fourier-Motzkin >>>>>    implementation might change the variable elimination order. Yay >>>>>    heuristics...) What changes, however, is the run time needed to >>>>> compute >>>>>    the projection. Whether you are faster or worse depends on the >>>>> overhead of >>>>>    eliminating common factors vs. the speed-up you gain by having >>>>> smaller >>>>>    coefficients. Personally, I think you would gain a speed-up. >>>>> >>>>>    Fourier-Motzkin transformation over the integers: eliminating   >>>>>     common >>>>>    factors alone should not change whether a problem is solvable or >>>>>    unsolvable. Because the projection stays the same :-) Unless, >>>>> (i) you >>>>>    combine it with rounding ("2 * x:int + 4 * y:int <= 1" >>>>> simplifies to >>>>>    "x:int + 2 * y:int <= 0 = \floor(1/2)") or (ii) if you simplify >>>>> strict >>>>>    inequalities over integer variables ("a:int < 1" simplifies to >>>>> "a:int <= >>>>>    0", but "2 * a:int < 2" simplifies to "2 * a:int <= 1"). I >>>>> assume (ii) is >>>>>    what happened in your example (because (i) is a form of >>>>> eliminating common >>>>>    factors) and thanks to eliminating common factors you removed some >>>>>    rational/real solutions and made the problem solvable. And >>>>> because this is >>>>>    possible (i) and (ii) are also normally done for arithmetic >>>>> inequalities. >>>>>    (Still, you might very rarely get worse results because your >>>>>    Fourier-Motzkin implementation changes the variable elimination >>>>> order due >>>>>    to heuristic shenanigans…) >>>>> >>>>>    PS: Eliminating common factors and (i) and (ii) are not just >>>>> preprocessing >>>>>    steps but inprocessing steps. You should apply them after every >>>>>    intermediate step of Fourier-Motzkin transformation… >>>>> >>>>> Since the existing code is quite delicate, I also don't want to >>>>> mess with it. >>>> I was more thinking of a preprocessing step, than a change to >>>> linarith itself. Which I expect to be a much bigger task. >>>>> Is there a simproc for eliminating common factors? I suspect not in >>>>> full generality, because the simplifier leaves "10 * (i::int) ≤ 25 >>>>> * j" alone. There is one by Larry for the simple case "m * t <= n * >>>>> u" where m and n have a common factor. I have no idea how much work >>>>> it would be to generalize it. >>>> Thanks for the pointer. >>>> Best regards, >>>> Mathias >>>>> Best regards >>>>> Tobias >>>>> >>>>> On 01/02/2019 18:38, Mathias Fleury wrote: >>>>>> Hi list, >>>>>> after trying to reconstruct more veriT proofs, I found out the >>>>>> following lemma cannot be discharged by linarith: >>>>>> lemma "¬ 0 ≤ int (size l') ∨ >>>>>>          ¬ 10 * int (size lr) < 4 + 14 * int (size rr) ∨ >>>>>>          10 * int (size lr) ≤ 15 + 25 * int (size l') ∨ >>>>>>          ¬ 10 * int (size lr) + 10 * int (size rr) ≤ 30 + 25 * int >>>>>> (size l') " >>>>>>   apply linarith (* fails *) >>>>>>   oops >>>>>> However, if I simplify the coefficients by dividing by 5, then >>>>>> linearity is able to prove the goal: >>>>>> lemma "¬ 0 ≤ int (size l') ∨ >>>>>>          ¬ 5 * int (size lr) < 2 + 7 * int (size rr) ∨ >>>>>>          2 * int (size lr) ≤ 3 + 5 * int (size l') ∨ >>>>>>          ¬ 2 * int (size lr) + 2 * int (size rr) ≤ 6 + 5 * int >>>>>> (size l') " >>>>>>   apply linarith >>>>>>   done >>>>>> Is there any simproc able to do this simplification automatically? >>>>>> If there is one, is there any reason why linarith does not use it >>>>>> by default? >>>>>> Thanks, >>>>>> Mathias >>>>> >>> >> > From eberlm at in.tum.de Wed Feb 06 09:24:06 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:54674) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grJR8-0007b3-1I (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 09:24:06 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:46271 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grJR7-000bxI-eM (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 09:24:06 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id B97F41C0485; Wed, 6 Feb 2019 10:24:04 +0100 (CET) Received: (Authenticated sender: eberlm) by mail.in.tum.de (Postfix) with ESMTPSA id CF8531C047F for ; Wed, 6 Feb 2019 10:24:01 +0100 (CET) (Extended-Queue-bit tech_htyju at fff.in.tum.de) To: cl-isabelle-users at lists.cam.ac.uk References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> <9c1c60d0-82e5-301b-0858-6d5cc9eb9ccd at in.tum.de> <2E2B5B06-70AD-4B71-9603-E76641F94D73 at gmail.com> <1af0cf0d-2206-fdd6-7c1c-8555b49875bb at in.tum.de> <7cc3c369-03ae-d9c4-de89-e0948ea68396 at in.tum.de> From: Manuel Eberl Openpgp: preference=signencrypt Autocrypt: addr=eberlm at in.tum.de; prefer-encrypt=mutual; keydata= mQINBFnXYyYBEADCLx1xTJEx34IA2n1uH2xGOXNlYA5MRecNLArLyF1bOx5Gjex1ilmZJzj2 mhonPfwpP98QsQDL4N4Nbi+MFpBJGrDATN56GPBQh8a4ttndlp0+srOeNA4kLSE48gp4YdTX zUCXeutse3eHBRtBSqelCoU9VwFc0QmAyiHnnwVy4AgZwiMCbrSvgBSvx/gcyZhYYuOVekTg JN1aZCGpedpTwhH2f7XH8X1Bw4AhjexHPSRZYI+E7eek+QFJTdXndXApHWGQajswrFZQ5W5p q3zS2XAOSMZdquAu0XC7CZzJHV8xzoWQC9XLdV7DltOmASWrLMi2FUrNr/O/uPV08ZIzZxZX 9T+WynujrWwEZPwkcNFM1EUyxIMqaOvJNA5r1Is89SL4rArk8M3MzpF4xqVguAYFxSHyCpZ5 Ijjn1XrYgR/VCqTAhDNXSeOlomd6fFxdDmIo35g/GZZs7giQGi7XocnZegnleeHyJwZdPkie 7zz5cjvFuwrSTvEHybfMIA4pyC2XnVFpCS4y5sCOSemHNEbXQYwJqG1pIj+tH0ncF/O2e9x6 ygW4dKp43aY7E+CMHzQBEuZZo4JLDMmnoGuPPWrjFZA6EmJNIvHUf4uzzdiFJVEuRNqh82R6 HvDvxQkjhuRQvC8cP31pRbf51M8j5W77f0WZ/rFnkIx9hh53EQARAQABtB9NYW51ZWwgRWJl cmwgPGViZXJsbUBpbi50dW0uZGU+iQJUBBMBCAA+FiEEN1tratkE0f8X2q+Y59G0ZJvnKoQF AlnXY18CGwMFCQlmAYAFCwkIBwIGFQgJCgsCBBYCAwECHgECF4AACgkQ59G0ZJvnKoTDEA/+ KY5vnLMwy/WhMaV3r3sl8+L2r75zmIVvatyevVEnfLYunghOO6AurT9S5egwNqOGjuW2FXju NVukQ2/sFqjodUNBdkeMjCSgBG0puGEdTkf9JA2dWAs5cCzQRyFVzwYx9SuHO+gdpxliV/ba 6tHQewoV0BZNtgvu4dlLAaOQw5JPip38tEa0FdMCwpaoPtOTdhwCcDOTDf0sLivi5Eo7zTjP 8edhJoxa0UuWAMWTaPE8UlXSJqN/ufFS5MP1n1eCuSJOkM3ELewjmKddm4/TycxUtvrd4aHp jqJfbm5gh0Xj3l6K7clykqtvrnv5PSydaZvi/THwvlcqlRSekKfBlRYbZUykzZ8xryjNToh/ tbCv19vPlLDm1K2hPfljrMfr5PZj35Ca7v1o2WYQRlYFSIbmY5amUyptsUi1934clybq8lhg lwQCIO4w0gpcMEKyq1hZK4PNvpnac9IcW2G48vjoMCyEJpTrJLO23eEVYGqRBpJGl94b2H6A eWek1Z/3znr+ph0S4tddcfe1Tz5qCOeD5UI0BCMHYw+6uM4Q6NMVwXz1+czcgMJUzbT0FYti EqXMOnh/DC5C1evV1lcyHuI/jEOfpOMfgjKwN/bTQkmzXf3d/Cyf2h4+K4JKZUjT4Wteac+o 3tHLX/2MamTXcqsaU2vrMz+Q6OlDEwY4GXO5Ag0EWddjJgEQANO9foaUMRzjVeniynCTLul/ gDztIR3G9d0aYM4sQ2Sv1hV3xcV+EWyrEPmOjhOYfCEtzW4MBhAKvKFHGMyTz1fIFYvEeBFH AflFnpD5r69B38nv/TkDx2hcrY7ZJ98/2YkE2l5pz8aAU4B2NSgLwpr2eISpAMDZ+Y7Y+G1d n6g5tdlZTdPBSBXVIam1axbKJdRLlAdL4yZNRAqiVaC6kfwkB0O3+4Zhh6NbL8vEkKQB/tOv 6QkJZLBO7kNGtoJP5dc4UnlbSgu5Gq3csbbJsdFFdJETqSDgVrO/2gVxulQjmA6UCzYoXBcn fOioSJQ+4Zu76kBFPRotQ5goAA7JjtHWoLdZ7hTorBy4M5o02OqA9VayZsmiA060oINaS+Kp UQZEUq7i/G+Al5FNqcG8Gq5GBZSAuORYP2KGaAJcrv0tVDbF3BBEdtkPQeLBxb2mVqn8rLQI NDZUdzKr6S19qj2knJFA0dY/jceFSHG4EV8Fr0oEoAfD9opyaduGAJDmO/Zq4xOOJPvIYalB aekPxMbWNmrDmeuK7HQ1IqOx65EoNoOzqqYHnae21NyMSV+h3Wsqq7DJAWiDFqx/ebHpRS25 SyD5Pe89iaC9Cr9X2h3gK2dfgd3UpOTUjRJE1A82c1jEZCvSNDouFY6fiUgFycBrxKa5XzrC nWF7c8soh+YJABEBAAGJAjwEGAEIACYWIQQ3W2tq2QTR/xfar5jn0bRkm+cqhAUCWddjJgIb DAUJCWYBgAAKCRDn0bRkm+cqhIJFEACpRkf/NC+OeYyXmWUja0fVDKoTOmXcBVNdeptnz2Rr QrDZy8Di+DfWmz8VqEkI6PomAWjO3xDU/5yCs7A+gQrt8ioTPJbUCSQNRJGmFSEiLJ0/l9Sq iqjQsUjZbTNYAt2F/RDj7eQYh6c1smXpkbIyCQUfkOtafW9QFCnq06EPuuLOZeh35cphZ7W0 AcCrel2KLvX7PDNQxPmLuP/y2E787YySA/2f7dDjEgvrpNS9WOnWUekFSc3oWtN/dnmn0kXw AK6TYV1C9jUdGVQmjI8JcK4NUEJhVHV4N205EWivBU74L5QMXHHsA3YukYQTYXQOUWlP4x7G Jr4whSKeVh3xZpl2EvF/9Rp9rbwhqTxcBe/oAOeWR98puguCcKQkgANETArKLd3+e1KLeimT OMtgEA4srbuqBh7BtTcbdz4bbjIfKyYFxH/I9ZKpaO6J8DJxNJYQKZfpfs86tv9znfpYWJcB HeSN3ilKW0CBcboQ3Zcs0qycWYLHgMH7DNB49DTCfSMMKGLFmvarAtjkaX5NZraY32PgPvlT ZFTM2SHd14WlC8lwDQgEsYvcItKWped2+XRYfgxGX9SDWwAKr4q/yUAmBaXQyPf519IEcmNe qtIOXZlrjgSw1Kgk1JRlbFkMnlJ5EEkEdBsXP1RCQ8hkwYBzdZURPSeRM+CU2IKREg== Message-ID: <78cb4d13-58c9-12f8-7783-f915b2fda801 at in.tum.de> Date: Wed, 6 Feb 2019 10:24:00 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: <7cc3c369-03ae-d9c4-de89-e0948ea68396 at in.tum.de> Content-Type: text/plain; charset=utf-8 Content-Language: fr-classic Content-Transfer-Encoding: 7bit Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 09:24:06 -0000 I just realised that I should have read more than the first sentence of your email; I interpreted "Master plan for arithmetic simprocs" as "plan for the future development of arithmetic simprocs". Now I see that's not what you meant. Still, if anyone has some opinions on what I wrote or feels inclined to implement this, do come forward. Manuel From lp15 at cam.ac.uk Wed Feb 06 10:58:37 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:41588) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grKub-0001VS-MU (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 10:58:37 +0000 X-Cam-AntiVirus: no malware found X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from voron.mac.cl.cam.ac.uk ([128.232.56.42]:59076) by ppsw-31.csi.cam.ac.uk (smtp.hermes.cam.ac.uk [131.111.8.157]:587) with esmtpsa (PLAIN:lp15) (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grKub-000Vsh-LO (Exim 4.91) (return-path ); Wed, 06 Feb 2019 10:58:37 +0000 Content-Type: text/plain; charset=utf-8 Mime-Version: 1.0 (Mac OS X Mail 12.2 \(3445.102.3\)) From: Lawrence Paulson In-Reply-To: <7cc3c369-03ae-d9c4-de89-e0948ea68396 at in.tum.de> Date: Wed, 6 Feb 2019 10:58:37 +0000 Content-Transfer-Encoding: quoted-printable Message-Id: <600766EC-00CB-4920-A4BE-C6396F31BD22 at cam.ac.uk> References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> <9c1c60d0-82e5-301b-0858-6d5cc9eb9ccd at in.tum.de> <2E2B5B06-70AD-4B71-9603-E76641F94D73 at gmail.com> <1af0cf0d-2206-fdd6-7c1c-8555b49875bb at in.tum.de> <7cc3c369-03ae-d9c4-de89-e0948ea68396 at in.tum.de> To: Manuel Eberl X-Mailer: Apple Mail (2.3445.102.3) Cc: cl-isabelle-users at lists.cam.ac.uk Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 10:58:37 -0000 I would love to see the following paper implemented: https://tel.archives-ouvertes.fr/IMAG/hal-01505598v1 It discovers equalities and is therefore useful even when it can=E2=80=99t= prove the goal outright. I guess it would be a medium-sized project. Larry > On 6 Feb 2019, at 09:12, Manuel Eberl wrote: >=20 > I've been mentioning this issue occasionally over the last few years. > Considering how well computer algebra systems can handle equations and > inequalities, there /must/ be room for improvement in Isabelle/HOL. >=20 > Unfortunately, I've had little luck finding out what exactly it is = that > these systems do, and in any case it is probably a lot of work. To = make > matters worse, it might well break a lot of existing proofs if we = switch > it on by default, and no one will use it if we don't. From eberlm at in.tum.de Wed Feb 06 11:11:46 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:52874) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grL7K-0005UO-6O (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 11:11:46 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:44741 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grL7J-000ToJ-0r (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 11:11:46 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id 8A4221C0485; Wed, 6 Feb 2019 12:11:44 +0100 (CET) Received: (Authenticated sender: eberlm) by mail.in.tum.de (Postfix) with ESMTPSA id 5AA6D1C047F; Wed, 6 Feb 2019 12:11:42 +0100 (CET) (Extended-Queue-bit tech_iaaxw at fff.in.tum.de) To: Lawrence Paulson References: <0CF04EC7-EBF7-43AA-A620-C28D5F5400D0 at gmail.com> <9c1c60d0-82e5-301b-0858-6d5cc9eb9ccd at in.tum.de> <2E2B5B06-70AD-4B71-9603-E76641F94D73 at gmail.com> <1af0cf0d-2206-fdd6-7c1c-8555b49875bb at in.tum.de> <7cc3c369-03ae-d9c4-de89-e0948ea68396 at in.tum.de> <600766EC-00CB-4920-A4BE-C6396F31BD22 at cam.ac.uk> From: Manuel Eberl Openpgp: preference=signencrypt Autocrypt: addr=eberlm at in.tum.de; prefer-encrypt=mutual; keydata= mQINBFnXYyYBEADCLx1xTJEx34IA2n1uH2xGOXNlYA5MRecNLArLyF1bOx5Gjex1ilmZJzj2 mhonPfwpP98QsQDL4N4Nbi+MFpBJGrDATN56GPBQh8a4ttndlp0+srOeNA4kLSE48gp4YdTX zUCXeutse3eHBRtBSqelCoU9VwFc0QmAyiHnnwVy4AgZwiMCbrSvgBSvx/gcyZhYYuOVekTg JN1aZCGpedpTwhH2f7XH8X1Bw4AhjexHPSRZYI+E7eek+QFJTdXndXApHWGQajswrFZQ5W5p q3zS2XAOSMZdquAu0XC7CZzJHV8xzoWQC9XLdV7DltOmASWrLMi2FUrNr/O/uPV08ZIzZxZX 9T+WynujrWwEZPwkcNFM1EUyxIMqaOvJNA5r1Is89SL4rArk8M3MzpF4xqVguAYFxSHyCpZ5 Ijjn1XrYgR/VCqTAhDNXSeOlomd6fFxdDmIo35g/GZZs7giQGi7XocnZegnleeHyJwZdPkie 7zz5cjvFuwrSTvEHybfMIA4pyC2XnVFpCS4y5sCOSemHNEbXQYwJqG1pIj+tH0ncF/O2e9x6 ygW4dKp43aY7E+CMHzQBEuZZo4JLDMmnoGuPPWrjFZA6EmJNIvHUf4uzzdiFJVEuRNqh82R6 HvDvxQkjhuRQvC8cP31pRbf51M8j5W77f0WZ/rFnkIx9hh53EQARAQABtB9NYW51ZWwgRWJl cmwgPGViZXJsbUBpbi50dW0uZGU+iQJUBBMBCAA+FiEEN1tratkE0f8X2q+Y59G0ZJvnKoQF AlnXY18CGwMFCQlmAYAFCwkIBwIGFQgJCgsCBBYCAwECHgECF4AACgkQ59G0ZJvnKoTDEA/+ KY5vnLMwy/WhMaV3r3sl8+L2r75zmIVvatyevVEnfLYunghOO6AurT9S5egwNqOGjuW2FXju NVukQ2/sFqjodUNBdkeMjCSgBG0puGEdTkf9JA2dWAs5cCzQRyFVzwYx9SuHO+gdpxliV/ba 6tHQewoV0BZNtgvu4dlLAaOQw5JPip38tEa0FdMCwpaoPtOTdhwCcDOTDf0sLivi5Eo7zTjP 8edhJoxa0UuWAMWTaPE8UlXSJqN/ufFS5MP1n1eCuSJOkM3ELewjmKddm4/TycxUtvrd4aHp jqJfbm5gh0Xj3l6K7clykqtvrnv5PSydaZvi/THwvlcqlRSekKfBlRYbZUykzZ8xryjNToh/ tbCv19vPlLDm1K2hPfljrMfr5PZj35Ca7v1o2WYQRlYFSIbmY5amUyptsUi1934clybq8lhg lwQCIO4w0gpcMEKyq1hZK4PNvpnac9IcW2G48vjoMCyEJpTrJLO23eEVYGqRBpJGl94b2H6A eWek1Z/3znr+ph0S4tddcfe1Tz5qCOeD5UI0BCMHYw+6uM4Q6NMVwXz1+czcgMJUzbT0FYti EqXMOnh/DC5C1evV1lcyHuI/jEOfpOMfgjKwN/bTQkmzXf3d/Cyf2h4+K4JKZUjT4Wteac+o 3tHLX/2MamTXcqsaU2vrMz+Q6OlDEwY4GXO5Ag0EWddjJgEQANO9foaUMRzjVeniynCTLul/ gDztIR3G9d0aYM4sQ2Sv1hV3xcV+EWyrEPmOjhOYfCEtzW4MBhAKvKFHGMyTz1fIFYvEeBFH AflFnpD5r69B38nv/TkDx2hcrY7ZJ98/2YkE2l5pz8aAU4B2NSgLwpr2eISpAMDZ+Y7Y+G1d n6g5tdlZTdPBSBXVIam1axbKJdRLlAdL4yZNRAqiVaC6kfwkB0O3+4Zhh6NbL8vEkKQB/tOv 6QkJZLBO7kNGtoJP5dc4UnlbSgu5Gq3csbbJsdFFdJETqSDgVrO/2gVxulQjmA6UCzYoXBcn fOioSJQ+4Zu76kBFPRotQ5goAA7JjtHWoLdZ7hTorBy4M5o02OqA9VayZsmiA060oINaS+Kp UQZEUq7i/G+Al5FNqcG8Gq5GBZSAuORYP2KGaAJcrv0tVDbF3BBEdtkPQeLBxb2mVqn8rLQI NDZUdzKr6S19qj2knJFA0dY/jceFSHG4EV8Fr0oEoAfD9opyaduGAJDmO/Zq4xOOJPvIYalB aekPxMbWNmrDmeuK7HQ1IqOx65EoNoOzqqYHnae21NyMSV+h3Wsqq7DJAWiDFqx/ebHpRS25 SyD5Pe89iaC9Cr9X2h3gK2dfgd3UpOTUjRJE1A82c1jEZCvSNDouFY6fiUgFycBrxKa5XzrC nWF7c8soh+YJABEBAAGJAjwEGAEIACYWIQQ3W2tq2QTR/xfar5jn0bRkm+cqhAUCWddjJgIb DAUJCWYBgAAKCRDn0bRkm+cqhIJFEACpRkf/NC+OeYyXmWUja0fVDKoTOmXcBVNdeptnz2Rr QrDZy8Di+DfWmz8VqEkI6PomAWjO3xDU/5yCs7A+gQrt8ioTPJbUCSQNRJGmFSEiLJ0/l9Sq iqjQsUjZbTNYAt2F/RDj7eQYh6c1smXpkbIyCQUfkOtafW9QFCnq06EPuuLOZeh35cphZ7W0 AcCrel2KLvX7PDNQxPmLuP/y2E787YySA/2f7dDjEgvrpNS9WOnWUekFSc3oWtN/dnmn0kXw AK6TYV1C9jUdGVQmjI8JcK4NUEJhVHV4N205EWivBU74L5QMXHHsA3YukYQTYXQOUWlP4x7G Jr4whSKeVh3xZpl2EvF/9Rp9rbwhqTxcBe/oAOeWR98puguCcKQkgANETArKLd3+e1KLeimT OMtgEA4srbuqBh7BtTcbdz4bbjIfKyYFxH/I9ZKpaO6J8DJxNJYQKZfpfs86tv9znfpYWJcB HeSN3ilKW0CBcboQ3Zcs0qycWYLHgMH7DNB49DTCfSMMKGLFmvarAtjkaX5NZraY32PgPvlT ZFTM2SHd14WlC8lwDQgEsYvcItKWped2+XRYfgxGX9SDWwAKr4q/yUAmBaXQyPf519IEcmNe qtIOXZlrjgSw1Kgk1JRlbFkMnlJ5EEkEdBsXP1RCQ8hkwYBzdZURPSeRM+CU2IKREg== Message-ID: <5c7032dd-f634-9fd2-2c95-ac6f9fa888be at in.tum.de> Date: Wed, 6 Feb 2019 12:11:41 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: <600766EC-00CB-4920-A4BE-C6396F31BD22 at cam.ac.uk> Content-Type: text/plain; charset=utf-8 Content-Language: fr-classic Content-Transfer-Encoding: 8bit Cc: cl-isabelle-users at lists.cam.ac.uk Subject: Re: [isabelle] cancelation simproc on coefficients of polynoms X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 11:11:46 -0000 I've seen that paper but I'm not sure how useful it would be in an Isabelle context, at least in an Isar proof. There, the typical workflow is that you have a fixed goal to prove and you chain in all the facts that are needed to prove it and then you call a method that can either solve it or it fails. The only workflow I could possibly imagine is in apply-style exploration: You run "apply linarith2" on your goal and if it can't solve it, it prints a list of learned inequalities, and then you manually go through that to see if there are any interesting ones among them and then copypaste them back into your Isar proof before that. Since this use of the method is purely diagnostic, there would be no need to formalise the "learning new equalities" part at all. I'm not saying that it wouldn't be interesting to formalise this method just for the sake of formalising it; it's certainly interesting from a theoretical viewpoint in any case. I'm just not sure that it would be /that/ useful as an Isabelle tool. By the way, since we're talking about simprocs, I'm currently offering a student project at TUM to implement some extremely specialised simprocs to tackle things like "ln(12) = 2*ln(2) + ln(3)", "of_nat n + 1 / 2 ∉ ℤ = False", and "totient 1234 = 616" etc. Let's see if someone bites. Manuel On 06/02/2019 11:58, Lawrence Paulson wrote: > I would love to see the following paper implemented: > > https://tel.archives-ouvertes.fr/IMAG/hal-01505598v1 > > It discovers equalities and is therefore useful even when it can’t prove the goal outright. I guess it would be a medium-sized project. > > Larry > >> On 6 Feb 2019, at 09:12, Manuel Eberl wrote: >> >> I've been mentioning this issue occasionally over the last few years. >> Considering how well computer algebra systems can handle equations and >> inequalities, there /must/ be room for improvement in Isabelle/HOL. >> >> Unfortunately, I've had little luck finding out what exactly it is that >> these systems do, and in any case it is probably a lot of work. To make >> matters worse, it might well break a lot of existing proofs if we switch >> it on by default, and no one will use it if we don't. > From moa.johansson at chalmers.se Wed Feb 06 16:52:07 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:35606) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grQQg-0007In-Vj (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 16:52:06 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [129.16.226.135 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 HTML_MESSAGE BODY: HTML included in message X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta0.cl.cam.ac.uk ([128.232.25.20]:54199) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grQQg-000xAD-0T (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 16:52:06 +0000 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]) by mta0.cl.cam.ac.uk with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1grQQp-0004Gx-BN for isabelle-users at cl.cam.ac.uk; Wed, 06 Feb 2019 16:52:15 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [129.16.226.135 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 HTML_MESSAGE BODY: HTML included in message X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from lannister.ita.chalmers.se ([129.16.226.135]:25304) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-SHA384:256) id 1grQQf-000NTS-gJ (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Wed, 06 Feb 2019 16:52:05 +0000 Received: from stark.ita.chalmers.se (129.16.226.131) by lannister.ita.chalmers.se (129.16.226.135) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P256) id 15.1.1531.3; Wed, 6 Feb 2019 17:52:03 +0100 Received: from stark.ita.chalmers.se ([129.16.226.149]) by stark.ita.chalmers.se ([129.16.226.149]) with mapi id 15.01.1531.010; Wed, 6 Feb 2019 17:52:03 +0100 From: Moa Johansson To: "isabelle-users at cl.cam.ac.uk" Thread-Topic: Printing terms with type annotations Thread-Index: AQHUvjxJX2ap2/kdvUKn10zPQSCvXA== Date: Wed, 6 Feb 2019 16:52:03 +0000 Message-ID: <88656A72-251B-4641-8F68-92CCF12C00F2 at chalmers.se> Accept-Language: en-GB, sv-SE, en-US Content-Language: en-US X-MS-Has-Attach: X-MS-TNEF-Correlator: user-agent: Microsoft-MacOutlook/10.10.4.181110 x-originating-ip: [129.16.10.245] MIME-Version: 1.0 X-debug-header: local_aliases has suffix Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: [isabelle] Printing terms with type annotations X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 16:52:07 -0000 SGksDQoNCknigJltIHdyaXRpbmcgc29tZSBjb2RlIHRoYXQgc2hvdWxkIGNyZWF0ZSBhIHNuaXBw ZXQgb2YgSXNhciBzY3JpcHQuIEhvd2V2ZXIsIGFzIHBhcnQgb2YgdGhpcyBlbmRldm91ciBpdCB3 b3VsZCBiZSB2ZXJ5IGNvbnZlbmllbnQgaWYgdGhlcmUgd2FzIGEgZnVuY3Rpb24gKG9yIG9wdGlv bikgc2ltaWxhciB0byBTeW50YXguc3RyaW5nX29mX3Rlcm0gd2hpY2ggYWxzbyB3b3VsZCBpbmNs dWRlIHNpbXBsZSB0eXBlIGFubm90YXRpb25zIGZvciB2YXJpYWJsZXMuDQpSZWFkaW5nIHRoZSBk b2N1bWVudGF0aW9uIHNlZW1zIHRvIHN1Z2dlc3QgdGhlcmUgaXMgbm8gc3VjaCBmdW5jdGlvbiDi mLkuDQoNCkEgc21hbGwgZXhhbXBsZToNCkkgZ2V0OiAieiA9IEVtcCDin7kgYXBwIHkgeiA9IHki DQpJIHdvdWxkIGxpa2UgInogPSBFbXAg4p+5IGFwcCAoeSA6OiAnYSBMc3QpIHogPSB5Ig0KDQpJ IHdvdWxkIGxpa2UgdG8gaGF2ZSB0aGlzIGJlY2F1c2UgaWYgdGhlIGFib3ZlIHRlcm0gaXMgYXBw ZWFyaW5nIGFzIGFuIGludGVybWVkaWF0ZSBsZW1tYSBpbiBhbiBJc2FyIHNjcmlwdCwgaXQgaXMg YXBwYXJlbnRseSBuZWNlc3NhcnkgdG8gZXhwbGljaXRseSBzdGF0ZSB0aGUgdHlwZXMgZm9yIHkg KGFuZCB6KSwgb3RoZXJ3aXNlIEkgY2Fubm90IHVzZSB0aGUgbGVtbWEuIE9yIGlzIGl0IHNvbWV0 aGluZyBlbHNlIEnigJltIG1pc3Npbmc/DQoNCkkga25vdyB0aGVyZeKAmXMgc29tZSDigJx0cmlj a3PigJ0gdG8gd3JpdGUgdGhlIHNjcmlwdCBkaWZmZXJlbnRseSwgc28gSSBkb27igJl0IG5lZWQg dGhlIGFubm90YXRpb25zLCBidXQgdGhhdCBtYWRlIGl0IGEgYml0IGxvbmdlciBhbmQgaGFyZGVy IHRvIHJlYWQgaW1oby4NCg0KQmVzdCwNCk1vYQ0K From lammich at in.tum.de Wed Feb 06 17:09:52 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:51706) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grQhs-0003QB-8s (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 17:09:52 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:45147 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grQhr-000A4B-2Q (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 17:09:52 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id 1CB921C0485; Wed, 6 Feb 2019 18:09:51 +0100 (CET) Received: (Authenticated sender: lammich) by mail.in.tum.de (Postfix) with ESMTPSA id 4AB2E1C047F for ; Wed, 6 Feb 2019 18:09:49 +0100 (CET) (Extended-Queue-bit tech_khvwl at fff.in.tum.de) Message-ID: <1549472989.9474.28.camel at in.tum.de> From: Peter Lammich To: cl-isabelle-users at lists.cam.ac.uk Date: Wed, 06 Feb 2019 18:09:49 +0100 In-Reply-To: <88656A72-251B-4641-8F68-92CCF12C00F2 at chalmers.se> References: <88656A72-251B-4641-8F68-92CCF12C00F2 at chalmers.se> Content-Type: text/plain; charset="UTF-8" X-Mailer: Evolution 3.18.5.2-0ubuntu3.2 Mime-Version: 1.0 Content-Transfer-Encoding: 8bit Subject: Re: [isabelle] Printing terms with type annotations X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 17:09:52 -0000 Hi Moa, the configuration option show_types should do. In ML:   ML_val ‹     val ctxt = Config.put show_types true @{context}     val test = Syntax.string_of_term ctxt @{term "a+b"} |> writeln   › As attribute:   declare [[show_types]]   term "a+b" --   Peter On Mi, 2019-02-06 at 16:52 +0000, Moa Johansson wrote: > Hi, > > I’m writing some code that should create a snippet of Isar script. > However, as part of this endevour it would be very convenient if > there was a function (or option) similar to Syntax.string_of_term > which also would include simple type annotations for variables. > Reading the documentation seems to suggest there is no such function > ☹. > > A small example: > I get: "z = Emp ⟹ app y z = y" > I would like "z = Emp ⟹ app (y :: 'a Lst) z = y" > > I would like to have this because if the above term is appearing as > an intermediate lemma in an Isar script, it is apparently necessary > to explicitly state the types for y (and z), otherwise I cannot use > the lemma. Or is it something else I’m missing? > > I know there’s some “tricks” to write the script differently, so I > don’t need the annotations, but that made it a bit longer and harder > to read imho. > > Best, > Moa From unruh at ut.ee Wed Feb 06 18:05:10 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:58880) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grRZO-0000dj-9z (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 18:05:10 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [193.40.5.67 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 HTML_MESSAGE BODY: HTML included in message X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from smtp2.it.da.ut.ee ([193.40.5.67]:32945) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtp id 1grRZN-000sVd-eE (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 18:05:10 +0000 Received: from mail-ot1-f48.google.com (mail-ot1-f48.google.com [209.85.210.48]) (Authenticated sender: unruh) by smtp2.it.da.ut.ee (Postfix) with ESMTP id 59E0A90179 for ; Wed, 6 Feb 2019 20:05:08 +0200 (EET) Received: by mail-ot1-f48.google.com with SMTP id e24so4184761otp.11 for ; Wed, 06 Feb 2019 10:05:08 -0800 (PST) X-Gm-Message-State: AHQUAub013cIHlru/mhUUC6i0u2NEe+VKNGtVauFsgCfxTROkJ9sPmp4 7LwUtsvN+LJbgRZYbmQ32YnE3QKSpKlhPR5uOnE= X-Google-Smtp-Source: AHgI3Ia1mfTSLm4D9We3bOUnvgqBqSG3ebtXzQ8zpcy7S9DILS+eG/fzJXIp+NWELP6bG894Z6CjdQqMr+88n21vK2c= X-Received: by 2002:aca:5681:: with SMTP id k123mr266383oib.106.1549476307233; Wed, 06 Feb 2019 10:05:07 -0800 (PST) MIME-Version: 1.0 References: <88656A72-251B-4641-8F68-92CCF12C00F2 at chalmers.se> <1549472989.9474.28.camel at in.tum.de> In-Reply-To: <1549472989.9474.28.camel at in.tum.de> From: Dominique Unruh Date: Wed, 6 Feb 2019 19:04:30 +0100 X-Gmail-Original-Message-ID: Message-ID: To: Peter Lammich Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Cc: cl-isabelle-users Subject: Re: [isabelle] Printing terms with type annotations X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 18:05:10 -0000 Hi, show_types will add types to variable names but not to polymorphic constants. So something like "card (UNIV::bool set) =3D 2" would be rendered as the false fact "card UNIV =3D 2". There is additionall show_consts, but that doesn't add the types inside the term which makes it hard for reparsing. (Also, if UNIV occurs twice with different types, it will not be clear which UNIV is which.) For example: declare [[show_types, show_consts]] term "card (UNIV::bool set) =3D 2" shows: "card UNIV =3D (2::nat)" :: "bool" in the output window. (I have no clue why 2 gets a type here.) I would be very interested myself in some ML-code that gives re-parseable code. (Or at least, re-parseable most of the time. I don't think it's possible in general in the presence of custom print translations etc.) Best wishes, Dominique. On Wed, 6 Feb 2019 at 18:10, Peter Lammich wrote: > Hi Moa, > > the configuration option show_types should do. > > In ML: > ML_val =E2=80=B9 > val ctxt =3D Config.put show_types true @{context} > val test =3D Syntax.string_of_term ctxt @{term "a+b"} |> writeln > =E2=80=BA > > As attribute: > declare [[show_types]] > term "a+b" > > -- > Peter > > > > On Mi, 2019-02-06 at 16:52 +0000, Moa Johansson wrote: > > Hi, > > > > I=E2=80=99m writing some code that should create a snippet of Isar scri= pt. > > However, as part of this endevour it would be very convenient if > > there was a function (or option) similar to Syntax.string_of_term > > which also would include simple type annotations for variables. > > Reading the documentation seems to suggest there is no such function > > =E2=98=B9. > > > > A small example: > > I get: "z =3D Emp =E2=9F=B9 app y z =3D y" > > I would like "z =3D Emp =E2=9F=B9 app (y :: 'a Lst) z =3D y" > > > > I would like to have this because if the above term is appearing as > > an intermediate lemma in an Isar script, it is apparently necessary > > to explicitly state the types for y (and z), otherwise I cannot use > > the lemma. Or is it something else I=E2=80=99m missing? > > > > I know there=E2=80=99s some =E2=80=9Ctricks=E2=80=9D to write the scrip= t differently, so I > > don=E2=80=99t need the annotations, but that made it a bit longer and h= arder > > to read imho. > > > > Best, > > Moa > > From nipkow at in.tum.de Wed Feb 06 18:13:52 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:47730) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grRho-0002lh-8m (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 18:13:52 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta0.cl.cam.ac.uk ([128.232.25.20]:46523) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grRhn-000tqu-LF (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 18:13:52 +0000 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]) by mta0.cl.cam.ac.uk with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1grRhw-00055v-S2 for isabelle-users at cl.cam.ac.uk; Wed, 06 Feb 2019 18:14:00 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:40344 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grRhm-000tgn-Ka (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Wed, 06 Feb 2019 18:13:51 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id C75981C0485; Wed, 6 Feb 2019 19:13:49 +0100 (CET) Received: (Authenticated sender: nipkow) by mail.in.tum.de (Postfix) with ESMTPSA id A33D41C047F for ; Wed, 6 Feb 2019 19:13:47 +0100 (CET) (Extended-Queue-bit tech_lixdv at fff.in.tum.de) To: Isabelle Users From: Tobias Nipkow Message-ID: Date: Wed, 6 Feb 2019 19:13:47 +0100 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:60.0) Gecko/20100101 Thunderbird/60.5.0 MIME-Version: 1.0 Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha-256; boundary="------------ms070006050306090901020903" X-debug-header: local_aliases has suffix Subject: [isabelle] New AFP entry: UTP X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 18:13:52 -0000 This is a cryptographically signed message in MIME format. --------------ms070006050306090901020903 Content-Type: text/plain; charset=utf-8; format=flowed Content-Language: en-US Content-Transfer-Encoding: quoted-printable Isabelle/UTP: Mechanised Theory Engineering for Unifying Theories of Prog= ramming Simon Foster, Frank Zeyda, Yakoub Nemouchi, Pedro Ribeiro, Burkhart Wolff= sabelle/UTP is a mechanised theory engineering toolkit based on Hoare and= He=E2=80=99s=20 Unifying Theories of Programming (UTP). UTP enables the creation of=20 denotational, algebraic, and operational semantics for different programm= ing=20 languages using an alphabetised relational calculus. We provide a semanti= c=20 embedding of the alphabetised relational calculus in Isabelle/HOL, includ= ing new=20 type definitions, relational constructors, automated proof tactics, and=20 accompanying algebraic laws. Isabelle/UTP can be used to both capture law= s of=20 programming for different languages, and put these fundamental theorems t= o work=20 in the creation of associated verification tools, using calculi like Hoar= e=20 logics. This document describes the relational core of the UTP in Isabell= e/HOL. https://www.isa-afp.org/entries/UTP.html Enjoy! --------------ms070006050306090901020903 Content-Type: application/pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7s" Content-Description: S/MIME Cryptographic Signature MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCC EYAwggUSMIID+qADAgECAgkA4wvV+K8l2YEwDQYJKoZIhvcNAQELBQAwgYIxCzAJBgNVBAYT AkRFMSswKQYDVQQKDCJULVN5c3RlbXMgRW50ZXJwcmlzZSBTZXJ2aWNlcyBHbWJIMR8wHQYD VQQLDBZULVN5c3RlbXMgVHJ1c3QgQ2VudGVyMSUwIwYDVQQDDBxULVRlbGVTZWMgR2xvYmFs Um9vdCBDbGFzcyAyMB4XDTE2MDIyMjEzMzgyMloXDTMxMDIyMjIzNTk1OVowgZUxCzAJBgNV BAYTAkRFMUUwQwYDVQQKEzxWZXJlaW4genVyIEZvZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVu IEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNVBAsTB0RGTi1QS0kxLTArBgNVBAMTJERG Ti1WZXJlaW4gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgMjCCASIwDQYJKoZIhvcNAQEBBQAD ggEPADCCAQoCggEBAMtg1/9moUHN0vqHl4pzq5lN6mc5WqFggEcVToyVsuXPztNXS43O+FZs FVV2B+pG/cgDRWM+cNSrVICxI5y+NyipCf8FXRgPxJiZN7Mg9mZ4F4fCnQ7MSjLnFp2uDo0p eQcAIFTcFV9Kltd4tjTTwXS1nem/wHdN6r1ZB+BaL2w8pQDcNb1lDY9/Mm3yWmpLYgHurDg0 WUU2SQXaeMpqbVvAgWsRzNI8qIv4cRrKO+KA3Ra0Z3qLNupOkSk9s1FcragMvp0049ENF4N1 xDkesJQLEvHVaY4l9Lg9K7/AjsMeO6W/VRCrKq4Xl14zzsjz9AkH4wKGMUZrAcUQDBHHWekC AwEAAaOCAXQwggFwMA4GA1UdDwEB/wQEAwIBBjAdBgNVHQ4EFgQUk+PYMiba1fFKpZFK4OpL 4qIMz+EwHwYDVR0jBBgwFoAUv1kgNgB5oKAia4zV8mHSuCzLgkowEgYDVR0TAQH/BAgwBgEB /wIBAjAzBgNVHSAELDAqMA8GDSsGAQQBga0hgiwBAQQwDQYLKwYBBAGBrSGCLB4wCAYGZ4EM AQICMEwGA1UdHwRFMEMwQaA/oD2GO2h0dHA6Ly9wa2kwMzM2LnRlbGVzZWMuZGUvcmwvVGVs ZVNlY19HbG9iYWxSb290X0NsYXNzXzIuY3JsMIGGBggrBgEFBQcBAQR6MHgwLAYIKwYBBQUH MAGGIGh0dHA6Ly9vY3NwMDMzNi50ZWxlc2VjLmRlL29jc3ByMEgGCCsGAQUFBzAChjxodHRw Oi8vcGtpMDMzNi50ZWxlc2VjLmRlL2NydC9UZWxlU2VjX0dsb2JhbFJvb3RfQ2xhc3NfMi5j ZXIwDQYJKoZIhvcNAQELBQADggEBAIcL/z4Cm2XIVi3WO5qYi3FP2ropqiH5Ri71sqQPrhE4 eTizDnS6dl2e6BiClmLbTDPo3flq3zK9LExHYFV/53RrtCyD2HlrtrdNUAtmB7Xts5et6u5/ MOaZ/SLick0+hFvu+c+Z6n/XUjkurJgARH5pO7917tALOxrN5fcPImxHhPalR6D90Bo0fa3S PXez7vTXTf/D6OWST1k+kEcQSrCFWMBvf/iu7QhCnh7U3xQuTY+8npTD5+32GPg8SecmqKc2 2CzeIs2LgtjZeOJVEqM7h0S2EQvVDFKvaYwPBt/QolOLV5h7z/0HJPT8vcP9SpIClxvyt7bP ZYoaorVyGTkwggWsMIIElKADAgECAgcbY7rQHiw9MA0GCSqGSIb3DQEBCwUAMIGVMQswCQYD VQQGEwJERTFFMEMGA1UEChM8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRzY2hl biBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLEwdERk4tUEtJMS0wKwYDVQQDEyRE Rk4tVmVyZWluIENlcnRpZmljYXRpb24gQXV0aG9yaXR5IDIwHhcNMTYwNTI0MTEzODQwWhcN MzEwMjIyMjM1OTU5WjCBjTELMAkGA1UEBhMCREUxRTBDBgNVBAoMPFZlcmVpbiB6dXIgRm9l cmRlcnVuZyBlaW5lcyBEZXV0c2NoZW4gRm9yc2NodW5nc25ldHplcyBlLiBWLjEQMA4GA1UE CwwHREZOLVBLSTElMCMGA1UEAwwcREZOLVZlcmVpbiBHbG9iYWwgSXNzdWluZyBDQTCCASIw DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJ07eRxH3h+Gy8Zp1xCeOdfZojDbchwFfylf S2jxrRnWTOFrG7ELf6Gr4HuLi9gtzm6IOhDuV+UefwRRNuu6cG1joL6WLkDh0YNMZj0cZGnl m6Stcq5oOVGHecwX064vXWNxSzl660Knl5BpBb+Q/6RAcL0D57+eGIgfn5mITQ5HjUhfZZkQ 0tkqSe3BuS0dnxLLFdM/fx5ULzquk1enfnjK1UriGuXtQX1TX8izKvWKMKztFwUkP7agCwf9 TRqaA1KgNpzeJIdl5Of6x5ZzJBTN0OgbaJ4YWa52fvfRCng8h0uwN89Tyjo4EPPLR22MZD08 WkVKusqAfLjz56dMTM0CAwEAAaOCAgUwggIBMBIGA1UdEwEB/wQIMAYBAf8CAQEwDgYDVR0P AQH/BAQDAgEGMCkGA1UdIAQiMCAwDQYLKwYBBAGBrSGCLB4wDwYNKwYBBAGBrSGCLAEBBDAd BgNVHQ4EFgQUazqYi/nyU4na4K2yMh4JH+iqO3QwHwYDVR0jBBgwFoAUk+PYMiba1fFKpZFK 4OpL4qIMz+EwgY8GA1UdHwSBhzCBhDBAoD6gPIY6aHR0cDovL2NkcDEucGNhLmRmbi5kZS9n bG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDBAoD6gPIY6aHR0cDovL2NkcDIu cGNhLmRmbi5kZS9nbG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDCB3QYIKwYB BQUHAQEEgdAwgc0wMwYIKwYBBQUHMAGGJ2h0dHA6Ly9vY3NwLnBjYS5kZm4uZGUvT0NTUC1T ZXJ2ZXIvT0NTUDBKBggrBgEFBQcwAoY+aHR0cDovL2NkcDEucGNhLmRmbi5kZS9nbG9iYWwt cm9vdC1nMi1jYS9wdWIvY2FjZXJ0L2NhY2VydC5jcnQwSgYIKwYBBQUHMAKGPmh0dHA6Ly9j ZHAyLnBjYS5kZm4uZGUvZ2xvYmFsLXJvb3QtZzItY2EvcHViL2NhY2VydC9jYWNlcnQuY3J0 MA0GCSqGSIb3DQEBCwUAA4IBAQCBeEWkTqR/DlXwCbFqPnjMaDWpHPOVnj/z+N9rOHeJLI21 rT7H8pTNoAauusyosa0zCLYkhmI2THhuUPDVbmCNT1IxQ5dGdfBi5G5mUcFCMWdQ5UnnOR7L n8qGSN4IFP8VSytmm6A4nwDO/afr0X9XLchMX9wQEZc+lgQCXISoKTlslPwQkgZ7nu7YRrQb tQMMONncsKk/cQYLsgMHM8KNSGMlJTx6e1du94oFOO+4oK4v9NsH1VuEGMGpuEvObJAaguS5 Pfp38dIfMwK/U+d2+dwmJUFvL6Yb+qQTkPp8ftkLYF3sv8pBoGH7EUkp2KgtdRXYShjqFu9V NCIaE40GMIIGtjCCBZ6gAwIBAgIMHxoBcB9CcQPHriXDMA0GCSqGSIb3DQEBCwUAMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBMB4XDTE4MDUxNTA2NTMyMloXDTE5MTEx NzAyMDAwMFowgcAxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIDAZCYXllcm4xETAPBgNVBAcMCE11 ZW5jaGVuMSkwJwYDVQQKDCBUZWNobmlzY2hlIFVuaXZlcnNpdGFldCBNdWVuY2hlbjEiMCAG A1UECwwZRmFrdWx0YWV0IGZ1ZXIgSW5mb3JtYXRpazEWMBQGA1UEAwwNVG9iaWFzIE5pcGtv dzEmMCQGCSqGSIb3DQEJARYXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGUwggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQCADTpwPRPWfSf9fi2ZhFfIjICiK0m69uj995i1vv8ajdIH XwulShY6KCmrezG6KZULjEi5GyRbZiCon/Ag+/0K/vLg3fIioBPPCw6lbEnhLeTyDfTDQJjo zpnlt24Eqp1Mb3ErO73WvAACYFJtChMZL6aF6WiHsL8MYTE0FhlHeuT9A56JLZvfqfEiuG4N dCf19A0EYvRxQiHk4HyV8ib/idJoTWfQSqBDYM/nLbmF6nVizuHlicNYwftM00hgqA2UM4im LSB4FytvRUSPNdmc0eY9zcHDpSz5nZbDWPjmQeMWAlFuV2sBqNcYUyeTzOuvoXPsSTBFRmcX KlFdysPnAgMBAAGjggLfMIIC2zBABgNVHSAEOTA3MA8GDSsGAQQBga0hgiwBAQQwEQYPKwYB BAGBrSGCLAEBBAMIMBEGDysGAQQBga0hgiwCAQQDCDAJBgNVHRMEAjAAMA4GA1UdDwEB/wQE AwIF4DAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYBBQUHAwQwHQYDVR0OBBYEFP4tlXbsLniS Wq9uFYP/UEre4Ek6MB8GA1UdIwQYMBaAFGs6mIv58lOJ2uCtsjIeCR/oqjt0MIGuBgNVHREE gaYwgaOBEG5pcGtvd0Bpbi50dW0uZGWBEW5pcGtvd0Bjcy50dW0uZWR1gSBuaXBrb3dAaW5m b3JtYXRpay50dS1tdWVuY2hlbi5kZYEXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGWBGHRvYmlh cy5uaXBrb3dAY3MudHVtLmVkdYEndG9iaWFzLm5pcGtvd0BpbmZvcm1hdGlrLnR1LW11ZW5j aGVuLmRlMIGNBgNVHR8EgYUwgYIwP6A9oDuGOWh0dHA6Ly9jZHAxLnBjYS5kZm4uZGUvZGZu LWNhLWdsb2JhbC1nMi9wdWIvY3JsL2NhY3JsLmNybDA/oD2gO4Y5aHR0cDovL2NkcDIucGNh LmRmbi5kZS9kZm4tY2EtZ2xvYmFsLWcyL3B1Yi9jcmwvY2FjcmwuY3JsMIHbBggrBgEFBQcB AQSBzjCByzAzBggrBgEFBQcwAYYnaHR0cDovL29jc3AucGNhLmRmbi5kZS9PQ1NQLVNlcnZl ci9PQ1NQMEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMS5wY2EuZGZuLmRlL2Rmbi1jYS1nbG9i YWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMi5w Y2EuZGZuLmRlL2Rmbi1jYS1nbG9iYWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MA0GCSqG SIb3DQEBCwUAA4IBAQAMTylJt407CL/HwgO4Om/yrpB/yDMKHLj4A1hvkSedvYvTFLk9gVTw U/fAKYrZxqazGcd0mCcRKPhj4lEbXUm5A6emrBRcolPiekw9/uEp1aZUz082cgi7HXnQS+Pi by5BJ4bBeMwt3FrFgdz18nl/+DcxX5KR3LMSujZu4d4ZmD19fifGxcAsOk2emYvA5JAMsmuw DWtYgnI08t+w73QAbkEPLpxqtkxzWK3Djv3aiMC6tA1cZUdgi5EVZGaEh9yZ8qWh2a7LR2ts XvbumZ++H+C0zQjn7FFgp8uQpqxN+dVKPjXx58LmHymKRKU2xMsyKE6W2x32qaVIClKPXdqc MYIECzCCBAcCAQEwgZ4wgY0xCzAJBgNVBAYTAkRFMUUwQwYDVQQKDDxWZXJlaW4genVyIEZv ZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVuIEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNV BAsMB0RGTi1QS0kxJTAjBgNVBAMMHERGTi1WZXJlaW4gR2xvYmFsIElzc3VpbmcgQ0ECDB8a AXAfQnEDx64lwzANBglghkgBZQMEAgEFAKCCAj0wGAYJKoZIhvcNAQkDMQsGCSqGSIb3DQEH ATAcBgkqhkiG9w0BCQUxDxcNMTkwMjA2MTgxMzQ3WjAvBgkqhkiG9w0BCQQxIgQgS6L1PxaX cloca2/Sw4jC8wVQw5HmRAU8h33vlUC3sa8wbAYJKoZIhvcNAQkPMV8wXTALBglghkgBZQME ASowCwYJYIZIAWUDBAECMAoGCCqGSIb3DQMHMA4GCCqGSIb3DQMCAgIAgDANBggqhkiG9w0D AgIBQDAHBgUrDgMCBzANBggqhkiG9w0DAgIBKDCBrwYJKwYBBAGCNxAEMYGhMIGeMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFwH0JxA8euJcMwgbEGCyqGSIb3 DQEJEAILMYGhoIGeMIGNMQswCQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2Vy ZGVydW5nIGVpbmVzIERldXRzY2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQL DAdERk4tUEtJMSUwIwYDVQQDDBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFw H0JxA8euJcMwDQYJKoZIhvcNAQEBBQAEggEABFklQCtBUjqTSgl+1oZt5pj6qNfUlf/cW79V IfOr80dvnd73T71ogefS/tmBRmkcBBXz/BK1iZPKEdb4hlLlojztnaJJUBqXIG1mmLXZVTxm mE1iWjxJn3MSD7RdJqNuY7BqRjFKAVBZz0Dn2Ux3AG1KpygbxFbt1/76ZKcRYOobokcyJ0Os AcsmRZqU4gjDMuTj6Q0llNjdeDXFIaC04eiUwIVKmh//YAfCLrOq4CASgqI8agM4yMsJgpiK gGau6jNzH/EJCP0LXyocKNXN2TtU7d5FiIj/PngtnFKteJjJXDz8ixJO3d+aVPhhXKRmwcx8 O4ire9vvbvjz59IE4QAAAAAAAA== --------------ms070006050306090901020903-- From unruh at ut.ee Wed Feb 06 18:20:46 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:38570) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grRoT-0004Qj-UZ (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 18:20:46 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1852970 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [193.40.5.67 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 HTML_MESSAGE BODY: HTML included in message X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from smtp2.it.da.ut.ee ([193.40.5.67]:54397) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtp id 1grRoT-000Yix-gB (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 18:20:45 +0000 Received: from mail-ot1-f44.google.com (mail-ot1-f44.google.com [209.85.210.44]) (Authenticated sender: unruh) by smtp2.it.da.ut.ee (Postfix) with ESMTP id 5E444901BC for ; Wed, 6 Feb 2019 20:20:44 +0200 (EET) Received: by mail-ot1-f44.google.com with SMTP id s13so13607291otq.4 for ; Wed, 06 Feb 2019 10:20:44 -0800 (PST) X-Gm-Message-State: AHQUAuYZqH9USkw14k2UnHEgoevR9XkXMwNT+QsQPwRY0myvMZVf3hGG wV1HvXHDeZnDUVIwDKJm8EQHmNHgkBJNNDoMHUo= X-Google-Smtp-Source: AHgI3IZiJjRiVk+KRmxy5666/tU2B/XLUuc72xb/bS3SIBSzwcsUOEN/WXhs/6xTCCEeHE3oKfPjM7faCYP1Hfe0CU0= X-Received: by 2002:a05:6830:1649:: with SMTP id h9mr5976563otr.292.1549477242963; Wed, 06 Feb 2019 10:20:42 -0800 (PST) MIME-Version: 1.0 References: <88656A72-251B-4641-8F68-92CCF12C00F2 at chalmers.se> <1549472989.9474.28.camel at in.tum.de> In-Reply-To: From: Dominique Unruh Date: Wed, 6 Feb 2019 19:20:06 +0100 X-Gmail-Original-Message-ID: Message-ID: To: Peter Lammich Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Cc: cl-isabelle-users Subject: Re: [isabelle] Printing terms with type annotations X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 18:20:46 -0000 I discovered that there seems to be some code to print a term with sufficient type information for reparsing, namely in the sledgehammer code. theory Scratch imports Main begin (* Function str_of converts a string into a term, but with some unwanted boilerplate around *) ML =E2=80=B9 fun str_of t =3D Sledgehammer_Isar_Proof.Proof ([],[(Sledgehammer_Isar_Proof.no_label,t)],[]) |> Sledgehammer_Isar_Proof.string_of_isar_proof \<^context> 1 1 =E2=80=BA ML =E2=80=B9str_of \<^term>=E2=80=B9card (UNIV::bool set)=3D2=E2=80=BA |> w= riteln=E2=80=BA This will print proof - assume "card (UNIV::bool set) =3D 2" qed So it unfortunately has some extra stuff around, but it shows that it's possible in principle by stealing the appropriate fragments of sledgehammer code. Best wishes, Dominique. On Wed, 6 Feb 2019 at 19:04, Dominique Unruh wrote: > Hi, > > show_types will add types to variable names but not to polymorphic > constants. > So something like "card (UNIV::bool set) =3D 2" would be rendered as the > false fact "card UNIV =3D 2". > There is additionall show_consts, but that doesn't add the types inside > the term which makes it hard for reparsing. > (Also, if UNIV occurs twice with different types, it will not be clear > which UNIV is which.) > > For example: > > declare [[show_types, show_consts]] > term "card (UNIV::bool set) =3D 2" > > shows: > > "card UNIV =3D (2::nat)" > :: "bool" > > in the output window. (I have no clue why 2 gets a type here.) > > I would be very interested myself in some ML-code that gives re-parseable > code. > (Or at least, re-parseable most of the time. I don't think it's possible > in general in the presence of custom print translations etc.) > > Best wishes, > Dominique. > > > On Wed, 6 Feb 2019 at 18:10, Peter Lammich wrote: > >> Hi Moa, >> >> the configuration option show_types should do. >> >> In ML: >> ML_val =E2=80=B9 >> val ctxt =3D Config.put show_types true @{context} >> val test =3D Syntax.string_of_term ctxt @{term "a+b"} |> writeln >> =E2=80=BA >> >> As attribute: >> declare [[show_types]] >> term "a+b" >> >> -- >> Peter >> >> >> >> On Mi, 2019-02-06 at 16:52 +0000, Moa Johansson wrote: >> > Hi, >> > >> > I=E2=80=99m writing some code that should create a snippet of Isar scr= ipt. >> > However, as part of this endevour it would be very convenient if >> > there was a function (or option) similar to Syntax.string_of_term >> > which also would include simple type annotations for variables. >> > Reading the documentation seems to suggest there is no such function >> > =E2=98=B9. >> > >> > A small example: >> > I get: "z =3D Emp =E2=9F=B9 app y z =3D y" >> > I would like "z =3D Emp =E2=9F=B9 app (y :: 'a Lst) z =3D y" >> > >> > I would like to have this because if the above term is appearing as >> > an intermediate lemma in an Isar script, it is apparently necessary >> > to explicitly state the types for y (and z), otherwise I cannot use >> > the lemma. Or is it something else I=E2=80=99m missing? >> > >> > I know there=E2=80=99s some =E2=80=9Ctricks=E2=80=9D to write the scri= pt differently, so I >> > don=E2=80=99t need the annotations, but that made it a bit longer and = harder >> > to read imho. >> > >> > Best, >> > Moa >> >> From wolfgang-it at jeltsch.info Wed Feb 06 17:17:26 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:42832) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grQpC-0005Pp-5g (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 17:17:26 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1852970 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from schaeffer.softbase.org ([88.198.48.142]:34804) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1:ECDHE-RSA-AES256-SHA:256) id 1grQpB-000JBN-dz (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 06 Feb 2019 17:17:26 +0000 Received: from asterix (64-60-191-90.dyn.estpak.ee [::ffff:90.191.60.64]) (AUTH: PLAIN jeltsch, SSL: TLSv1/SSLv3,128bits,AES128-SHA) by schaeffer.softbase.org with ESMTPSA; Wed, 06 Feb 2019 18:17:24 +0100 id 0000000020110A60.000000005C5B16A4.0000183A Message-ID: <1549473443.7640.19.camel at jeltsch.info> From: Wolfgang Jeltsch To: cl-isabelle-users at lists.cam.ac.uk Date: Wed, 06 Feb 2019 19:17:23 +0200 Content-Type: text/plain; charset="UTF-8" X-Mailer: Evolution 3.18.5.2-0ubuntu3.2 Mime-Version: 1.0 Content-Transfer-Encoding: 8bit X-Mailman-Approved-At: Wed, 06 Feb 2019 19:34:06 +0000 Subject: [isabelle] Why does Isabelle pick a user-defined proof method from a different locale interpretation than specified? X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 06 Feb 2019 17:17:26 -0000 Hello! I’ve defined a proof method using Eisbach within a locale. When invoking this method, Isabelle seems to sometimes pick it from the wrong locale interpretation. Consider the following minimal example:     theory Locale_Methods       imports Main "HOL-Eisbach.Eisbach"     begin     locale l =       fixes n :: nat     begin     method m = (rule trans [of _ n _])     end     locale l' = p: l     begin     lemma 1: "n = n"     proof p.m       oops     sublocale s: l "Suc n" .     lemma 2: "n = n"     proof p.m       oops     end     end The method `m` defined within the locale `l` replaces a goal of the form `i = j` by the two goals `i = n` and `n = j`. Positioning the cursor behind `proof p.m` within lemma `1` shows that the expected goals, `n = n` and another `n = n`, have been generated. Positioning the cursor behind `proof p.m` in lemma `2` should show the same goals, but in fact the goals `n = Suc n` and `Suc n = n` are presented. Apparently the proof method `s.m` has been picked. Is this a bug in action, or is there another explanation for this behavior? How can I access `p.m` after having declared the sublocale `s`? I’m using Isabelle2018. All the best, Wolfgang P.S.: I’ve asked this question also on StackOverflow at https://stackoverflow.com/questions/54543072, but I ask it here as well because I didn’t receive an answer on StackOverflow. From joshua.chen at uibk.ac.at Thu Feb 07 15:55:23 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:41246) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1grm1L-00040l-Eo (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Thu, 07 Feb 2019 15:55:23 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853056 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [138.232.1.140 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from smtp.uibk.ac.at ([138.232.1.140]:52908) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1grm1K-000So3-it (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Thu, 07 Feb 2019 15:55:23 +0000 Received: from [172.25.6.158] (ydWLT-U-6-158.uibk.ac.at [172.25.6.158]) (authenticated bits=0) by smtp.uibk.ac.at (8.14.4/8.14.4/F1) with ESMTP id x17FtMGd020150 (version=TLSv1/SSLv3 cipher=AES128-SHA bits=128 verify=NO) for ; Thu, 7 Feb 2019 16:55:22 +0100 References: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> To: Cl-isabelle-users From: Joshua Chen Organization: Computational Logic, Department of Computer Science, University of Innsbruck X-Forwarded-Message-Id: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> Message-ID: Date: Thu, 7 Feb 2019 16:55:22 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Content-Language: en-US X-Spam-Score: () -15.0 ALL_TRUSTED, RCV_SMTP_AUTH, RCV_SMTP_UIBK, RP_MATCHES_RCVD X-Scanned-By: MIMEDefang 2.75 at uibk.ac.at X-Mailman-Approved-At: Fri, 08 Feb 2019 11:08:17 +0000 Subject: [isabelle] Programatically get "this" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list Reply-To: joshua.chen at uibk.ac.at List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Thu, 07 Feb 2019 15:55:23 -0000 Dear all, is there a canonical way in Isabelle/ML to get the value of the Isar fact "this"? I'm currently using let   val fs = Proof_Context.facts_of @{context} in   Facts.lookup (Context.Proof @{context}) fs "local.this" end but am unsure if there are more direct ways. Thanks, Josh From josephcmac at gmail.com Sat Feb 09 05:55:56 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:52422) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsLcK-0003vc-Sj (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 05:55:56 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853193 * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.166.180 listed in wl.mailspike.net] * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.180 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (josephcmac[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f180.google.com ([209.85.166.180]:56142) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gsLcK-000YEy-JQ (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 05:55:56 +0000 Received: by mail-it1-f180.google.com with SMTP id f18so3325845itb.5 for ; Fri, 08 Feb 2019 21:55:55 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:from:date:message-id:subject:to; bh=EWsEqwTpvHqmobXSIt7qdAjHjRRdfdT3CXbbf70eJPo=; b=dHwStOoo/ft5l4DbZAVbZsXUwhzKck9q+2dpMfAM0RNkxzEBcAU7hmAbd/pGi1V0rX HQnyVBMsIsHxsgO9zfAWz3riUvRrg2cYGG54H48hA/fSK0I44MT24kmeKsu7Tx7jGR34 4YTVgEHHMog6Ea8m6T3rYM34Mr/zpPEKFe/INaA/XxDQidH457gNENGlxxudxmiFtPCk h4bPCCJzBTMgGJRUhfA4WihpppO8jVpqtABi6TOkKM0kkB8hFFthI0EQenNivjUfMC4T HiH7RubO0DPvLH3QdMnZ7BdZpKSAoRyJYlBow9vg676828gdkpl8rpMo/sPMIu5BJoxo 9sog== X-Gm-Message-State: AHQUAuZf0ZZvPo+rIn0cA/QKB6AbRTQ/zfgfhvw2a6NnPjSgCKRWDWMw Hxj0rwmuArWt1+zzlhWqd2tAt6R8p/OGtHFDlorHm8UE X-Google-Smtp-Source: AHgI3IZYOVqCdFEBPCNcY4ddpLSLBy+wqMbzloM3gCcLPPqVpStmvZyBwla1a3hw4zIZZjAyVY3qSqqHp7t2x8ERa5w= X-Received: by 2002:a24:715:: with SMTP id f21mr1108836itf.45.1549691754835; Fri, 08 Feb 2019 21:55:54 -0800 (PST) MIME-Version: 1.0 From: =?UTF-8?Q?Jos=C3=A9_Manuel_Rodr=C3=ADguez_Caballero?= Date: Sat, 9 Feb 2019 00:55:44 -0500 Message-ID: To: cl-isabelle-users at lists.cam.ac.uk Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: [isabelle] Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sat, 09 Feb 2019 05:55:57 -0000 Hello, I was exploring the library @article{Algebraic_Numbers-AFP, author =3D {Ren=C3=A9 Thiemann and Akihisa Yamada and Sebastiaan Joosten= }, title =3D {Algebraic Numbers in Isabelle/HOL}, journal =3D {Archive of Formal Proofs}, month =3D dec, year =3D 2015, note =3D {\url{http://isa-afp.org/entries/Algebraic_Numbers.html}, Formal proof development}, ISSN =3D {2150-914x}, } I downloaded this library and copied in "~~/src/HOL/Algebraic_Numbers/". But when I tried to read the file "Algebraic_Numbers.thy" I received the following message: Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" Kind Regards, Jos=C3=A9 M. From josephcmac at gmail.com Sat Feb 09 06:05:27 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:34068) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsLlX-00066P-0o (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 06:05:27 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853193 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.174 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (josephcmac[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f174.google.com ([209.85.166.174]:52316) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gsLlW-0010Tp-gW (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 06:05:27 +0000 Received: by mail-it1-f174.google.com with SMTP id r11so9033591itc.2 for ; Fri, 08 Feb 2019 22:05:26 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:references:in-reply-to:from:date :message-id:subject:to:cc; bh=lb88xugPwKlbLfVdYtHDh4r9DyQZ+3cn02O154sHD0A=; b=fxxx04FrweUuFlSfxFDSlUElbjsHuzD3t0OyHVimFx54KwyQPNO/10YPGOyymJWNEp Re9Sop5YrIzUkKwXXsDqgHQfLSfGeaEtqfmxECtp5z7RVuVWp4o4bLd0e4YrZX6w8qZY MxXZ1LRZo1/TKdiz22fP020jIsM1EQNArcFmtO6S+w5IvMPhPRJzLRjvSN5ZiO/VLTCU 3dS2FwSP1PCl5oTbUTM7ONLHZ7OmbfTq7RxuiOAsR01bLuAXyaO+8kTyoKRO19Frg2JS QxSxCgC7h0rVO8eLYXpZdBtekdikgFc/Cf6Gr8SadqlVeX68AjM9Lje+2bCWlUmqM8nJ CIDg== X-Gm-Message-State: AHQUAuZTkO4XVkFO+gZIqIenSd6YLcA8jZY90cT4a6j6YItkN38i9sD0 ODcVoiiqK1UMZ5j8C4RVvOTCH2PRoBIP+dbgV2o= X-Google-Smtp-Source: AHgI3Ib7i+51uqP2qmaGfLEDt4YhFAHE2fIgl3ws/COoqk1kXZTqH9xppblkQK7Wkqq2omDWIiqLYkm0P+w3woSuu/Q= X-Received: by 2002:a02:9d05:: with SMTP id n5mr2878635jak.53.1549692325126; Fri, 08 Feb 2019 22:05:25 -0800 (PST) MIME-Version: 1.0 References: In-Reply-To: From: =?UTF-8?Q?Jos=C3=A9_Manuel_Rodr=C3=ADguez_Caballero?= Date: Sat, 9 Feb 2019 01:05:14 -0500 Message-ID: To: Nguyen Duc Than Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Cc: cl-isabelle-users at lists.cam.ac.uk Subject: Re: [isabelle] Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sat, 09 Feb 2019 06:05:27 -0000 Thank you! I will do it. That may the solution. Kind Regards, Jos=C3=A9 M. El s=C3=A1b., 9 feb. 2019 a las 1:03, Nguyen Duc Than () escribi=C3=B3: > Hello, > > Have you tried to download the dependent library of Algebraic_Numbers-AFP= ? > Here are Berlekamp_Zassenhaus, Sturm_Sequences. > > Than. > > On Sat, Feb 9, 2019 at 4:56 PM Jos=C3=A9 Manuel Rodr=C3=ADguez Caballero = < > josephcmac at gmail.com> wrote: > >> Hello, >> I was exploring the library >> >> @article{Algebraic_Numbers-AFP, >> author =3D {Ren=C3=A9 Thiemann and Akihisa Yamada and Sebastiaan Joos= ten}, >> title =3D {Algebraic Numbers in Isabelle/HOL}, >> journal =3D {Archive of Formal Proofs}, >> month =3D dec, >> year =3D 2015, >> note =3D {\url{http://isa-afp.org/entries/Algebraic_Numbers.html}, >> Formal proof development}, >> ISSN =3D {2150-914x}, >> } >> >> I downloaded this library and copied in "~~/src/HOL/Algebraic_Numbers/". >> But when I tried to read the file "Algebraic_Numbers.thy" I received the >> following message: >> >> Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" >> >> >> >> Kind Regards, >> Jos=C3=A9 M. >> > From hupel at in.tum.de Sat Feb 09 08:02:45 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:46890) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsNb3-0002nV-7t (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 08:02:45 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853193 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.36 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out2.in.tum.de ([131.159.0.36]:36181 helo=mail-out2.informatik.tu-muenchen.de) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gsNb2-000onw-2R (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 08:02:45 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id E982F1C0499; Sat, 9 Feb 2019 09:02:43 +0100 (CET) Received: (Authenticated sender: hupel) by mail.in.tum.de (Postfix) with ESMTPSA id 073A31C0490; Sat, 9 Feb 2019 09:02:41 +0100 (CET) (Extended-Queue-bit tech_xajml at fff.in.tum.de) To: =?UTF-8?Q?Jos=c3=a9_Manuel_Rodr=c3=adguez_Caballero?= , cl-isabelle-users at lists.cam.ac.uk References: From: Lars Hupel Message-ID: <9f4e7736-2123-8e60-bc14-4297d0afd221 at in.tum.de> Date: Sat, 9 Feb 2019 09:02:39 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: Content-Type: text/plain; charset=utf-8 Content-Language: en-GB Content-Transfer-Encoding: 8bit Subject: Re: [isabelle] Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sat, 09 Feb 2019 08:02:45 -0000 Dear José, > I downloaded this library and copied in "~~/src/HOL/Algebraic_Numbers/". there are two problems with this approach. 1) The single-entry downloads have become mostly useless now that many AFP entries depend on others. Don't use them, just download the entire AFP. 2) Unless you're planning to change Isabelle's library, you shouldn't be adding content to "$ISABELLE_HOME". This might create problems further down the line (e.g. it becomes non-obvious what your actual dependencies are). Put the AFP somewhere in your "$HOME". Cheers Lars From thannguyenduc at gmail.com Sat Feb 09 06:03:41 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:60876) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsLjp-0005i5-Dl (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 06:03:41 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853193 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.208.175 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (thannguyenduc[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-lj1-f175.google.com ([209.85.208.175]:42621) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gsLjo-000zZu-h1 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 06:03:41 +0000 Received: by mail-lj1-f175.google.com with SMTP id l15-v6so4772792lja.9 for ; Fri, 08 Feb 2019 22:03:40 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:references:in-reply-to:from:date :message-id:subject:to:cc; bh=kUWUmrwZ847iRBHAR9EC9bKYsVIErxZbjakp4bb3kJc=; b=SVHrUHmxGu8KZzO312urahMhGx6mYdH9zpmTw0DnqQK14tCruFt35GfVD5Zeyr00tS kxtvmn9L5cg+CJkfbLqXFKWQamOhUBxbyHL70XSqntqAY0yMW/NYtESrtmY0MxUPTnCy cVUCS7YqQrjQ0j5L7eGtT/BRasdVMl5y148CwQVrKnS8ma5XmO+FH1gAnu8PrW642TzV 4U5NG1JhLJ9StJIYa9Pyls+XkB44XQY8lDJnTULN2i3z0y/vK2pv9m+Gbd4+IM0ic+H4 kKGKpEhssaKvxke0vU61zrD7srm7gIwmqb9P2Wcl6blgHEZ9LpnJUsyHZS2OkQ5IOzZR nhNw== X-Gm-Message-State: AHQUAuZXYWaTJFc+cWbe6Q3+EN0jQ0Zr8yj4wOgMn5EIwFS6SQyfH/iA ggGl9FDqa0vTEeLWZlrSLt8hzNmkSgiPo8vSZWc= X-Google-Smtp-Source: AHgI3IYnQOtgEVXLdcYwc2IPaKyfqMj2Fu4DSuW8DXanBT8HmOCAaOgOaj9LvwDA4A4fsvJp76+ldX+Pn+HecvBGPw8= X-Received: by 2002:a2e:8688:: with SMTP id l8-v6mr2141490lji.75.1549692219598; Fri, 08 Feb 2019 22:03:39 -0800 (PST) MIME-Version: 1.0 References: In-Reply-To: From: Nguyen Duc Than Date: Sat, 9 Feb 2019 17:03:03 +1100 Message-ID: To: =?UTF-8?Q?Jos=C3=A9_Manuel_Rodr=C3=ADguez_Caballero?= X-Mailman-Approved-At: Sat, 09 Feb 2019 10:23:05 +0000 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Cc: cl-isabelle-users at lists.cam.ac.uk Subject: Re: [isabelle] Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sat, 09 Feb 2019 06:03:41 -0000 Hello, Have you tried to download the dependent library of Algebraic_Numbers-AFP? Here are Berlekamp_Zassenhaus, Sturm_Sequences. Than. On Sat, Feb 9, 2019 at 4:56 PM Jos=C3=A9 Manuel Rodr=C3=ADguez Caballero < josephcmac at gmail.com> wrote: > Hello, > I was exploring the library > > @article{Algebraic_Numbers-AFP, > author =3D {Ren=C3=A9 Thiemann and Akihisa Yamada and Sebastiaan Joost= en}, > title =3D {Algebraic Numbers in Isabelle/HOL}, > journal =3D {Archive of Formal Proofs}, > month =3D dec, > year =3D 2015, > note =3D {\url{http://isa-afp.org/entries/Algebraic_Numbers.html}, > Formal proof development}, > ISSN =3D {2150-914x}, > } > > I downloaded this library and copied in "~~/src/HOL/Algebraic_Numbers/". > But when I tried to read the file "Algebraic_Numbers.thy" I received the > following message: > > Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" > > > > Kind Regards, > Jos=C3=A9 M. > From josephcmac at gmail.com Sat Feb 09 19:19:31 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:40996) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsY9z-0000mG-Ht (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 19:19:31 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853193 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.171 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (josephcmac[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f171.google.com ([209.85.166.171]:54650) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gsY9y-000I8Z-fT (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 09 Feb 2019 19:19:31 +0000 Received: by mail-it1-f171.google.com with SMTP id i145so17148335ita.4 for ; Sat, 09 Feb 2019 11:19:30 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:references:in-reply-to:from:date :message-id:subject:to:cc; bh=zBzbViXHmYC9K/Qra9yFtUb/KeMy/XSS7PgXIaY65iQ=; b=YtiTACDibPjd7aUS8z7/yYvWfN9qlwvvTDhzF4e7deg+S//QUHup0PrtLoMYBvL0mh I6jqFJiTQmk4IDc2EQ+h7w531OgzViW2Ye6cJYZxQYLIvVgsmXqHsbP/2q9sBJel0SOW yfEi/VxgEWVHvBs3EM/trWC4ZYqAUMHop9ZEndMdULEDP6uaLq6zD48cKm+MXXXhM5JI nH50t6c4W8gSeRi38H7a0zyQHQQrrqPbLCoIAnyf9jlHtJKD36qNjFEn6miwywGkTpo/ swvg9iDjNYo1k7ZRc/rsX0EPxrOhuo19zxjRnMy3dUzQyOo1qlfJ6ubJOt1CriClBe5a USdw== X-Gm-Message-State: AHQUAubbXHrbXfD5aIhh9z10wmuTXCg1216/Ly0V3DU4iLa+9x/LXmdh X12kAeo2p3dXkn3EMCHjDf8SwrljDn2HibxFLfbrU9yk X-Google-Smtp-Source: AHgI3IasvOhxe0pzMAHaQKF/W77/aRCtp+a9k9TJ5X3SfqJ9qB6r1OXABWfw66q+Cs8TjYkHp1KzAFAXWN6bBV7oTns= X-Received: by 2002:a6b:8fd7:: with SMTP id r206mr15299367iod.5.1549739969652; Sat, 09 Feb 2019 11:19:29 -0800 (PST) MIME-Version: 1.0 References: <9f4e7736-2123-8e60-bc14-4297d0afd221 at in.tum.de> In-Reply-To: <9f4e7736-2123-8e60-bc14-4297d0afd221 at in.tum.de> From: =?UTF-8?Q?Jos=C3=A9_Manuel_Rodr=C3=ADguez_Caballero?= Date: Sat, 9 Feb 2019 14:19:18 -0500 Message-ID: To: cl-isabelle-users at lists.cam.ac.uk Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Cc: hupel at in.tum.de Subject: Re: [isabelle] Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sat, 09 Feb 2019 19:19:31 -0000 Hello, 1) I deleted the application Isabelle from my MacBook 2) I downloaded afp 3) I copied afp to /home/josemanuelrodriguezcaballero/ 4) I downloaded the application Isabelle again and I installed it again. 5) I wrote in the terminal: echo "/home/myself/afp/thys" >> ~/.isabelle/Isabelle2018/ROOTS Remark: I forget to substitute "myself" by my actual name " josemanuelrodriguezcaballero" Now, each time I open Isabelle, I receive the following Plugin Error: "The following plugin could not be loaded:" /Applications/Isabelle2018.app/Contents/Resources/Isabelle2018/src/Tools/jE= dit/dist/jars/Isabelle-jEdit.jar: Cannot start: *** Bad session root directory: "/home/myself/afp/thys" *** The error(s) above occurred in session catalog "/Users/josemanuelrodriguezcaballero/.isabelle/Isabelle2018/ROOTS" Kind Regards, Jos=C3=A9 M. El s=C3=A1b., 9 feb. 2019 a las 3:02, Lars Hupel () escrib= i=C3=B3: > Dear Jos=C3=A9, > > > I downloaded this library and copied in "~~/src/HOL/Algebraic_Numbers/"= . > there are two problems with this approach. > > 1) The single-entry downloads have become mostly useless now that many > AFP entries depend on others. Don't use them, just download the entire AF= P. > > 2) Unless you're planning to change Isabelle's library, you shouldn't be > adding content to "$ISABELLE_HOME". This might create problems further > down the line (e.g. it becomes non-obvious what your actual dependencies > are). Put the AFP somewhere in your "$HOME". > > Cheers > Lars > From hupel at in.tum.de Sun Feb 10 09:51:00 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:53718) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsllM-0005Qk-9L (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 09:51:00 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853248 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:45952 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gsllL-001073-fH (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 09:51:00 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id AA5161C049C; Sun, 10 Feb 2019 10:50:58 +0100 (CET) Received: (Authenticated sender: hupel) by mail.in.tum.de (Postfix) with ESMTPSA id C46DA1C042F; Sun, 10 Feb 2019 10:50:56 +0100 (CET) (Extended-Queue-bit tech_gtvsz at fff.in.tum.de) To: =?UTF-8?Q?Jos=c3=a9_Manuel_Rodr=c3=adguez_Caballero?= , cl-isabelle-users at lists.cam.ac.uk References: <9f4e7736-2123-8e60-bc14-4297d0afd221 at in.tum.de> From: Lars Hupel Message-ID: Date: Sun, 10 Feb 2019 10:50:55 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: Content-Type: text/plain; charset=utf-8 Content-Language: de-DE Content-Transfer-Encoding: 8bit Subject: Re: [isabelle] Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 09:51:00 -0000 Hi José, > 5) I wrote in the terminal: echo "/home/myself/afp/thys" >>> ~/.isabelle/Isabelle2018/ROOTS> Remark: I forget to substitute "myself" by my actual name "> josemanuelrodriguezcaballero" why don't you change that entry in the "ROOTS" file, then? Cheers Lars From makarius at sketis.net Sun Feb 10 11:07:26 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:56502) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsmxK-0006D7-Mo (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 11:07:26 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1853248 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [188.68.47.38 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta0.cl.cam.ac.uk ([128.232.25.20]:50913) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gsmxJ-000YOI-33 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 11:07:26 +0000 Received: from ppsw-33.csi.cam.ac.uk ([2001:630:212:8::e:f33]) by mta0.cl.cam.ac.uk with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1gsmxT-0003KF-Ef for isabelle-users at cl.cam.ac.uk; Sun, 10 Feb 2019 11:07:35 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1853248 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [188.68.47.38 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mx2f26.netcup.net ([188.68.47.38]:55742) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gsmxI-000N96-i4 (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Sun, 10 Feb 2019 11:07:25 +0000 Received: from [192.168.178.32] (ppp-62-216-204-223.dynamic.mnet-online.de [62.216.204.223]) by mx2f26.netcup.net (Postfix) with ESMTPSA id C4F79A224C; Sun, 10 Feb 2019 12:07:23 +0100 (CET) Authentication-Results: mx2f26; spf=pass (sender IP is 62.216.204.223) smtp.mailfrom=makarius at sketis.net smtp.helo=[192.168.178.32] Received-SPF: pass (mx2f26: connection is authenticated) To: Moa Johansson , "isabelle-users at cl.cam.ac.uk" References: <88656A72-251B-4641-8F68-92CCF12C00F2 at chalmers.se> From: Makarius Openpgp: preference=signencrypt Autocrypt: addr=makarius at sketis.net; prefer-encrypt=mutual; keydata= mQINBFcrF+4BEADMcXMnu3XHg6bRsGe3tajAHqvm89+ecn/Y0WhjI2FplhkZs1LwM+ZA9eXh hiBrC/yX0FJ+qjzVIfm66CX4nzVG1f8qwaervMpvpA+gbhtQiXc0t+LDcqV+5cdtpKplPHSu oW+KzJKyCdkDB5fYMOzuaXQwYi12YAEQH2r6K7Q7Np+k82Xli1pWe+Tha/BH0pKJ5Q01aPep ASrNW9F+moX7C0fxWl65LiXGmF0UJep6fqKruhy8oNF4p6I2oZhktvaR/x6tkL2PkT3r+xUS 6g5i3BOjfwhoGY57nsioeK+8VFvdRH5DK4CbrTgDl7ddcrEeENrfpDiPLs/afVbe/T9oDXmJ OJAO4WMpfZNiFhx9SSVTHohw29Fyzn0N1UQGjPqAY1jg32DAxlnMQ0co/KabEFAcoQsW1/6U ZGiNxYVIyEKGrnSY4WuLuNC8CmU1RaYSdTk1y9tYdxufM9lH9ynzJwac6FdalOOxMR2G9JG8 L9/dk3ytlP6DVwkPBSCpJaTkTyMp1wSkF1oK/BDu5xKUQh0zvvLCuZ16hiKRBBSjpVExXRZC u+NC1Y4wqm1HOH7HBwgZ1Hv9S/EPmI9iwgcW0SpDJqPf2Cm7oFMZsZ5Dbs6/nOQoe4Zegy45 ymqDRlIekP7zj+vOoR80XAYfmAH5DElJHldcjmgLBMdpvvqGZwARAQABtB5NYWthcml1cyA8 bWFrYXJpdXNAc2tldGlzLm5ldD6JAj0EEwEIACcFAlcrF+4CGyMFCQlmAYAFCwkIBwIGFQgJ CgsCBBYCAwECHgECF4AACgkQ89KUEoG/TbiVrw/9FjEBgh2CB7Qof7Y4k0yc7j+x/A0Wmkc0 iwP5jaKJuxRv1JJT8CFqm392+/cdh3EkRUk/UWD+hpNndYJwxZltrEpKVqFAWoVOg3ZJ4cuI MYhlp4tk/T0KSl/gKT16dc6uJ7M/FzW0zv50vjFtAdianEDuqLXHKaGDUwWoOTDly0gdZ7aH /eNby6ONHUSJMdTNOErh2N+uESM4aZqUuuL/dTb6xiVzCpV5saT8EMakoazUd7QhoBaHvqfs BL7DEmvcTtA79GF3ufHrF/UndIcx8aMznZ2PGNjmy5seDCoKX0EYHdLam8vgo/TuU4dRw5Zn 6E/ouyNOliXT1Mn+SomeBSXTR5MXRq4TQ9MKVGiP0Yl+7GJQU0JFtDC1ZZEOyjIiwGWOhbUR pYujVm8C1iQ7NcEn2BqOAmRML6IR6+En4RLbgCNsBNXlmTPRJOaI+iV6DZzg3x9zcaDGhoYt jkBTEFpb0F3jU9yuaEU5401NV34fUxg8tqXs0R9CKinO7kQ8N+RDjyyY8k2KZiDYBJ6r+OK0 d7TaTj7F9tmpAu2pmQ8lxOKjDZIwlbGTsC4lxISmcPzBGTKXja5nakcWYx/lZ4vje0WZ12HN amnD1weakFixRYit0d+Kz7cuj684NSbhwC0oN2t9R06Nfq8UPEWRKEitCly0OtRgio8zVZ/L eAC5Ag0EVysX7gEQAKs5NVOvYkE/r8KLsJ8/L/9eulpJDOFilZ9fyuqii7t1UpHZLb58QghW JM+IB2GSGsB+pOi6Je7hmwxcVdXYbGlYZ4Btqqw48/XptfbNZ8alCk6AqoVFP4MbYxij/Qqv f/Yw6GR0p1RIC/W4GF/JgDDwDFEiMT6Pv6dpM8acdNFCERDZdoOJiC+XJRwy5lZ2g5FOJkT9 rVI9EnA7mBXLLjPOMUp2/eZxN6gKOZzI3ej9vixg3adWR2yfKPgacHP/ujnVfITOl0OyLE5f zIHq85dEV4zW6Mpx7+Um0tdkwlUVMaW2nQ1bcwejgVAuD/MLSF/lSs3N5D1ctw5QUemYh7/e 2dC12UJuFDFxNPzcltQTlkBCVWV1D0SjScDHdlF6HhzpZOlt52/rwTn5GHtY4nwAL4IJ+Yvl WX8YKmyILH4Ai8c/N2IVRERQ2qorWFlsQnqrXV+hXf8aUwjc/pq4K9rsWxvle3TpeZfoBefU /s1PEX0SepZFAqAXHlQ9DZPsdPDo9EFK695G5w4nf03EhE9TV1MKGUuc1XJ6f1ZLaxu0TwTA 6qYtKIyBcU0Yn61S2Kh7Dgb5LdLV8nfl71+n/xIt2IWH5UJ9YuwEgGEP0c6ImnAUZ+nRodFI 0RwtCWlRkSJWtQln1vcphrz8PjWZH6e/nWnceXR/Al5P0WexQgtvABEBAAGJAiUEGAEIAA8F AlcrF+4CGwwFCQlmAYAACgkQ89KUEoG/Tbh7VQ/9Fc4bdwJYc3jH/LiuXv6uMg50Cv6lg2NT bL9DClWGNiYzejfM2A4c5K+GRUXhyD7S9U203MOv3z7uTbtyQL8XVolNnQlRIkB00f8nJ2sw HMXx/hemjXBvtlneq+vrMORJexldXUMFq19ZZrvj0zZL+pUnGFqt+IWTEE5GpL7wu20Demaj jYyGyKcDZyJOWZcl4e45Yn3hl0EI2xVmVh7ZinVsb3+nqgcltFy4Jt+drezwV2EiLGJHfGsT jEQb3C9VpneU4Jo+hHtfqLK4Q8+WlIOzSfyvwbabxrhyqg7i11fu8yckNW3dCURPYigV07HK 4dN0zhj53M0Q3eTwegJRPJb8XoLDcSdbsaU2HIShlGDKmzS9KL4JzLikQ9dXROC4cae3jRKH aexFi4B55Ab6FxIfXj09wUCO6Nm0owDfIBDMgiywvi2Rb2etCjBgRbSj71S2nntd9ZitoYvE yKirLkWmJRbp3ln8cHi8Uc/jr1cDPVRWuLUN0uceMj5+AR+NZVakcNUHWJCinMMjacho0SyP QmocdU8pzzupreaVWruqaSzqcpWBPwrE5OxEtJ+OyIBjKmRJ5eptjh4rKgNaVnKjhqbvr+Yz pUAgPp38jjf4HJghUGIfWArKNelKJEJOYk94DAbmT67LgqEdZ0yaA2BCHmreN727WIzV9vkX NMc= Message-ID: <6ba2078f-3ee5-2232-c16d-e325c3c86d22 at sketis.net> Date: Sun, 10 Feb 2019 12:07:23 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: <88656A72-251B-4641-8F68-92CCF12C00F2 at chalmers.se> Content-Type: text/plain; charset=utf-8 Content-Language: en-US Content-Transfer-Encoding: 8bit X-PPP-Message-ID: <20190210110723.27137.96763 at mx2f26.netcup.net> X-PPP-Vhost: sketis.net X-debug-header: local_aliases has suffix Subject: Re: [isabelle] Printing terms with type annotations X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 11:07:26 -0000 On 06/02/2019 17:52, Moa Johansson wrote: > > I’m writing some code that should create a snippet of Isar script. This is how Sledgehammer approximates this: http://isabelle.in.tum.de/repos/isabelle/file/Isabelle2018/src/HOL/Tools/Sledgehammer/sledgehammer_isar_proof.ML#l299 (The module name already shows that the proper terminology is "Isar proof" (or "Isar proof text"). Proof scripts are a thing from the past, before Isar. You can emulate old-style proof scripts via a sequence of 'apply' commands, but this is improper Isar.) Note that there is no standard function in Isabelle/Pure, because the problem to print just the right amount of type information is very complex and not fully solved. One day, after 1 or 2 rounds of refinements over the above approach, it might become generally available. Instead of printing type constraints inside a term you can try an alternative approach with "eigen-context" for free variables, e.g. have "x + y = z" for x y z :: nat Makarius From makarius at sketis.net Sun Feb 10 11:46:02 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:34988) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsnYg-0007B5-Ot (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 11:46:02 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1853248 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [188.68.47.38 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mx2f26.netcup.net ([188.68.47.38]:59760) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gsnYg-000Lpo-Jo (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 11:46:02 +0000 Received: from [192.168.178.32] (ppp-62-216-204-223.dynamic.mnet-online.de [62.216.204.223]) by mx2f26.netcup.net (Postfix) with ESMTPSA id 74A1AA224E; Sun, 10 Feb 2019 12:46:01 +0100 (CET) Authentication-Results: mx2f26; spf=pass (sender IP is 62.216.204.223) smtp.mailfrom=makarius at sketis.net smtp.helo=[192.168.178.32] Received-SPF: pass (mx2f26: connection is authenticated) To: joshua.chen at uibk.ac.at, Cl-isabelle-users References: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> From: Makarius Openpgp: preference=signencrypt Autocrypt: addr=makarius at sketis.net; prefer-encrypt=mutual; keydata= mQINBFcrF+4BEADMcXMnu3XHg6bRsGe3tajAHqvm89+ecn/Y0WhjI2FplhkZs1LwM+ZA9eXh hiBrC/yX0FJ+qjzVIfm66CX4nzVG1f8qwaervMpvpA+gbhtQiXc0t+LDcqV+5cdtpKplPHSu oW+KzJKyCdkDB5fYMOzuaXQwYi12YAEQH2r6K7Q7Np+k82Xli1pWe+Tha/BH0pKJ5Q01aPep ASrNW9F+moX7C0fxWl65LiXGmF0UJep6fqKruhy8oNF4p6I2oZhktvaR/x6tkL2PkT3r+xUS 6g5i3BOjfwhoGY57nsioeK+8VFvdRH5DK4CbrTgDl7ddcrEeENrfpDiPLs/afVbe/T9oDXmJ OJAO4WMpfZNiFhx9SSVTHohw29Fyzn0N1UQGjPqAY1jg32DAxlnMQ0co/KabEFAcoQsW1/6U ZGiNxYVIyEKGrnSY4WuLuNC8CmU1RaYSdTk1y9tYdxufM9lH9ynzJwac6FdalOOxMR2G9JG8 L9/dk3ytlP6DVwkPBSCpJaTkTyMp1wSkF1oK/BDu5xKUQh0zvvLCuZ16hiKRBBSjpVExXRZC u+NC1Y4wqm1HOH7HBwgZ1Hv9S/EPmI9iwgcW0SpDJqPf2Cm7oFMZsZ5Dbs6/nOQoe4Zegy45 ymqDRlIekP7zj+vOoR80XAYfmAH5DElJHldcjmgLBMdpvvqGZwARAQABtB5NYWthcml1cyA8 bWFrYXJpdXNAc2tldGlzLm5ldD6JAj0EEwEIACcFAlcrF+4CGyMFCQlmAYAFCwkIBwIGFQgJ CgsCBBYCAwECHgECF4AACgkQ89KUEoG/TbiVrw/9FjEBgh2CB7Qof7Y4k0yc7j+x/A0Wmkc0 iwP5jaKJuxRv1JJT8CFqm392+/cdh3EkRUk/UWD+hpNndYJwxZltrEpKVqFAWoVOg3ZJ4cuI MYhlp4tk/T0KSl/gKT16dc6uJ7M/FzW0zv50vjFtAdianEDuqLXHKaGDUwWoOTDly0gdZ7aH /eNby6ONHUSJMdTNOErh2N+uESM4aZqUuuL/dTb6xiVzCpV5saT8EMakoazUd7QhoBaHvqfs BL7DEmvcTtA79GF3ufHrF/UndIcx8aMznZ2PGNjmy5seDCoKX0EYHdLam8vgo/TuU4dRw5Zn 6E/ouyNOliXT1Mn+SomeBSXTR5MXRq4TQ9MKVGiP0Yl+7GJQU0JFtDC1ZZEOyjIiwGWOhbUR pYujVm8C1iQ7NcEn2BqOAmRML6IR6+En4RLbgCNsBNXlmTPRJOaI+iV6DZzg3x9zcaDGhoYt jkBTEFpb0F3jU9yuaEU5401NV34fUxg8tqXs0R9CKinO7kQ8N+RDjyyY8k2KZiDYBJ6r+OK0 d7TaTj7F9tmpAu2pmQ8lxOKjDZIwlbGTsC4lxISmcPzBGTKXja5nakcWYx/lZ4vje0WZ12HN amnD1weakFixRYit0d+Kz7cuj684NSbhwC0oN2t9R06Nfq8UPEWRKEitCly0OtRgio8zVZ/L eAC5Ag0EVysX7gEQAKs5NVOvYkE/r8KLsJ8/L/9eulpJDOFilZ9fyuqii7t1UpHZLb58QghW JM+IB2GSGsB+pOi6Je7hmwxcVdXYbGlYZ4Btqqw48/XptfbNZ8alCk6AqoVFP4MbYxij/Qqv f/Yw6GR0p1RIC/W4GF/JgDDwDFEiMT6Pv6dpM8acdNFCERDZdoOJiC+XJRwy5lZ2g5FOJkT9 rVI9EnA7mBXLLjPOMUp2/eZxN6gKOZzI3ej9vixg3adWR2yfKPgacHP/ujnVfITOl0OyLE5f zIHq85dEV4zW6Mpx7+Um0tdkwlUVMaW2nQ1bcwejgVAuD/MLSF/lSs3N5D1ctw5QUemYh7/e 2dC12UJuFDFxNPzcltQTlkBCVWV1D0SjScDHdlF6HhzpZOlt52/rwTn5GHtY4nwAL4IJ+Yvl WX8YKmyILH4Ai8c/N2IVRERQ2qorWFlsQnqrXV+hXf8aUwjc/pq4K9rsWxvle3TpeZfoBefU /s1PEX0SepZFAqAXHlQ9DZPsdPDo9EFK695G5w4nf03EhE9TV1MKGUuc1XJ6f1ZLaxu0TwTA 6qYtKIyBcU0Yn61S2Kh7Dgb5LdLV8nfl71+n/xIt2IWH5UJ9YuwEgGEP0c6ImnAUZ+nRodFI 0RwtCWlRkSJWtQln1vcphrz8PjWZH6e/nWnceXR/Al5P0WexQgtvABEBAAGJAiUEGAEIAA8F AlcrF+4CGwwFCQlmAYAACgkQ89KUEoG/Tbh7VQ/9Fc4bdwJYc3jH/LiuXv6uMg50Cv6lg2NT bL9DClWGNiYzejfM2A4c5K+GRUXhyD7S9U203MOv3z7uTbtyQL8XVolNnQlRIkB00f8nJ2sw HMXx/hemjXBvtlneq+vrMORJexldXUMFq19ZZrvj0zZL+pUnGFqt+IWTEE5GpL7wu20Demaj jYyGyKcDZyJOWZcl4e45Yn3hl0EI2xVmVh7ZinVsb3+nqgcltFy4Jt+drezwV2EiLGJHfGsT jEQb3C9VpneU4Jo+hHtfqLK4Q8+WlIOzSfyvwbabxrhyqg7i11fu8yckNW3dCURPYigV07HK 4dN0zhj53M0Q3eTwegJRPJb8XoLDcSdbsaU2HIShlGDKmzS9KL4JzLikQ9dXROC4cae3jRKH aexFi4B55Ab6FxIfXj09wUCO6Nm0owDfIBDMgiywvi2Rb2etCjBgRbSj71S2nntd9ZitoYvE yKirLkWmJRbp3ln8cHi8Uc/jr1cDPVRWuLUN0uceMj5+AR+NZVakcNUHWJCinMMjacho0SyP QmocdU8pzzupreaVWruqaSzqcpWBPwrE5OxEtJ+OyIBjKmRJ5eptjh4rKgNaVnKjhqbvr+Yz pUAgPp38jjf4HJghUGIfWArKNelKJEJOYk94DAbmT67LgqEdZ0yaA2BCHmreN727WIzV9vkX NMc= Message-ID: <051024e0-351d-0ac2-b84f-a951cbae6ab2 at sketis.net> Date: Sun, 10 Feb 2019 12:46:01 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: Content-Type: text/plain; charset=utf-8 Content-Language: en-US Content-Transfer-Encoding: 8bit X-PPP-Message-ID: <20190210114601.10224.53559 at mx2f26.netcup.net> X-PPP-Vhost: sketis.net Subject: Re: [isabelle] Programatically get "this" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 11:46:02 -0000 On 07/02/2019 16:55, Joshua Chen wrote: > Dear all, is there a canonical way in Isabelle/ML to get the value of > the Isar fact "this"? It depends what you mean precisely, and what your application actually is. > I'm currently using > let >   val fs = Proof_Context.facts_of @{context} > in >   Facts.lookup (Context.Proof @{context}) fs "local.this" > end > > but am unsure if there are more direct ways. Since you are using the compile-time @{context}, i.e. a constant, the example is equivalent to: ML_val ‹ @{thm this} › So when experimenting with ML inside Isar, it is better to bind some initial constants like this: ML_val ‹ val ctxt = @{context}; ... › Later on, ctxt can be abstracted as arguments of a function, while the body "..." remains unchanged. Moreover, string literals of guessed internal names should be avoided: such names change routinely over the years of continued Isabelle development. (In particular, the "local" prefix is an odd artifact that should disappear eventually.) So here is my version of your initial example, following these principles: notepad begin assume a: A ML_val ‹ val ctxt = @{context}; val this_name = Name_Space.full_name (Proof_Context.naming_of ctxt) (Binding.name Auto_Bind.thisN); val this = #thms (the (Proof_Context.lookup_fact ctxt this_name)); › end Nonetheless, it is unlikely that you actually need that in the application. The "this" entry in the facts space is merely for end-users writing Isar proof texts. Tools normally access specifically the some internal slots of the proof engine. A proof method gets the used facts (formerly "this") in the proof as main argument. Nothing special to do: merely need to omit the SIMPLE_METHOD wrapper. A proof command can access the full Proof.state and retrieve this information from it via Proof.goal: the ML_val command includes some special tricks to support this in experiments: notepad begin assume A from this have B ML_val ‹ val using_this = #facts @{Isar.goal}; › sorry end An example for this in production is the 'sledgehammer' command: it uses Proof.goal to get to the "chained facts", i.e. the former "this" that is relevant for the pending goal. Makarius From john_hughes at brown.edu Sun Feb 10 13:26:28 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:58456) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsp7s-0004yd-76 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 13:26:28 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1853248 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.210.47 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.0 RCVD_IN_MSPIKE_H3 RBL: Good reputation (+3) * [209.85.210.47 listed in wl.mailspike.net] * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.0 RCVD_IN_MSPIKE_WL Mailspike good senders X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-ot1-f47.google.com ([209.85.210.47]:41370) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gsp7r-000W84-KM (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 13:26:28 +0000 Received: by mail-ot1-f47.google.com with SMTP id u16so13302925otk.8 for ; Sun, 10 Feb 2019 05:26:27 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:from:date:message-id:subject:to; bh=2dlnUcdLRgk+3oKCG4vAZTTzOAOngVBORLcn2/OvNzU=; b=BBXtO/H7Zp+YQtac3GrgxU+wGuoKTlHenTtgUEsj9CbkibQnkFUdDlOG2TA8tBZvNH sZUWhLEdDBlk3iDPNkkeqYbeNvztfBqfqipw/Rob9yYgvTJIaDfSktHRSzVOdG+A55ir 6ca1cCVyoE+iL01Z+YSgsENNMqGNYm/keJ+lFLxVM3eIqHb8pdv8dfvqWHDkKXQX1Poa thLibRcucicBRXVldTEI/HQ9LvPAUXHkNLKvYbuzwCd8BLx+wSSHjNzihG6Xutj9I3MH A5ifNTVEDTegJJPAlrYD+J16mdpka8k2t7IWLrUuuNFBm/MOFCMEBVxyPgUAmOsbWggy sCkA== X-Gm-Message-State: AHQUAuYSMY6m48LCkkXJd6zrfiFW4/meDEb0SSdhoaR8kUe4VYfW3aVl csCa1SgjJvXQwo4N8UWE8RflEwiBO9T9bkallMSarjEv X-Google-Smtp-Source: AHgI3IbjPSPT8+m84Wu0NPfkkg8uQh/cMjUXEslydM/1uqEaq9+XeTFplCBP0j7ELVqk5ztjRHc1+SgrNd8NTOajnY8= X-Received: by 2002:a9d:6a91:: with SMTP id l17mr13113909otq.354.1549805185488; Sun, 10 Feb 2019 05:26:25 -0800 (PST) MIME-Version: 1.0 From: "John F. Hughes" Date: Sun, 10 Feb 2019 08:26:14 -0500 Message-ID: To: Cl-isabelle Users Content-Type: text/plain; charset="UTF-8" X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: [isabelle] Assistance (paid) X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 13:26:28 -0000 I'm not certain whether this is appropriate for this list, but here goes: I've been trying to make progress with Isabelle, but evidently need some guidance; answers i've gotten here have been of some use, but the turnaround is a bit slow: I'd like to dedicate a couple of solid days to making progress, rather than 10 minutes, then hit a stumbling block, and wait a day or two for an answer, which is how things have gone so far. I'd like to hire someone (a graduate student?) to answer my questions, perhaps via email, perhaps in a couple of skype sessions, whatever works best, allowing for time differences, etc. (I'm on the east coast of the US). If anyone knows of someone who might be willing to help out, I'd sure appreciate pointers. You could refer such a person to me directly. Typical questions may range from the mundane ("Q: Why are there no colors when I type stuff, but all the examples in the book show colored text?"A: Because you named your file myTest rather than myTest.thy.") to the more sophisticated ("Q: I'd like to inductively construct an infinite set (where "sets" for me are being represented by types) and then prove things about it... how on earth do I do that?") None of my question are likely to be about the core ideas of Isabelle itself ('how is the current state of known facts represented?'), at least not initially --- they're all very much from a user's perspective. My target is proving things in mathematics, not things about programming languages or programs. [I find those applications interesting too, but they're not what I'm after right now.] So someone with a bit of mathematical sophistication would probably be ideal. Thanks in advance for any suggestions. --John From joshua.chen at uibk.ac.at Sun Feb 10 17:53:05 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:47294) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gstHt-0008Md-LC (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 17:53:05 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853248 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [138.232.1.140 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from smtp.uibk.ac.at ([138.232.1.140]:36233) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gstHt-000R3p-cu (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 17:53:05 +0000 Received: from [192.168.178.35] ([185.72.72.146]) (authenticated bits=0) by smtp.uibk.ac.at (8.14.4/8.14.4/F1) with ESMTP id x1AHr3AH023026 (version=TLSv1/SSLv3 cipher=AES128-SHA bits=128 verify=NO); Sun, 10 Feb 2019 18:53:04 +0100 To: Makarius , Cl-isabelle-users References: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> <051024e0-351d-0ac2-b84f-a951cbae6ab2 at sketis.net> From: Joshua Chen Organization: Computational Logic, Department of Computer Science, University of Innsbruck Message-ID: <694e8f13-0ec1-4aed-f3ea-1dd59bd4e0e9 at uibk.ac.at> Date: Sun, 10 Feb 2019 18:53:03 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: <051024e0-351d-0ac2-b84f-a951cbae6ab2 at sketis.net> Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Content-Language: en-US X-Spam-Score: () -15.0 ALL_TRUSTED,RCV_SMTP_AUTH,RCV_SMTP_UIBK X-Scanned-By: MIMEDefang 2.75 at uibk.ac.at Subject: Re: [isabelle] Programatically get "this" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list Reply-To: joshua.chen at uibk.ac.at List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 17:53:05 -0000 > Since you are using the compile-time @{context}, i.e. a constant, the > example is equivalent to: > > ML_val ‹ > @{thm this} > › > > So when experimenting with ML inside Isar, it is better to bind some > initial constants like this: > > ML_val ‹ > val ctxt = @{context}; > > ... > › > > Later on, ctxt can be abstracted as arguments of a function, while the > body "..." remains unchanged. I picked up on this soon after, but I do find I often forget this.. Thanks very much for the pointers! As a beginner, it's often unclear which of the multiple similarly plausible-sounding functions I should use to accomplish what I want, so I greatly appreciate the advice. > It depends what you mean precisely, and what your application actually is. I'm implementing syntax parse rules for Isabelle/HoTT that should automatically fill in object-level type information for terms, so that end users can leave some type information implicit for the logic to infer. For instance, given that one has proved/assumed facts "f: A -> B" and "g: B -> C" visible in the current proof context, one should be able to write 'show "g o f"' and have the logic fill in the domain type to give "compose A g f". It seems to me that I do need direct access to the fact space since this is a translation issue, in particular one that occurs before any proof methods/commands are called. Though again, I'm not 100% sure about this. Best, Josh From makarius at sketis.net Sun Feb 10 18:29:28 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:49032) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gstr6-0008J0-HS (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 18:29:28 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1853248 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [188.68.47.38 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mx2f26.netcup.net ([188.68.47.38]:38278) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gstr5-0007EZ-MN (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 18:29:28 +0000 Received: from [192.168.178.32] (ppp-62-216-204-223.dynamic.mnet-online.de [62.216.204.223]) by mx2f26.netcup.net (Postfix) with ESMTPSA id 2140BA16B7; Sun, 10 Feb 2019 19:29:27 +0100 (CET) Authentication-Results: mx2f26; spf=pass (sender IP is 62.216.204.223) smtp.mailfrom=makarius at sketis.net smtp.helo=[192.168.178.32] Received-SPF: pass (mx2f26: connection is authenticated) To: joshua.chen at uibk.ac.at, Cl-isabelle-users References: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> <051024e0-351d-0ac2-b84f-a951cbae6ab2 at sketis.net> <694e8f13-0ec1-4aed-f3ea-1dd59bd4e0e9 at uibk.ac.at> From: Makarius Openpgp: preference=signencrypt Autocrypt: addr=makarius at sketis.net; prefer-encrypt=mutual; keydata= mQINBFcrF+4BEADMcXMnu3XHg6bRsGe3tajAHqvm89+ecn/Y0WhjI2FplhkZs1LwM+ZA9eXh hiBrC/yX0FJ+qjzVIfm66CX4nzVG1f8qwaervMpvpA+gbhtQiXc0t+LDcqV+5cdtpKplPHSu oW+KzJKyCdkDB5fYMOzuaXQwYi12YAEQH2r6K7Q7Np+k82Xli1pWe+Tha/BH0pKJ5Q01aPep ASrNW9F+moX7C0fxWl65LiXGmF0UJep6fqKruhy8oNF4p6I2oZhktvaR/x6tkL2PkT3r+xUS 6g5i3BOjfwhoGY57nsioeK+8VFvdRH5DK4CbrTgDl7ddcrEeENrfpDiPLs/afVbe/T9oDXmJ OJAO4WMpfZNiFhx9SSVTHohw29Fyzn0N1UQGjPqAY1jg32DAxlnMQ0co/KabEFAcoQsW1/6U ZGiNxYVIyEKGrnSY4WuLuNC8CmU1RaYSdTk1y9tYdxufM9lH9ynzJwac6FdalOOxMR2G9JG8 L9/dk3ytlP6DVwkPBSCpJaTkTyMp1wSkF1oK/BDu5xKUQh0zvvLCuZ16hiKRBBSjpVExXRZC u+NC1Y4wqm1HOH7HBwgZ1Hv9S/EPmI9iwgcW0SpDJqPf2Cm7oFMZsZ5Dbs6/nOQoe4Zegy45 ymqDRlIekP7zj+vOoR80XAYfmAH5DElJHldcjmgLBMdpvvqGZwARAQABtB5NYWthcml1cyA8 bWFrYXJpdXNAc2tldGlzLm5ldD6JAj0EEwEIACcFAlcrF+4CGyMFCQlmAYAFCwkIBwIGFQgJ CgsCBBYCAwECHgECF4AACgkQ89KUEoG/TbiVrw/9FjEBgh2CB7Qof7Y4k0yc7j+x/A0Wmkc0 iwP5jaKJuxRv1JJT8CFqm392+/cdh3EkRUk/UWD+hpNndYJwxZltrEpKVqFAWoVOg3ZJ4cuI MYhlp4tk/T0KSl/gKT16dc6uJ7M/FzW0zv50vjFtAdianEDuqLXHKaGDUwWoOTDly0gdZ7aH /eNby6ONHUSJMdTNOErh2N+uESM4aZqUuuL/dTb6xiVzCpV5saT8EMakoazUd7QhoBaHvqfs BL7DEmvcTtA79GF3ufHrF/UndIcx8aMznZ2PGNjmy5seDCoKX0EYHdLam8vgo/TuU4dRw5Zn 6E/ouyNOliXT1Mn+SomeBSXTR5MXRq4TQ9MKVGiP0Yl+7GJQU0JFtDC1ZZEOyjIiwGWOhbUR pYujVm8C1iQ7NcEn2BqOAmRML6IR6+En4RLbgCNsBNXlmTPRJOaI+iV6DZzg3x9zcaDGhoYt jkBTEFpb0F3jU9yuaEU5401NV34fUxg8tqXs0R9CKinO7kQ8N+RDjyyY8k2KZiDYBJ6r+OK0 d7TaTj7F9tmpAu2pmQ8lxOKjDZIwlbGTsC4lxISmcPzBGTKXja5nakcWYx/lZ4vje0WZ12HN amnD1weakFixRYit0d+Kz7cuj684NSbhwC0oN2t9R06Nfq8UPEWRKEitCly0OtRgio8zVZ/L eAC5Ag0EVysX7gEQAKs5NVOvYkE/r8KLsJ8/L/9eulpJDOFilZ9fyuqii7t1UpHZLb58QghW JM+IB2GSGsB+pOi6Je7hmwxcVdXYbGlYZ4Btqqw48/XptfbNZ8alCk6AqoVFP4MbYxij/Qqv f/Yw6GR0p1RIC/W4GF/JgDDwDFEiMT6Pv6dpM8acdNFCERDZdoOJiC+XJRwy5lZ2g5FOJkT9 rVI9EnA7mBXLLjPOMUp2/eZxN6gKOZzI3ej9vixg3adWR2yfKPgacHP/ujnVfITOl0OyLE5f zIHq85dEV4zW6Mpx7+Um0tdkwlUVMaW2nQ1bcwejgVAuD/MLSF/lSs3N5D1ctw5QUemYh7/e 2dC12UJuFDFxNPzcltQTlkBCVWV1D0SjScDHdlF6HhzpZOlt52/rwTn5GHtY4nwAL4IJ+Yvl WX8YKmyILH4Ai8c/N2IVRERQ2qorWFlsQnqrXV+hXf8aUwjc/pq4K9rsWxvle3TpeZfoBefU /s1PEX0SepZFAqAXHlQ9DZPsdPDo9EFK695G5w4nf03EhE9TV1MKGUuc1XJ6f1ZLaxu0TwTA 6qYtKIyBcU0Yn61S2Kh7Dgb5LdLV8nfl71+n/xIt2IWH5UJ9YuwEgGEP0c6ImnAUZ+nRodFI 0RwtCWlRkSJWtQln1vcphrz8PjWZH6e/nWnceXR/Al5P0WexQgtvABEBAAGJAiUEGAEIAA8F AlcrF+4CGwwFCQlmAYAACgkQ89KUEoG/Tbh7VQ/9Fc4bdwJYc3jH/LiuXv6uMg50Cv6lg2NT bL9DClWGNiYzejfM2A4c5K+GRUXhyD7S9U203MOv3z7uTbtyQL8XVolNnQlRIkB00f8nJ2sw HMXx/hemjXBvtlneq+vrMORJexldXUMFq19ZZrvj0zZL+pUnGFqt+IWTEE5GpL7wu20Demaj jYyGyKcDZyJOWZcl4e45Yn3hl0EI2xVmVh7ZinVsb3+nqgcltFy4Jt+drezwV2EiLGJHfGsT jEQb3C9VpneU4Jo+hHtfqLK4Q8+WlIOzSfyvwbabxrhyqg7i11fu8yckNW3dCURPYigV07HK 4dN0zhj53M0Q3eTwegJRPJb8XoLDcSdbsaU2HIShlGDKmzS9KL4JzLikQ9dXROC4cae3jRKH aexFi4B55Ab6FxIfXj09wUCO6Nm0owDfIBDMgiywvi2Rb2etCjBgRbSj71S2nntd9ZitoYvE yKirLkWmJRbp3ln8cHi8Uc/jr1cDPVRWuLUN0uceMj5+AR+NZVakcNUHWJCinMMjacho0SyP QmocdU8pzzupreaVWruqaSzqcpWBPwrE5OxEtJ+OyIBjKmRJ5eptjh4rKgNaVnKjhqbvr+Yz pUAgPp38jjf4HJghUGIfWArKNelKJEJOYk94DAbmT67LgqEdZ0yaA2BCHmreN727WIzV9vkX NMc= Message-ID: Date: Sun, 10 Feb 2019 19:29:26 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: <694e8f13-0ec1-4aed-f3ea-1dd59bd4e0e9 at uibk.ac.at> Content-Type: text/plain; charset=utf-8 Content-Language: en-US Content-Transfer-Encoding: 8bit X-PPP-Message-ID: <20190210182927.21247.39582 at mx2f26.netcup.net> X-PPP-Vhost: sketis.net Subject: Re: [isabelle] Programatically get "this" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 18:29:29 -0000 On 10/02/2019 18:53, Joshua Chen wrote: > > As a beginner, it's often unclear > which of the multiple similarly plausible-sounding functions I should > use to accomplish what I want, so I greatly appreciate the advice. The usual strategy is two-fold: * look at the text of the definitions of things, using the Prover IDE * look at the context of applications, and try to figure out typical uses Moreover it is often helpful to study documentation or ask on the mailing list. > I'm implementing syntax parse rules for Isabelle/HoTT that should > automatically fill in object-level type information for terms, so that > end users can leave some type information implicit for the logic to > infer. For instance, given that one has proved/assumed facts "f: A -> B" > and "g: B -> C" visible in the current proof context, one should be able > to write 'show "g o f"' and have the logic fill in the domain type to > give "compose A g f". > > It seems to me that I do need direct access to the fact space since this > is a translation issue, in particular one that occurs before any proof > methods/commands are called. Though again, I'm not 100% sure about this. Tools normally do not look at the fact name space, it is mainly for end-users and thus somewhat accidental what it contains and what it omits (e.g. unnamed facts don't show up). A more robust scheme works via declarations of facts to tool-specific parts of the context. For example, Isabelle/ZF has a "TC" declaration attribute, which maintains context data as defined in $ISABELLE_HOME/src/ZF/Tools/typechk.ML It is also possible to use the Isar command 'named_theorems' and thus bypass the details of handwritten context-data. E.g. search named_theorems and Named_Theorems.get in .thy and .ML files to get some ideas. Thus your language will require explicit hints in the text, e.g. assume a[TC]: A have b[TC]: B This is more robust than magic operations on the fact name space, but also a bit awkward. Several people who are building non-HOL object logics have pointed this out in the past few months. There is some concrete chance that something will happen soon, shortly before or after the Isabelle2019 release. Makarius From joshua.chen at uibk.ac.at Sun Feb 10 18:54:02 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:37148) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsuEs-0005bS-Fa (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 18:54:02 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853248 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [138.232.1.140 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from smtp.uibk.ac.at ([138.232.1.140]:45652) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gsuEr-000nRj-2j (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 18:54:02 +0000 Received: from [192.168.178.35] ([185.72.72.146]) (authenticated bits=0) by smtp.uibk.ac.at (8.14.4/8.14.4/F1) with ESMTP id x1AIs00l032622 (version=TLSv1/SSLv3 cipher=AES128-SHA bits=128 verify=NO); Sun, 10 Feb 2019 19:54:00 +0100 To: Makarius , Cl-isabelle-users References: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> <051024e0-351d-0ac2-b84f-a951cbae6ab2 at sketis.net> <694e8f13-0ec1-4aed-f3ea-1dd59bd4e0e9 at uibk.ac.at> From: Joshua Chen Organization: Computational Logic, Department of Computer Science, University of Innsbruck Message-ID: <213f3794-d2e2-830a-e305-8aa48022ddaa at uibk.ac.at> Date: Sun, 10 Feb 2019 19:54:00 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 7bit Content-Language: en-US X-Spam-Score: () -15.0 ALL_TRUSTED,RCV_SMTP_AUTH,RCV_SMTP_UIBK X-Scanned-By: MIMEDefang 2.75 at uibk.ac.at Subject: Re: [isabelle] Programatically get "this" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list Reply-To: joshua.chen at uibk.ac.at List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 18:54:02 -0000 > The usual strategy is two-fold: This is what I have been doing intermittently over the past year and a half ;) I do think the contributors are doing a heroic job of maintenance and development, but it is indeed a less-than-optimal state of affairs that Isabelle/ML is not yet very well-documented (even the incomplete Cookbook is already fairly out-of-date). I'd like to help out with that at some point after I learn things better for myself. > For example, Isabelle/ZF has a "TC" declaration attribute, which > maintains context data as defined in $ISABELLE_HOME/src/ZF/Tools/typechk.ML > > It is also possible to use the Isar command 'named_theorems' and thus > bypass the details of handwritten context-data. E.g. search > named_theorems and Named_Theorems.get in .thy and .ML files to get some > ideas. Great, this is also an approach I considered and will look into! > Thus your language will require explicit hints in the text, e.g. > > assume a[TC]: A > have b[TC]: B > > This is more robust than magic operations on the fact name space, but > also a bit awkward. Several people who are building non-HOL object > logics have pointed this out in the past few months. There is some > concrete chance that something will happen soon, shortly before or after > the Isabelle2019 release. Indeed this is a little annoying, I look forward to possible developments on this! Best, Josh From makarius at sketis.net Sun Feb 10 19:05:30 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:41158) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsuPy-0008EN-JX (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 19:05:30 +0000 X-Cam-SpamDetails: score -0.1 from SpamAssassin-3.4.2-1853248 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [188.68.47.38 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mx2f26.netcup.net ([188.68.47.38]:58733) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gsuPy-000HoC-cn (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 19:05:30 +0000 Received: from [192.168.178.32] (ppp-62-216-204-223.dynamic.mnet-online.de [62.216.204.223]) by mx2f26.netcup.net (Postfix) with ESMTPSA id 6986BA2260; Sun, 10 Feb 2019 20:05:29 +0100 (CET) Authentication-Results: mx2f26; spf=pass (sender IP is 62.216.204.223) smtp.mailfrom=makarius at sketis.net smtp.helo=[192.168.178.32] Received-SPF: pass (mx2f26: connection is authenticated) To: joshua.chen at uibk.ac.at, Cl-isabelle-users References: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> <051024e0-351d-0ac2-b84f-a951cbae6ab2 at sketis.net> <694e8f13-0ec1-4aed-f3ea-1dd59bd4e0e9 at uibk.ac.at> <213f3794-d2e2-830a-e305-8aa48022ddaa at uibk.ac.at> From: Makarius Openpgp: preference=signencrypt Autocrypt: addr=makarius at sketis.net; prefer-encrypt=mutual; keydata= mQINBFcrF+4BEADMcXMnu3XHg6bRsGe3tajAHqvm89+ecn/Y0WhjI2FplhkZs1LwM+ZA9eXh hiBrC/yX0FJ+qjzVIfm66CX4nzVG1f8qwaervMpvpA+gbhtQiXc0t+LDcqV+5cdtpKplPHSu oW+KzJKyCdkDB5fYMOzuaXQwYi12YAEQH2r6K7Q7Np+k82Xli1pWe+Tha/BH0pKJ5Q01aPep ASrNW9F+moX7C0fxWl65LiXGmF0UJep6fqKruhy8oNF4p6I2oZhktvaR/x6tkL2PkT3r+xUS 6g5i3BOjfwhoGY57nsioeK+8VFvdRH5DK4CbrTgDl7ddcrEeENrfpDiPLs/afVbe/T9oDXmJ OJAO4WMpfZNiFhx9SSVTHohw29Fyzn0N1UQGjPqAY1jg32DAxlnMQ0co/KabEFAcoQsW1/6U ZGiNxYVIyEKGrnSY4WuLuNC8CmU1RaYSdTk1y9tYdxufM9lH9ynzJwac6FdalOOxMR2G9JG8 L9/dk3ytlP6DVwkPBSCpJaTkTyMp1wSkF1oK/BDu5xKUQh0zvvLCuZ16hiKRBBSjpVExXRZC u+NC1Y4wqm1HOH7HBwgZ1Hv9S/EPmI9iwgcW0SpDJqPf2Cm7oFMZsZ5Dbs6/nOQoe4Zegy45 ymqDRlIekP7zj+vOoR80XAYfmAH5DElJHldcjmgLBMdpvvqGZwARAQABtB5NYWthcml1cyA8 bWFrYXJpdXNAc2tldGlzLm5ldD6JAj0EEwEIACcFAlcrF+4CGyMFCQlmAYAFCwkIBwIGFQgJ CgsCBBYCAwECHgECF4AACgkQ89KUEoG/TbiVrw/9FjEBgh2CB7Qof7Y4k0yc7j+x/A0Wmkc0 iwP5jaKJuxRv1JJT8CFqm392+/cdh3EkRUk/UWD+hpNndYJwxZltrEpKVqFAWoVOg3ZJ4cuI MYhlp4tk/T0KSl/gKT16dc6uJ7M/FzW0zv50vjFtAdianEDuqLXHKaGDUwWoOTDly0gdZ7aH /eNby6ONHUSJMdTNOErh2N+uESM4aZqUuuL/dTb6xiVzCpV5saT8EMakoazUd7QhoBaHvqfs BL7DEmvcTtA79GF3ufHrF/UndIcx8aMznZ2PGNjmy5seDCoKX0EYHdLam8vgo/TuU4dRw5Zn 6E/ouyNOliXT1Mn+SomeBSXTR5MXRq4TQ9MKVGiP0Yl+7GJQU0JFtDC1ZZEOyjIiwGWOhbUR pYujVm8C1iQ7NcEn2BqOAmRML6IR6+En4RLbgCNsBNXlmTPRJOaI+iV6DZzg3x9zcaDGhoYt jkBTEFpb0F3jU9yuaEU5401NV34fUxg8tqXs0R9CKinO7kQ8N+RDjyyY8k2KZiDYBJ6r+OK0 d7TaTj7F9tmpAu2pmQ8lxOKjDZIwlbGTsC4lxISmcPzBGTKXja5nakcWYx/lZ4vje0WZ12HN amnD1weakFixRYit0d+Kz7cuj684NSbhwC0oN2t9R06Nfq8UPEWRKEitCly0OtRgio8zVZ/L eAC5Ag0EVysX7gEQAKs5NVOvYkE/r8KLsJ8/L/9eulpJDOFilZ9fyuqii7t1UpHZLb58QghW JM+IB2GSGsB+pOi6Je7hmwxcVdXYbGlYZ4Btqqw48/XptfbNZ8alCk6AqoVFP4MbYxij/Qqv f/Yw6GR0p1RIC/W4GF/JgDDwDFEiMT6Pv6dpM8acdNFCERDZdoOJiC+XJRwy5lZ2g5FOJkT9 rVI9EnA7mBXLLjPOMUp2/eZxN6gKOZzI3ej9vixg3adWR2yfKPgacHP/ujnVfITOl0OyLE5f zIHq85dEV4zW6Mpx7+Um0tdkwlUVMaW2nQ1bcwejgVAuD/MLSF/lSs3N5D1ctw5QUemYh7/e 2dC12UJuFDFxNPzcltQTlkBCVWV1D0SjScDHdlF6HhzpZOlt52/rwTn5GHtY4nwAL4IJ+Yvl WX8YKmyILH4Ai8c/N2IVRERQ2qorWFlsQnqrXV+hXf8aUwjc/pq4K9rsWxvle3TpeZfoBefU /s1PEX0SepZFAqAXHlQ9DZPsdPDo9EFK695G5w4nf03EhE9TV1MKGUuc1XJ6f1ZLaxu0TwTA 6qYtKIyBcU0Yn61S2Kh7Dgb5LdLV8nfl71+n/xIt2IWH5UJ9YuwEgGEP0c6ImnAUZ+nRodFI 0RwtCWlRkSJWtQln1vcphrz8PjWZH6e/nWnceXR/Al5P0WexQgtvABEBAAGJAiUEGAEIAA8F AlcrF+4CGwwFCQlmAYAACgkQ89KUEoG/Tbh7VQ/9Fc4bdwJYc3jH/LiuXv6uMg50Cv6lg2NT bL9DClWGNiYzejfM2A4c5K+GRUXhyD7S9U203MOv3z7uTbtyQL8XVolNnQlRIkB00f8nJ2sw HMXx/hemjXBvtlneq+vrMORJexldXUMFq19ZZrvj0zZL+pUnGFqt+IWTEE5GpL7wu20Demaj jYyGyKcDZyJOWZcl4e45Yn3hl0EI2xVmVh7ZinVsb3+nqgcltFy4Jt+drezwV2EiLGJHfGsT jEQb3C9VpneU4Jo+hHtfqLK4Q8+WlIOzSfyvwbabxrhyqg7i11fu8yckNW3dCURPYigV07HK 4dN0zhj53M0Q3eTwegJRPJb8XoLDcSdbsaU2HIShlGDKmzS9KL4JzLikQ9dXROC4cae3jRKH aexFi4B55Ab6FxIfXj09wUCO6Nm0owDfIBDMgiywvi2Rb2etCjBgRbSj71S2nntd9ZitoYvE yKirLkWmJRbp3ln8cHi8Uc/jr1cDPVRWuLUN0uceMj5+AR+NZVakcNUHWJCinMMjacho0SyP QmocdU8pzzupreaVWruqaSzqcpWBPwrE5OxEtJ+OyIBjKmRJ5eptjh4rKgNaVnKjhqbvr+Yz pUAgPp38jjf4HJghUGIfWArKNelKJEJOYk94DAbmT67LgqEdZ0yaA2BCHmreN727WIzV9vkX NMc= Message-ID: Date: Sun, 10 Feb 2019 20:05:29 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: <213f3794-d2e2-830a-e305-8aa48022ddaa at uibk.ac.at> Content-Type: text/plain; charset=utf-8 Content-Language: en-US Content-Transfer-Encoding: 8bit X-PPP-Message-ID: <20190210190529.28976.90962 at mx2f26.netcup.net> X-PPP-Vhost: sketis.net Subject: Re: [isabelle] Programatically get "this" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 19:05:30 -0000 On 10/02/2019 19:54, Joshua Chen wrote: > > I do think the contributors are doing a heroic job of > maintenance and development, but it is indeed a less-than-optimal state > of affairs that Isabelle/ML is not yet very well-documented (even the > incomplete Cookbook is already fairly out-of-date). I'd like to help out > with that at some point after I learn things better for myself. As the Prover IDE supports more and more Isabelle/ML development, that interactive environment becomes an important source of implicit information. Just a few years ago, reading Isabelle/ML sources required much more arcane knowledge. E.g. you can open $ISABELLE_HOME/src/Pure/ROOT.ML and browse through (a copy of) Isabelle/Pure within itself, with full annotations provided by the Poly/ML compiler. You can also browse through $ISABELLE_HOME/src/Doc/Implementation and its chapters as theory sources. Browsing through Isabelle/ML tools is more awkward: it requires to start from Pure (e.g. "isabelle jedit -l Pure") and wait a long time until its Main.thy material is loaded. Makarius From josephcmac at gmail.com Sun Feb 10 19:58:16 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:37008) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gsvF2-0003xf-RI (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 19:58:16 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853248 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.181 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (josephcmac[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f181.google.com ([209.85.166.181]:55642) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gsvF1-000UfB-2R (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 10 Feb 2019 19:58:16 +0000 Received: by mail-it1-f181.google.com with SMTP id f18so10254355itb.5 for ; Sun, 10 Feb 2019 11:58:15 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:references:in-reply-to:from:date :message-id:subject:to; bh=GrzFIca/wGfaZ/4m9C9tgG+kTW9ijoC8VPLGdyr8wHU=; b=k4qoQZ6Ehr4zI8h5RBhwSlrfO9Sh4ub65eB1mIj+jdC8JpLpVk6KOSGLj9hjeiD/FY ENJ+Nch2eO69QALwzNyOWR12qz4gdU80G2oME63gAcr1GcsdvYxzacDnkL4b2EeGipqV Quw/YyaTA5LX40YusiktoPYRthid5f70p6DAHXyYSIIBAtb9+VoE/ws7DKtfTwZKLXk0 YidQLdtloCIC9uNWTfIdXDGhzFhZXZduMuanSqza3lKz8Y8ZrwFZLXu7zYj/4xXw+IXd 56CkLWGkfTafLV/VeFLBrQdptQ0aLtXCjn1lm48fFhMVVQlIC5qwuNogYcFLolHqYRIr J0Xg== X-Gm-Message-State: AHQUAuZqCF4SWmP3ZMv4Dm8AudJERXaCZiLLrmJEsucvesfOm6Livf00 RDImv7Zpxw/c4W9BTYeM8uegevon+fa7DO8rYZUNZehR X-Google-Smtp-Source: AHgI3IYKXPO66+6zO6lA7jaLT4o51afzLmZXvAn1r1H0xycdyjcMLPaepcGUBNSwJ2MfD/NVCpdO1RrnqfEf248BmMU= X-Received: by 2002:a5d:9444:: with SMTP id x4mr2720572ior.57.1549828693691; Sun, 10 Feb 2019 11:58:13 -0800 (PST) MIME-Version: 1.0 References: <9f4e7736-2123-8e60-bc14-4297d0afd221 at in.tum.de> In-Reply-To: From: =?UTF-8?Q?Jos=C3=A9_Manuel_Rodr=C3=ADguez_Caballero?= Date: Sun, 10 Feb 2019 14:58:02 -0500 Message-ID: To: cl-isabelle-users at lists.cam.ac.uk Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: Re: [isabelle] Bad theory import "Polynomial_Factorization.Polynomial_Divisibility" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 10 Feb 2019 19:58:17 -0000 Thank you. 1) I opened "~/.isabelle/Isabelle2018/ROOTS" 2) I deleted "/home/myself/afp/thys" 3) I wrote "/Users/josemanuelrodriguezcaballero/afp/thys" and It works. Kind Regards, Jos=C3=A9 M. El dom., 10 feb. 2019 a las 4:50, Lars Hupel () escribi=C3= =B3: > Hi Jos=C3=A9, > > > 5) I wrote in the terminal: echo "/home/myself/afp/thys" >>> > ~/.isabelle/Isabelle2018/ROOTS> Remark: I forget to substitute > "myself" by my actual name "> josemanuelrodriguezcaballero" > why don't you change that entry in the "ROOTS" file, then? > > Cheers > Lars > From gidon.ernst at unimelb.edu.au Mon Feb 11 03:13:01 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:52974) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gt21l-0004YT-Jq (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 11 Feb 2019 03:13:01 +0000 X-Cam-SpamDetails: score -1.0 from SpamAssassin-3.4.2-1853248 * -0.7 RCVD_IN_DNSWL_LOW RBL: Sender listed at http://www.dnswl.org/, low * trust * [124.47.189.203 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * 0.0 T_FILL_THIS_FORM_SHORT Fill in a short form with personal * information X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from au-smtp-delivery-203.mimecast.com ([124.47.189.203]:27038) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-SHA384:256) id 1gt21k-0000of-JR (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 11 Feb 2019 03:13:01 +0000 Received: from AUS01-ME1-obe.outbound.protection.outlook.com (mail-me1aus01lp2050.outbound.protection.outlook.com [104.47.116.50]) (Using TLS) by relay.mimecast.com with ESMTP id au-mta-28-aiYmxasePIauqhQJS6odbA-1; Mon, 11 Feb 2019 14:12:51 +1100 Received: from ME2PR01MB4068.ausprd01.prod.outlook.com (52.134.223.145) by ME2PR01MB4209.ausprd01.prod.outlook.com (20.178.181.140) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.1601.22; Mon, 11 Feb 2019 03:12:48 +0000 Received: from ME2PR01MB4068.ausprd01.prod.outlook.com ([fe80::b41c:1bd:e02b:4657]) by ME2PR01MB4068.ausprd01.prod.outlook.com ([fe80::b41c:1bd:e02b:4657%6]) with mapi id 15.20.1601.023; Mon, 11 Feb 2019 03:12:48 +0000 From: Gidon Ernst To: "cl-isabelle-users at lists.cam.ac.uk" Thread-Topic: 4PAD: Symposium on Formal Approaches to Parallel and Distributed Systems Call for Papers Thread-Index: AQHUwbeXexP9RZNY2kmp+loiN47B7g== Date: Mon, 11 Feb 2019 03:12:48 +0000 Message-ID: Accept-Language: en-US Content-Language: en-US X-MS-Has-Attach: X-MS-TNEF-Correlator: x-originating-ip: [128.250.0.117] x-ms-publictraffictype: Email x-microsoft-exchange-diagnostics: 1; ME2PR01MB4209; 20:1wuRkHcaAvtCzyR5mh8NJ4B5FIELrlHh32618GIv5E9d06p5Ua0Z5lH1vSvVG0bi0uu8n0Ioj2/w7LJPN9UvNXU7CjQqLTEIYqssauyfp71a+3wMK+hrnmBBZEawV72XNZEvhnjz65refsbKgRXc+/vXdElPyFOZ0yAiKx/vu4A= x-ms-office365-filtering-correlation-id: 1ce014d8-50d0-419c-f784-08d68fcecd32 x-microsoft-antispam: BCL:0; PCL:0; RULEID:(2390118)(7020095)(4652040)(8989299)(4534185)(4627221)(201703031133081)(201702281549075)(8990200)(5600110)(711020)(4605077)(2017052603328)(7153060)(7193020); SRVR:ME2PR01MB4209; x-ms-traffictypediagnostic: ME2PR01MB4209: x-ms-exchange-purlcount: 6 x-microsoft-antispam-prvs: x-forefront-prvs: 0945B0CC72 x-forefront-antispam-report: SFV:NSPM; SFS:(10009020)(396003)(39860400002)(136003)(346002)(376002)(366004)(209900001)(199004)(189003)(9686003)(99286004)(2501003)(66066001)(316002)(88552002)(33656002)(25786009)(8936002)(2906002)(786003)(7696005)(966005)(68736007)(478600001)(8676002)(6916009)(81156014)(256004)(14444005)(6306002)(81166006)(7736002)(305945005)(26005)(5640700003)(186003)(6436002)(55016002)(476003)(74482002)(106356001)(105586002)(486006)(44832011)(6506007)(74316002)(102836004)(14454004)(71190400001)(71200400001)(3846002)(86362001)(53936002)(66574012)(2351001)(6116002)(97736004)(66630200001)(225293001)(6606295002); DIR:OUT; SFP:1101; SCL:1; SRVR:ME2PR01MB4209; H:ME2PR01MB4068.ausprd01.prod.outlook.com; FPR:; SPF:None; LANG:en; PTR:InfoNoRecords; A:1; MX:1; x-ms-exchange-senderadcheck: 1 x-microsoft-antispam-message-info: nQWx13ivS5gPlc83JWp0fVj35I1sx1qhLRdDuX26TZU1iITC6H5u7YvH2EThxaIlYeJ+Mzk9s+690Xjq9XM64+9Jat6R6GRWGaUa6jSGnFZ4a2ZbZRCAx2ulh0Fd9aQmi+z+6QCmlo6l7k4bYQ7zjSpY07qt/844UTZJNgRcbMQQSW8ndo9uobnC6/oAklZR1SNPj1e/zaP9cxdGh/7bN4MK4RJtxa7XICDzr/o+/ZlZ6ygSgiR4m6UxBCav1aA66ffAJoANuMdpU8Wr4yKL7nBH2FmYijnjXVq395npNWX6UnuBLfO9N6v+aRALPUGvhqVOmSfEz+ITF/xqkGD/Rj/kmnSAjHr4qDsyOPNCbG+GS6zOGc92+fL8mwCfXaIR8xQvx6rvH/39lPNNVFfUW72K6WpuJaoOJwrJNysNbe0= MIME-Version: 1.0 X-OriginatorOrg: unimelb.edu.au X-MS-Exchange-CrossTenant-Network-Message-Id: 1ce014d8-50d0-419c-f784-08d68fcecd32 X-MS-Exchange-CrossTenant-originalarrivaltime: 11 Feb 2019 03:12:48.5926 (UTC) X-MS-Exchange-CrossTenant-fromentityheader: Hosted X-MS-Exchange-CrossTenant-id: 0e5bf3cf-1ff4-46b7-9176-52c538c22a4d X-MS-Exchange-CrossTenant-mailboxtype: HOSTED X-MS-Exchange-Transport-CrossTenantHeadersStamped: ME2PR01MB4209 X-MC-Unique: aiYmxasePIauqhQJS6odbA-1 X-Mimecast-Spam-Score: 0 Content-Type: text/plain; charset=WINDOWS-1252 Content-Transfer-Encoding: quoted-printable Subject: [isabelle] 4PAD: Symposium on Formal Approaches to Parallel and Distributed Systems Call for Papers X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Mon, 11 Feb 2019 03:13:01 -0000 [Please accept our apologies for duplicates]=0A=0A=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=0AFirst Call f= or Papers=0A=0AThe 6th International Symposium on Formal Approaches to=0APa= rallel and Distributed Systems (4PAD 2019)=0A=0Ahttp://hpcs2019.cisedu.info= /2-conference/symposia/symp05-4pad=0A=0AAs part of The 17th International C= onference on High Performance=0AComputing & Simulation (HPCS 2019)=0A=0Ahtt= p://hpcs2019.cisedu.info/ or http://conf.cisedu.info/rp/hpcs19=0A=0AJuly = 15 =96 19, 2019 Dublin, Ireland=0A=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=0A=0AIMPORTANT DATES=0A=0APap= er Submissions: ---------------------------- 01 March 2019=0AAcceptance N= otification: ------------------------ 29 March 2019=0ACamera Ready Papers a= nd Registration Due by: ---- 19 April 2019=0AConference Dates: -----------= ------------------- 15=9619 July 2019=0A=0A=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=0A=0ASCOPE AND OBJEC= TIVES=0A=0AThe aim of 4PAD is to foster interaction between the formal meth= ods communities and systems=0Aresearchers working on topics in modern paral= lel, distributed, and network-based processing=0Asystems (e.g., autonomous = computing systems, cloud computing systems, service-oriented systems=0Aand = parallel computing architectures).=20=0A=0A4PAD Topics include (but are not= limited to) the following:=0A=0A- Rigorous software engineering approaches= and their tool support;=0A- Model-based approaches, including model-driven= development;=0A- Service- and component-based approaches;=0A- Semantics, t= ypes and logics;=0A- Formal specification and verification;=0A- Performance= analysis based on formal approaches;=0A- Formal aspects of programming par= adigms and languages;=0A- Formal approaches to parallel architectures and w= eak memory models;=20=0A- Formal approaches to deployment, run-time analysi= s, adaptation/evolution, reconfiguration, and monitoring;=0A- Case studies = developed/analyzed with formal approaches;=0A- Formal stochastic models and= analysis;=0A- Formal methods for large-scale distributed systems;=0A- Stat= istical analysis techniques based on formal approaches.=20=0A=0A=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =0A=0ASYMPOSIUM ORGANIZERS=0A=0AFr=E9d=E9ric Dabrowski =20=0A Universit= =E9 d=92Orl=E9ans, LIFO,=20=0A Orl=E9ans, France=0A Phone: +33 (0)2 38 = 49 27 51=0A Fax: +33 (0)2 38 41 71 37=20=0A Email: frederic.dabro= wski at univ-orleans.fr=20=0A=0AInternational Program Committee*:=0A=0AAll sub= mitted papers will be rigorously reviewed by the symposium technical progra= m=0Acommittee members following similar criteria used in HPCS 2019 and will= be published=0Aas part of the HPCS 2019 Proceedings.=20=0A=0AAllan Blancha= rd, CEA LIST, France=0AEmmanuel Chailloux, University of Sorbonne, France= =0AKento Emoto, Kyushu Institute of Technology, Japan=0AGidon Ernst, Univer= sity of Melbourne, Australia=0AJoaquin Ezpeleta, Universidad de Zaragoza, S= pain=0AYli=E8s Falcone, University of Grenoble Alpes, France=0AJose Daniel = Garcia, University Carlos III of Madrid, Spain=0AFr=E9d=E9ric Gava, Univers= ity of Paris Est, France=0AClaude Jard, University of Nantes, France=0AChri= stoph Kessler, Link=F6pin University, Sweden=0AIgor Konnov, INRIA, France= =0AHerbert Kuchen, University of Muenster, Germany=0AS=E9bastien Limet, Uni= versity of Orl=E9ans, France=0AVirginia Niculescu, Babes-Bolyai University,= Romania=0AEmmanuelle Saillard, INRIA, France=0AGwen Sala=FCn, INRIA/Univer= sity of Grenoble Alpes, France=0ASven Schewe, University of Liverpool, U.K.= =0AElena Sherman, Boise State University, Idaho, USA=0AFrancesco Tiezzi, Un= iversity of Camerino, Italy=0AEmilio Tuosto, University of Leicester, U.K.= =0A=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=0A=0AINSTRUCTIONS FOR PAPER SUBMISSIONS=0A=0AYou are invited t= o submit original and unpublished research works=0Aon above and other topic= s related to Formal Approaches to Parallel=0Aand Distributed Systems. Submi= tted paper must not have been published=0Aor simultaneously submitted elsew= here until it appears in HPCS proceedings,=0Ain the case of acceptance, or = notified otherwise. For Regular papers,=0Aplease submit a PDF copy of your = full manuscript, not to exceed 8 double-column=0Aformatted pages per templa= te, and include up to 6 keywords and an abstract of=0Ano more than 400 word= s. Additional pages will be charged additional fee. Submission=0Ashould inc= lude a cover page with authors' names, affiliation addresses, fax numbers,= =0Aphone numbers, and all authors email addresses. Please, indicate clearly= the=0Acorresponding author(s) although all authors are equally responsible= for the manuscript.=0AShort papers (up to 4 pages), poster papers and post= ers=0A(please refer to http://hpcs2019.cisedu.info/1-call-for-papers-and-pa= rticipation/call-for-posters=0Afor posters submission details) will also be= considered. Please specify the type of=0Asubmission you have. Please inclu= de page numbers on all preliminary submissions to make=0Ait easier for revi= ewers to provide helpful comments.=20=0A=0A=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=0A=0ASubmit a PDF co= py of your full manuscript to the symposium paper submission site at=0A=0A = =09 =09 https://easychair.org/conferences/?conf=3D4pad2019.=0A= =0A=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=0A=0AProceedings=0A=0AAccepted papers will be published in the= Conference proceedings. Instructions for=0Afinal manuscript format and req= uirements will be posted on the HPCS 2019 Conference=0Aweb site. It is our = intent to have the proceedings formally published in hard and soft=0Acopies= and be available at the time of the conference. The proceedings is project= ed to=0Abe included in the IEEE or ACM Digital Library and indexed in all m= ajor indexing services=0Aaccordingly.=20=0A=0ASPECIAL ISSUE=0A=0APlans are = underway to have the best papers, in extended version, selected for possibl= e=0Apublication in a reputable journal as special issue. Detailed informati= on will soon be=0Aannounced and will be made available on the conference we= bsite.=20=0A=0AFurthermore, it is confirmed that after the 4PAD symposium, = authors of selected papers will=0Abe invited to submitted extended version = of their papers for possible publication in a special=0Aissue of the Journa= l of Logical and Algebraic Methods in Programming=0A(JLAMP, https://www.jou= rnals.elsevier.com/journal-of-logical-and-algebraic-methods-in-programming)= . =20=0A=0AIf you have any questions about paper submission or the symposiu= m, please contact the symposium organizers.=0A From viorel.preoteasa at gmail.com Mon Feb 11 16:28:28 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:58534) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gtERY-0001Fw-PT (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 11 Feb 2019 16:28:28 +0000 X-Cam-SpamDetails: score 0.7 from SpamAssassin-3.4.2-1853300 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.167.46 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 1.0 MISSING_HEADERS Missing To: header * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (viorel.preoteasa[at]gmail.com) * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.0 MIME_QP_LONG_LINE RAW: Quoted-printable line longer than 76 chars * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-lf1-f46.google.com ([209.85.167.46]:35885) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gtERX-00093V-M2 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 11 Feb 2019 16:28:28 +0000 Received: by mail-lf1-f46.google.com with SMTP id q11so8251684lfd.3 for ; Mon, 11 Feb 2019 08:28:27 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:content-transfer-encoding:mime-version:date :subject:message-id:cc; bh=XXQ7JSSO9XCAD9mqj5S3qFzaX2n3/x2KEGe5vZjDpzc=; b=ktVzzBmxsnMEOLh1bkkWBG0dCa12EPUNUoLbKgLkxYlJysNxy/2AZJ1XnWgbEE7lus 2+0J4Fn/yf14g6+C75MTZQLRDbe6WZG8++tdjNoV1vpDBhvCSx6pTQ+NmlUdzlnVeUFD Xpcf9j88cFFOjDAMH6XlCB9u7wNGseJmiWfKeTiBY4iwZPGqHEwjsKGTQJa3OSuHbEFa UE85fKUyqZcejFem8fWM+DR8amqtV1+lbAaYIs/RYChSr+vECVu4dMdPmtWUDYSVgRZ6 x6EVnHr1+OlIcZrBrWA5YiVCurMB0A2drvhKizIhasTdRGjv/6ycYvSTtH2xMzGAu7hE 3LZw== X-Gm-Message-State: AHQUAuZ7LkzIWtJs1zfiFMpLR4nEL0UhSY31ppI+0OZW4jgMAizKsHWZ lpPtamErv9THsNoGiQsfGAUzs0dx X-Google-Smtp-Source: AHgI3IY6F9g7DhcGoOz4GhuSY+5VNo4KjbrDFJwKevvKCaXcLAkf5p2fRU+Q/0qpL3Qcb3SrCr+7qg== X-Received: by 2002:a19:c48e:: with SMTP id u136mr15895482lff.167.1549902506481; Mon, 11 Feb 2019 08:28:26 -0800 (PST) Received: from ?IPv6:2001:14bb:82:bc3e:9457:a26c:4dcf:94fa? (dtm0d9gc3zl2f7x8z-k-4.rev.dnainternet.fi. [2001:14bb:82:bc3e:9457:a26c:4dcf:94fa]) by smtp.gmail.com with ESMTPSA id u26-v6sm2202818lji.22.2019.02.11.08.28.25 for (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Mon, 11 Feb 2019 08:28:25 -0800 (PST) From: Viorel Preoteasa Mime-Version: 1.0 (1.0) Date: Mon, 11 Feb 2019 18:28:24 +0200 Message-Id: <875B1B8C-280D-413D-A1F1-2C98D2FC785D at gmail.com> Cc: "cl-isabelle-users at lists.cam.ac.uk" X-Mailer: iPhone Mail (16D39) Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: [isabelle] signed and unsigned words X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Mon, 11 Feb 2019 16:28:28 -0000 Hello, I need new types of signed and unsigned words with operations (+, -, ...) id= entical with the operations on words, but with a new operation: overflow_add a b which is defined differently for signed and unsigned words.= Basically I need the two types to be instantiations of the following class: class overflow =3D plus +=20 fixes overflow_add:: "'a =E2=87=92 'a =E2=87=92 bool" I tried something inspired from the AFP entry "Finite Machine Word Library":= type_synonym 'a sword =3D "'a signed word" type_synonym 'a uword =3D "'a usigned word" consts to_int :: "'a word =E2=87=92 int" =20 overloading =20 to_int_sword =E2=89=A1 "to_int:: 'a sword =E2=87=92 int"=20 to_int_uword =E2=89=A1 "to_int::'a uword =E2=87=92 int" begin =20 definition "to_int_sword (a:: 'a::len sword) =3D sint a" definition "to_int_uword (a:: 'a::len uword) =3D uint a" end instantiation word :: (len0) overflow begin definition "overflow_add a b =3D (to_int (a::'a word) + to_int b =3D to_in= t (a + b))" instance .. end this seems to work, but I don't know how to get code generation for overflow= _add: value "overflow_add (-2::4 sword) (-3)" gives the error: No code equations for to_int Any help would be appreciated. Best regards, Viorel Preoteasa= From makarius at sketis.net Mon Feb 11 20:28:27 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:35136) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gtIBn-00030p-G6 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 11 Feb 2019 20:28:27 +0000 X-Cam-SpamScore: s X-Cam-SpamDetails: score 1.4 from SpamAssassin-3.4.2-1853300 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [188.68.47.38 listed in list.dnswl.dnsbl.ja.net] * 1.5 RCVD_IN_SORBS_WEB RBL: SORBS: sender is an abusable web server * [185.46.137.19 listed in dnsbl.sorbs.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mx2f26.netcup.net ([188.68.47.38]:56261) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gtIBm-000C0L-MZ (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 11 Feb 2019 20:28:27 +0000 Received: from [192.168.44.139] (vpn26b.hotsplots.net [185.46.137.19]) by mx2f26.netcup.net (Postfix) with ESMTPSA id 08765A1643; Mon, 11 Feb 2019 21:28:25 +0100 (CET) Authentication-Results: mx2f26; spf=pass (sender IP is 185.46.137.19) smtp.mailfrom=makarius at sketis.net smtp.helo=[192.168.44.139] Received-SPF: pass (mx2f26: connection is authenticated) From: Makarius To: joshua.chen at uibk.ac.at, Cl-isabelle-users References: <59ccdc3a-1932-1840-0011-34fbd74e11b9 at uibk.ac.at> <051024e0-351d-0ac2-b84f-a951cbae6ab2 at sketis.net> <694e8f13-0ec1-4aed-f3ea-1dd59bd4e0e9 at uibk.ac.at> Message-ID: Date: Mon, 11 Feb 2019 21:28:25 +0100 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.4.0 MIME-Version: 1.0 In-Reply-To: Content-Type: text/plain; charset=utf-8; format=flowed Content-Language: en-US Content-Transfer-Encoding: 8bit X-PPP-Message-ID: <20190211202826.12581.34842 at mx2f26.netcup.net> X-PPP-Vhost: sketis.net Subject: Re: [isabelle] Programatically get "this" X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Mon, 11 Feb 2019 20:28:27 -0000 On 10.02.19 19:29, Makarius wrote: > On 10/02/2019 18:53, Joshua Chen wrote: > > Tools normally do not look at the fact name space, it is mainly for > end-users and thus somewhat accidental what it contains and what it > omits (e.g. unnamed facts don't show up). The space of named facts is mainly for the end-user, by there is an alternative view of all facts that are literally accessible in the current context. This is used e.g. for the backquote/cartouche notation of facts or the "fact" proof method. Here is an example to access this "cloud" of literal facts of the context: ML ‹ val literal_facts = Proof_Context.facts_of #> Facts.props; › notepad begin { fix x y z :: nat { assume "x = y" assume "y = z" from ‹x = y› and ‹y = z› have "x = z" by (rule trans) moreover from ‹x = z› have "z = x" by (rule sym) print_facts ML_val ‹literal_facts \<^context>› moreover note calculation } print_facts ML_val ‹literal_facts \<^context>› } print_facts ML_val ‹literal_facts \<^context>› end You could try to use that by default, potentially with a declaration attribute to suppress unwanted literal facts. Makarius From m.roggenbach at swansea.ac.uk Mon Feb 11 14:49:29 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:46618) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gtCtl-0008M3-RH (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 11 Feb 2019 14:49:29 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853300 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [137.44.100.227 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 HTML_MESSAGE BODY: HTML included in message X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from zeppo.swan.ac.uk ([137.44.100.227]:50280) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gtCtl-000Q6U-0K (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Mon, 11 Feb 2019 14:49:29 +0000 Received: from laurel.swan.ac.uk ([137.44.1.237]) by zeppo.swan.ac.uk with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) (Exim 4.91) (envelope-from ) id 1gtCtk-000BgK-OU for cl-isabelle-users at lists.cam.ac.uk; Mon, 11 Feb 2019 14:49:28 +0000 Received: from [137.44.2.59] (helo=cs-svr1.swan.ac.uk) by laurel.swan.ac.uk with esmtp (Exim 4.91) (envelope-from ) id 1gtCtk-0000su-GJ for cl-isabelle-users at lists.cam.ac.uk; Mon, 11 Feb 2019 14:49:28 +0000 Received: from [137.44.183.135] (unknown [137.44.183.135]) by cs-svr1.swan.ac.uk (Postfix) with ESMTPSA id 70B83EB574 for ; Mon, 11 Feb 2019 14:49:28 +0000 (GMT) From: Markus Mime-Version: 1.0 (Mac OS X Mail 10.3 \(3273\)) Message-Id: <3393F4F6-6229-4EDE-B023-5FACDF135AAE at swansea.ac.uk> Date: Mon, 11 Feb 2019 14:49:26 +0000 To: cl-isabelle-users at lists.cam.ac.uk X-Mailer: Apple Mail (2.3273) X-Mailman-Approved-At: Tue, 12 Feb 2019 11:03:58 +0000 Content-Type: text/plain; charset=us-ascii Content-Transfer-Encoding: quoted-printable X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: [isabelle] 11 fully funded PhD studentships at Swansea University X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Mon, 11 Feb 2019 14:49:30 -0000 There are 11 fully funded PhD studentships (4 years, including an = integrated masters) available in the EPSRC CENTRE FOR DOCTORAL TRAINING = IN ENHANCING COLLABORATIONS AND INTERACTIONS WITH DATA AND INTELLIGENCE = DRIVEN SYSTEMS (http://people-first.best ) at = Swansea University. The centre takes an interdisciplinary approach and = involves besides computer science and mathematics also engineering, life = science, law, management. The computational expertise and training in = the Centre spans and integrates a broad range of theoretical to = experimental science.=20 Application deadline: March 22nd, 2019.= From lp15 at cam.ac.uk Tue Feb 12 11:55:42 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:42178) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gtWf8-0000jK-KT (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 12 Feb 2019 11:55:42 +0000 X-Cam-SpamDetails: score -1.1 from SpamAssassin-3.4.2-1853334 * -1.0 ALL_TRUSTED Passed through trusted hosts only via SMTP * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta1.cl.cam.ac.uk ([128.232.0.57]:56085) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gtWf7-000UnU-fk (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 12 Feb 2019 11:55:42 +0000 Received: from ppsw-31.csi.cam.ac.uk ([2001:630:212:8::e:f31]) by mta1.cl.cam.ac.uk with esmtp (Exim 4.90_1) (envelope-from ) id 1gtWf7-0006i3-S7 for isabelle-users at cl.cam.ac.uk; Tue, 12 Feb 2019 11:55:41 +0000 X-Cam-AntiVirus: no malware found X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from voron.mac.cl.cam.ac.uk ([128.232.56.42]:54455) by ppsw-31.csi.cam.ac.uk (smtp.hermes.cam.ac.uk [131.111.8.157]:587) with esmtpsa (PLAIN:lp15) (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gtWf7-0005gK-M2 (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Tue, 12 Feb 2019 11:55:41 +0000 From: Lawrence Paulson Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable Mime-Version: 1.0 (Mac OS X Mail 12.2 \(3445.102.3\)) Message-Id: <1158475E-CDEF-4397-99F1-08F4DBD83159 at cam.ac.uk> Date: Tue, 12 Feb 2019 11:55:41 +0000 To: isabelle-users X-Mailer: Apple Mail (2.3445.102.3) X-debug-header: local_aliases has suffix Subject: [isabelle] New in the AFP: Universal_Turing_Machine X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Tue, 12 Feb 2019 11:55:42 -0000 I=E2=80=99m happy to announce a substantial and impressive new entry = covering the core of computation theory: > We formalise results from computability theory: recursive functions, = undecidability of the halting problem, and the existence of a universal = Turing machine. This formalisation is the AFP entry corresponding to the = paper Mechanising Turing Machines and Computability Theory in = Isabelle/HOL, ITP 2013. You will find it online here: https://www.isa-afp.org/entries/Universal_Turing_Machine.html Many thanks to the authors for this entry!=20 Larry Paulson From cezarykaliszyk at gmail.com Tue Feb 12 16:49:00 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:34724) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gtbEy-0004xr-CD (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 12 Feb 2019 16:49:00 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853334 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.169 listed in list.dnswl.dnsbl.ja.net] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.166.169 listed in wl.mailspike.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (cezarykaliszyk[at]gmail.com) * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta0.cl.cam.ac.uk ([128.232.25.20]:48493) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gtbEx-000SG5-2q (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Tue, 12 Feb 2019 16:49:00 +0000 Received: from ppsw-30.csi.cam.ac.uk ([2001:630:212:8::e:f30]) by mta0.cl.cam.ac.uk with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1gtbF7-0002iu-MZ for isabelle-users at cl.cam.ac.uk; Tue, 12 Feb 2019 16:49:09 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853334 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.169 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.166.169 listed in wl.mailspike.net] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (cezarykaliszyk[at]gmail.com) * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f169.google.com ([209.85.166.169]:55765) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gtbEx-000veA-d9 (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Tue, 12 Feb 2019 16:48:59 +0000 Received: by mail-it1-f169.google.com with SMTP id o131so5487600itc.5 for ; Tue, 12 Feb 2019 08:48:59 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:references:in-reply-to:from:date :message-id:subject:to; bh=OI9WgJigHxJ1pEAl2HOcVTzQEQ8Rc/TZS/LCFMaZ2aU=; b=Km0jD7nn9OanpRus00JkwwpYm1YJAwkAwIE92dWVUez7IBQMoyyfbZYbBuRS5/6eEN 8kelGEOCuRHNwOF67TL3TnCWzTpibEV8gRiGImami86m6oei18n6IFo+x2PCVN8a6jqL +W3VuPbbZ+t95JgJPhQiBFTGJCDBfAGeZhGYze41VKgy4fy2jKPksylI09XKsPXLl366 A+weAoxzWAJlFTNMUXy04IE/MUT+8rOX2pnkQOal1yFYeIOrrdHEZb1qJkyL8RULFYhr +5A2/yqY7bxRcC1YcJCz4tcgFQ7NGy+DnbAMGl/JJWH7EQxCWigtQdaVo9abVJQ27sSB /cHg== X-Gm-Message-State: AHQUAuYnDaJ6KCYQ26hZtWF/L6HKKuFAL2pccYiBnI7FgeF6xz7bP8XQ LlDnN26gbVp5riKRk0haRj/NSeKoam2VttUC73yAMGi0 X-Google-Smtp-Source: AHgI3IYkrdvZlojRyXqv5OMn6L+ufxtI9niuig3Ba3/GgTYbj1wIcq8rgfTBZ9WFE1TyRgU63uPdO4VBDPFi7wke8hI= X-Received: by 2002:a5d:9859:: with SMTP id p25mr2718128ios.64.1549990137633; Tue, 12 Feb 2019 08:48:57 -0800 (PST) MIME-Version: 1.0 References: <706bfe78f9aec300b53295dbfbc88ddc at uwb.edu.pl> <8cea6a4e4ed780b6e93c654a464c343c at uwb.edu.pl> In-Reply-To: From: Cezary Kaliszyk Date: Tue, 12 Feb 2019 17:48:45 +0100 Message-ID: To: isabelle-users at cl.cam.ac.uk Content-Type: multipart/mixed; boundary="0000000000008f56380581b533dd" X-debug-header: local_aliases has suffix Subject: [isabelle] =?utf-8?q?Fwd=3A_Isabelle_te=C5=BC_ma_pluskwiaki?= X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Tue, 12 Feb 2019 16:49:00 -0000 --0000000000008f56380581b533dd Content-Type: text/plain; charset="UTF-8" Dear Isabelle list, We have run across a slowdown of Isar core commands "show", "sorry" etc on a statement with many fixes and assumes. In the attached the show+sorry takes about a minute, and if we add more assumptions it seems to become twice slower with every next quantifier. Note that "have" is immediate, but if we use "show", it becomes slow. The original Mizar text that we try to express in Isar is a formula of this shape with 19 assumptions. Is there a way to express this in Isar? Regards, Cezary --0000000000008f56380581b533dd Content-Type: application/octet-stream; name="slow_show.thy" Content-Disposition: attachment; filename="slow_show.thy" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: f_js203kkr0 dGhlb3J5IHNsb3dfc2hvdyBpbXBvcnRzIE1haW4gYmVnaW4KCmZ1biBibGEgd2hlcmUgImJsYSAo RCkgPSBUcnVlIgpsZW1tYSAgYmFsbEk6ICAiICAoXDxBbmQ+IHggLiBEKHgpIFw8TG9uZ3JpZ2h0 YXJyb3c+IFAoeCkpIFw8TG9uZ3JpZ2h0YXJyb3c+IGJsYShEKSBcPExvbmdyaWdodGFycm93PiAo XDxmb3JhbGw+IHggLiBEKHgpIFw8bG9uZ3JpZ2h0YXJyb3c+IFAoeCkpIiBieSBibGFzdAoKdGhl b3JlbSAKICBzaG93cyAiXDxmb3JhbGw+IHgxIC4gRCh4MSkgXDxsb25ncmlnaHRhcnJvdz4gIAog ICAgICAgIChcPGZvcmFsbD4geDIgLiBEKHgyKSBcPGxvbmdyaWdodGFycm93PiAKICAgICAgICAo XDxmb3JhbGw+IHgzIC4gRCh4MykgXDxsb25ncmlnaHRhcnJvdz4gCiAgICAgICAgKFw8Zm9yYWxs PiB4NCAuIEQoeDQpIFw8bG9uZ3JpZ2h0YXJyb3c+IAogICAgICAgIChcPGZvcmFsbD4geDUgLiBE KHg1KSBcPGxvbmdyaWdodGFycm93PiAKICAgICAgICAoXDxmb3JhbGw+IHg2IC4gRCh4NikgXDxs b25ncmlnaHRhcnJvdz4gCiAgICAgICAgKFw8Zm9yYWxsPiB4NyAuIEQoeDcpIFw8bG9uZ3JpZ2h0 YXJyb3c+IAogICAgICAgIChcPGZvcmFsbD4geDggLiBEKHg4KSBcPGxvbmdyaWdodGFycm93PiAg ICAgICAgIAogICAgICAgKFEoeDEseDIseDMseDQseDUseDYseDcseDgpIFw8bG9uZ3JpZ2h0YXJy b3c+CiAgICAgICAoUDEoeDIpXDxsb25ncmlnaHRhcnJvdz4gUDIoeDMpKVw8YW5kPiBQMyh4MSkp KSkpKSkpKSIKcHJvb2YoaW50cm8gIGJhbGxJLHJ1bGUgaW1wSSxydWxlIGNvbmpJLHJ1bGUgaW1w SSkKICBmaXggeDEgeDIgeDMgeDQgeDUgeDYgeDcgeDgKICBhc3N1bWUgIkQoeDEpIiBhbmQgIkQo eDIpImFuZCAiRCh4MykiYW5kICJEKHg0KSJhbmQgIkQoeDUpImFuZCAiRCh4NikiIGFuZCAiRCh4 NykiIGFuZCAiRCh4OCkiCiAgYXNzdW1lICJRKHgxLHgyLHgzLHg0LHg1LHg2LHg3LHg4KSIKICBz aG93ICJQMyh4MSkiIHNvcnJ5CiAgYXNzdW1lICJQMSh4MikiCiAgc2hvdyAiUDIoeDMpIiBzb3Jy eQpxZWQgc2ltcF9hbGwKCmVuZAo= --0000000000008f56380581b533dd-- From gidon.ernst at unimelb.edu.au Wed Feb 13 09:12:47 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:49642) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gtqb1-0006Kd-So (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 13 Feb 2019 09:12:47 +0000 X-Cam-SpamDetails: score -1.0 from SpamAssassin-3.4.2-1853420 * -0.7 RCVD_IN_DNSWL_LOW RBL: Sender listed at http://www.dnswl.org/, low * trust * [180.189.28.203 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta2.cl.cam.ac.uk ([128.232.25.22]:48653) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1gtqb1-000Qe6-0B (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Wed, 13 Feb 2019 09:12:47 +0000 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]) by mta2.cl.cam.ac.uk with esmtp (Exim 4.86_2) (envelope-from ) id 1gtqb0-0004XJ-6I for isabelle-users at cl.cam.ac.uk; Wed, 13 Feb 2019 09:12:46 +0000 X-Cam-SpamDetails: score -1.0 from SpamAssassin-3.4.2-1853420 * -0.7 RCVD_IN_DNSWL_LOW RBL: Sender listed at http://www.dnswl.org/, low * trust * [180.189.28.203 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from au-smtp-delivery-203.mimecast.com ([180.189.28.203]:35644) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-SHA384:256) id 1gtqaz-000Hnp-JP (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Wed, 13 Feb 2019 09:12:46 +0000 Received: from AUS01-SY3-obe.outbound.protection.outlook.com (mail-sy3aus01lp2058.outbound.protection.outlook.com [104.47.117.58]) (Using TLS) by relay.mimecast.com with ESMTP id au-mta-23-ozj22HfEM0ull6WD5fyA9g-1; Wed, 13 Feb 2019 20:12:37 +1100 Received: from ME2PR01MB4068.ausprd01.prod.outlook.com (52.134.223.145) by ME2PR01MB4113.ausprd01.prod.outlook.com (52.134.219.205) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.1601.22; Wed, 13 Feb 2019 09:12:33 +0000 Received: from ME2PR01MB4068.ausprd01.prod.outlook.com ([fe80::b41c:1bd:e02b:4657]) by ME2PR01MB4068.ausprd01.prod.outlook.com ([fe80::b41c:1bd:e02b:4657%6]) with mapi id 15.20.1601.023; Wed, 13 Feb 2019 09:12:33 +0000 From: Gidon Ernst To: "isabelle-users at cl.cam.ac.uk" Thread-Topic: Structured elim via obtains and cases, intro via ??? Thread-Index: AQHUw3u5s7EerRwNxESBjn79Zs8wXA== Date: Wed, 13 Feb 2019 09:12:32 +0000 Message-ID: Accept-Language: en-US Content-Language: en-US X-MS-Has-Attach: X-MS-TNEF-Correlator: x-originating-ip: [27.32.137.111] x-ms-publictraffictype: Email x-ms-office365-filtering-correlation-id: b78ca9db-09a3-45a3-13af-08d69193633c x-microsoft-antispam: BCL:0; PCL:0; RULEID:(2390118)(7020095)(4652040)(8989299)(4534185)(4627221)(201703031133081)(201702281549075)(8990200)(5600110)(711020)(4605077)(2017052603328)(7153060)(7193020); SRVR:ME2PR01MB4113; x-ms-traffictypediagnostic: ME2PR01MB4113: x-microsoft-exchange-diagnostics: 1; ME2PR01MB4113; 20:dsD0kC2gyPd4bcUZUdMrrDLkgDdOZdF8o5jYXWZp9uUWKLFCVCwoCmg8j+5JR5pUDBFEwxGud+G2ZKUxSFoeIcDwYidEu2YZQmGbMJaBygcgLOMhX6LOxY11gnHanv8ly8Bu0WvuY+k1zV3jaQOwuZs0Z8HXUrI7selMo3O+FtQ= x-microsoft-antispam-prvs: x-forefront-prvs: 094700CA91 x-forefront-antispam-report: SFV:NSPM; SFS:(10009020)(396003)(366004)(346002)(39860400002)(136003)(376002)(53754006)(199004)(189003)(186003)(26005)(476003)(2501003)(8936002)(8676002)(88552002)(305945005)(68736007)(6506007)(7736002)(81166006)(44832011)(106356001)(486006)(105586002)(97736004)(81156014)(102836004)(71190400001)(2351001)(71200400001)(33656002)(55016002)(478600001)(3846002)(6116002)(9686003)(74482002)(14454004)(7696005)(316002)(53936002)(786003)(25786009)(2906002)(74316002)(66066001)(99286004)(6436002)(5640700003)(6916009)(86362001)(14444005)(256004); DIR:OUT; SFP:1101; SCL:1; SRVR:ME2PR01MB4113; H:ME2PR01MB4068.ausprd01.prod.outlook.com; FPR:; SPF:None; LANG:en; PTR:InfoNoRecords; A:1; MX:1; x-ms-exchange-senderadcheck: 1 x-microsoft-antispam-message-info: Yfhx7dJze8j3OKG2ewbCrRsPu8Avg//G7cz+tKk6QMq+sojFSyjUnvRx7dCbsHyRIJ+yDIWX/rGXNIw3vldSSyqEiazdEcxJHZ+9Xz6d6wKvy+XtdCK7ykriJJDDUVrtGCspXGW/xwWesG5yCITbjrJ9bGf3AkLkmIOZxd88HSNeLdZaElUMzrYuCf5Mh7IWZDOSgOSh0kSDDx431wb5NCeCZ/kDMs36gpXqsYftPl30fFiy0J40rJn8iRxuBFPqDS87uzYfASLh5XxOJveIujqyuqpcMw1qzMR7ACyJvkAArHd81dV3LTj4yROF3LtjEkuTKRZmllsZQRWAZBU6R0ZpNt7cMrLO56Mu73JvztQMjXLub3zrUdKCu6lgWIsi3WC7homgdN17CXQXROfdEtFOqZLJmCXfpe8b2OUdDZw= MIME-Version: 1.0 X-OriginatorOrg: unimelb.edu.au X-MS-Exchange-CrossTenant-Network-Message-Id: b78ca9db-09a3-45a3-13af-08d69193633c X-MS-Exchange-CrossTenant-originalarrivaltime: 13 Feb 2019 09:12:32.5161 (UTC) X-MS-Exchange-CrossTenant-fromentityheader: Hosted X-MS-Exchange-CrossTenant-id: 0e5bf3cf-1ff4-46b7-9176-52c538c22a4d X-MS-Exchange-CrossTenant-mailboxtype: HOSTED X-MS-Exchange-Transport-CrossTenantHeadersStamped: ME2PR01MB4113 X-MC-Unique: ozj22HfEM0ull6WD5fyA9g-1 X-Mimecast-Spam-Score: 0 Content-Type: text/plain; charset=WINDOWS-1252 Content-Transfer-Encoding: quoted-printable X-debug-header: local_aliases has suffix Subject: [isabelle] Structured elim via obtains and cases, intro via ??? X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 13 Feb 2019 09:12:48 -0000 Hi all,=0A=0AI have feedback wrt. documentation and a question (I guess a f= eature request).=0ASorry if these points have been raised before.=0A=0AI re= ally like obtains in lemmas with the ability to specify multiple cases.=0AI= t helped to streamline my Isar proofs a lot and I think it should be advert= ised more in the documentation.=0AThe documentation could be more explicit = about the fact(s) "that" which you can use to prove such lemmas (e.g. in Se= c 2.2.2), as I found out about it accidentally via sledgehammer only (it is= mentioned in fact somewhere at the very end of the manual, but hard to spo= t).=0AAlso, I'd note that "that" in an inductive lemma=0A assumes A obtain= s B using A proof (induction ...)=0Arefers to the outer context, not the pr= operly generalized one, and is therefore useless. Could this be fixed someh= ow?=0A=0ASecondly, how about a similar construct for introduction rules?=0A= Applying an introduction lemma for C=0A assumes a: "!!x. A =3D=3D> B" shows= C=0Acould generate a structure comparable to a cases rule that does the "f= ix x assume a: A show B" for you, possibly extending to multiple assumption= s.=0AIs there a mechanism for this? It would amount to multiple "case ..." = with *different* conclusions, which I understand does not work currently.= =0A=0AThanks a lot and best regards,=0A Gidon=0A From lammich at in.tum.de Thu Feb 14 13:27:27 2019 Received: from ppsw-32.csi.cam.ac.uk ([131.111.8.132]:47154) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1guH31-0001VY-QK (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Thu, 14 Feb 2019 13:27:27 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853476 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta0.cl.cam.ac.uk ([128.232.25.20]:56345) by ppsw-32.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.148]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1guH31-000oWL-0w (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Thu, 14 Feb 2019 13:27:27 +0000 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]) by mta0.cl.cam.ac.uk with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1guH3B-0004DC-1Y for isabelle-users at cl.cam.ac.uk; Thu, 14 Feb 2019 13:27:37 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853476 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:38221 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1guH30-000r6j-JR (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Thu, 14 Feb 2019 13:27:26 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id 439441C04BA; Thu, 14 Feb 2019 14:27:16 +0100 (CET) Received: (Authenticated sender: lammich) by mail.in.tum.de (Postfix) with ESMTPSA id 7718E1C0495; Thu, 14 Feb 2019 14:27:13 +0100 (CET) (Extended-Queue-bit tech_hhdlf at fff.in.tum.de) Message-ID: <1550150832.3733.8.camel at in.tum.de> From: Peter Lammich To: Cezary Kaliszyk , isabelle-users at cl.cam.ac.uk Date: Thu, 14 Feb 2019 14:27:12 +0100 In-Reply-To: References: <706bfe78f9aec300b53295dbfbc88ddc at uwb.edu.pl> <8cea6a4e4ed780b6e93c654a464c343c at uwb.edu.pl> Content-Type: text/plain; charset="UTF-8" X-Mailer: Evolution 3.18.5.2-0ubuntu3.2 Mime-Version: 1.0 Content-Transfer-Encoding: 8bit X-debug-header: local_aliases has suffix Subject: Re: [isabelle] =?utf-8?q?Fwd=3A_Isabelle_te=C5=BC_ma_pluskwiaki?= X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Thu, 14 Feb 2019 13:27:27 -0000 Hi. the problem is that, when you finish the goal, the assumptions you made are unified with the assumptions in the actual goal, in the order of "assume" statements ... this causes an exponential blowup to find the correct matches of the D(x)s ... try reordering your assume statements to avoid this blowup. The attached example works in no time! --   Peter theorem    shows "∀ x1 . D(x1) ⟶           (∀ x2 . D(x2) ⟶          (∀ x3 . D(x3) ⟶          (∀ x4 . D(x4) ⟶          (∀ x5 . D(x5) ⟶          (∀ x6 . D(x6) ⟶          (∀ x7 . D(x7) ⟶          (∀ x8 . D(x8) ⟶                 (Q(x1,x2,x3,x4,x5,x6,x7,x8) ⟶        (P1(x2)⟶ P2(x3))∧ P3(x1)))))))))" proof(determ ‹intro  ballI,rule impI,rule conjI,rule impI›)   fix x1 x2 x3 x4 x5 x6 x7 x8   assume "Q(x1,x2,x3,x4,x5,x6,x7,x8)"   assume "D(x1)" and "D(x2)"and "D(x3)"and "D(x4)"and "D(x5)"and "D(x6)" and "D(x7)" and "D(x8)"   show "P3(x1)" sorry   assume "P1(x2)"   show "P2(x3)" sorry qed simp_all On Di, 2019-02-12 at 17:48 +0100, Cezary Kaliszyk wrote: > Dear Isabelle list, > > We have run across a slowdown of Isar core commands "show", "sorry" > etc on > a statement with many fixes and assumes. In the attached the > show+sorry takes > about a minute, and if we add more assumptions it seems to become > twice slower > with every next quantifier. > > Note that "have" is immediate, but if we use "show", it becomes slow. > > The original Mizar text that we try to express in Isar is a formula > of this > shape with 19 assumptions. > > Is there a way to express this in Isar? > > Regards, > Cezary From cezarykaliszyk at gmail.com Thu Feb 14 13:37:45 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:55634) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1guHCz-0004EV-Ot (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Thu, 14 Feb 2019 13:37:45 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853476 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.169 listed in list.dnswl.dnsbl.ja.net] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.166.169 listed in wl.mailspike.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (cezarykaliszyk[at]gmail.com) * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta2.cl.cam.ac.uk ([128.232.25.22]:38477) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1guHCz-000RWi-fx (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Thu, 14 Feb 2019 13:37:45 +0000 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]) by mta2.cl.cam.ac.uk with esmtp (Exim 4.86_2) (envelope-from ) id 1guHCy-0004LW-Ts for isabelle-users at cl.cam.ac.uk; Thu, 14 Feb 2019 13:37:44 +0000 X-Cam-SpamDetails: score -0.3 from SpamAssassin-3.4.2-1853476 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.169 listed in list.dnswl.dnsbl.ja.net] * -0.0 RCVD_IN_MSPIKE_H2 RBL: Average reputation (+2) * [209.85.166.169 listed in wl.mailspike.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (cezarykaliszyk[at]gmail.com) * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f169.google.com ([209.85.166.169]:52193) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1guHCy-000RVo-fw (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Thu, 14 Feb 2019 13:37:44 +0000 Received: by mail-it1-f169.google.com with SMTP id y184so15018453itc.1 for ; Thu, 14 Feb 2019 05:37:43 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:references:in-reply-to:from:date :message-id:subject:to:cc:content-transfer-encoding; bh=wlA9EzZfu1JvSJSF0pSm1bAFVYWwokWejbEbOQ++NXg=; b=fQ7gf2ymbRZeuuJUHGeVzcuWnkvHL9UPQjI3QVU73cHR7Qk9m/1/81926xeLkIiSWp w4E01zexRGB6yISoUj6Jyq52SsxMeT0LlnlNPuEztL+kKONd8Exk7xBAo+8zWbixwNH4 qfDLdxEFZNxorPtH5LR4WelbTb9DIEtTH87xaXRgSa2KTezQ6kX7vSQ6Ct/hqqDkrQQk smbk2Cjr/nMwlSBBzLMY5pjOQtIdXI2+f2UwaIs3WsZhkHKG8p4s3tS9Aza9bih3hhxe NFsKJ5tEec4Aq9IFUJu4U/Ev1YI7tD9f7aYyWaFoRVTdWQem78xo5cuUI9ZfA0Hyzi4Q ASFQ== X-Gm-Message-State: AHQUAuY/hccLHphQA3P4hWnQ88MdfPYTr0AQsRVmxSyV/qfBbD27dTUb 2czHfSmDRajDUw9qvQSsFO3XdJhh8mW6XtpllEs= X-Google-Smtp-Source: AHgI3IYZhSb9hsJKy1SKyVzxgcpYKRoYtpwRrd0v6eopJCPsPNc7xJfaMO3me1XTOAmJ4+2QW9Lb5y/B9jcbRNAfqEU= X-Received: by 2002:a24:3c43:: with SMTP id m64mr1879885ita.22.1550151462879; Thu, 14 Feb 2019 05:37:42 -0800 (PST) MIME-Version: 1.0 References: <706bfe78f9aec300b53295dbfbc88ddc at uwb.edu.pl> <8cea6a4e4ed780b6e93c654a464c343c at uwb.edu.pl> <1550150832.3733.8.camel at in.tum.de> In-Reply-To: <1550150832.3733.8.camel at in.tum.de> From: Cezary Kaliszyk Date: Thu, 14 Feb 2019 14:37:30 +0100 Message-ID: To: Peter Lammich Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-debug-header: local_aliases has suffix Cc: Karol Pak , isabelle-users at cl.cam.ac.uk Subject: Re: [isabelle] =?utf-8?q?Fwd=3A_Isabelle_te=C5=BC_ma_pluskwiaki?= X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Thu, 14 Feb 2019 13:37:45 -0000 Thanks, this works fast indeed! We'll try to reverse this order for all translated proofs then. Regards Cezary On Thu, Feb 14, 2019 at 2:27 PM Peter Lammich wrote: > > Hi. > > the problem is that, when you finish the goal, the assumptions you made > are unified with the assumptions in the actual goal, in the order of > "assume" statements ... this causes an exponential blowup to find the > correct matches of the D(x)s ... try reordering your assume statements > to avoid this blowup. The attached example works in no time! > > -- > Peter > > > theorem > shows "=E2=88=80 x1 . D(x1) =E2=9F=B6 > (=E2=88=80 x2 . D(x2) =E2=9F=B6 > (=E2=88=80 x3 . D(x3) =E2=9F=B6 > (=E2=88=80 x4 . D(x4) =E2=9F=B6 > (=E2=88=80 x5 . D(x5) =E2=9F=B6 > (=E2=88=80 x6 . D(x6) =E2=9F=B6 > (=E2=88=80 x7 . D(x7) =E2=9F=B6 > (=E2=88=80 x8 . D(x8) =E2=9F=B6 > (Q(x1,x2,x3,x4,x5,x6,x7,x8) =E2=9F=B6 > (P1(x2)=E2=9F=B6 P2(x3))=E2=88=A7 P3(x1)))))))))" > proof(determ =E2=80=B9intro ballI,rule impI,rule conjI,rule impI=E2=80= =BA) > fix x1 x2 x3 x4 x5 x6 x7 x8 > assume "Q(x1,x2,x3,x4,x5,x6,x7,x8)" > assume "D(x1)" and "D(x2)"and "D(x3)"and "D(x4)"and "D(x5)"and > "D(x6)" and "D(x7)" and "D(x8)" > show "P3(x1)" sorry > assume "P1(x2)" > show "P2(x3)" sorry > qed simp_all > > > On Di, 2019-02-12 at 17:48 +0100, Cezary Kaliszyk wrote: > > Dear Isabelle list, > > > > We have run across a slowdown of Isar core commands "show", "sorry" > > etc on > > a statement with many fixes and assumes. In the attached the > > show+sorry takes > > about a minute, and if we add more assumptions it seems to become > > twice slower > > with every next quantifier. > > > > Note that "have" is immediate, but if we use "show", it becomes slow. > > > > The original Mizar text that we try to express in Isar is a formula > > of this > > shape with 19 assumptions. > > > > Is there a way to express this in Isar? > > > > Regards, > > Cezary --=20 Cezary Kaliszyk, University of Innsbruck, http://cl-informatik.uibk.ac.at/cek/ From nipkow at in.tum.de Fri Feb 15 19:39:19 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:56316) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gujKQ-0003tg-V7 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 15 Feb 2019 19:39:19 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853564 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta1.cl.cam.ac.uk ([128.232.0.57]:42469) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gujKQ-000pqo-gd (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 15 Feb 2019 19:39:18 +0000 Received: from ppsw-31.csi.cam.ac.uk ([2001:630:212:8::e:f31]) by mta1.cl.cam.ac.uk with esmtp (Exim 4.90_1) (envelope-from ) id 1gujKP-0003RS-VS for isabelle-users at cl.cam.ac.uk; Fri, 15 Feb 2019 19:39:17 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853564 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [131.159.0.8 listed in list.dnswl.dnsbl.ja.net] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-out1.in.tum.de ([131.159.0.8]:43713 helo=mail-out1.informatik.tu-muenchen.de) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gujKO-000VJX-Ls (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Fri, 15 Feb 2019 19:39:17 +0000 Received: by mail.in.tum.de (Postfix, from userid 107) id DACE31C04BB; Fri, 15 Feb 2019 20:39:14 +0100 (CET) Received: (Authenticated sender: nipkow) by mail.in.tum.de (Postfix) with ESMTPSA id 9A94E1C0498 for ; Fri, 15 Feb 2019 20:39:12 +0100 (CET) (Extended-Queue-bit tech_vyuas at fff.in.tum.de) To: Isabelle Users From: Tobias Nipkow Message-ID: <78ec6666-17de-acd7-5b44-00a989a21e1e at in.tum.de> Date: Fri, 15 Feb 2019 20:39:11 +0100 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:60.0) Gecko/20100101 Thunderbird/60.5.0 MIME-Version: 1.0 Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha-256; boundary="------------ms090807080701020607090007" X-debug-header: local_aliases has suffix Subject: [isabelle] New AFP entry: Probabilistic Primality Testing X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 15 Feb 2019 19:39:19 -0000 This is a cryptographically signed message in MIME format. --------------ms090807080701020607090007 Content-Type: text/plain; charset=utf-8; format=flowed Content-Language: en-US Content-Transfer-Encoding: quoted-printable Probabilistic Primality Testing Daniel St=C3=BCwe and Manuel Eberl The most efficient known primality tests are probabilistic in the sense t= hat=20 they use randomness and may, with some probability, mistakenly classify a= =20 composite number as prime =E2=80=93 but never a prime number as composite= =2E Examples of=20 this are the Miller=E2=80=93Rabin test, the Solovay=E2=80=93Strassen test= , and (in most cases)=20 Fermat's test. This entry defines these three tests and proves their correctness. It als= o=20 develops some of the number-theoretic foundations, such as Carmichael num= bers=20 and the Jacobi symbol with an efficient executable algorithm to compute i= t. https://www.isa-afp.org/entries/Probabilistic_Prime_Tests.html Enjoy! --------------ms090807080701020607090007 Content-Type: application/pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7s" Content-Description: S/MIME Cryptographic Signature MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCC EYAwggUSMIID+qADAgECAgkA4wvV+K8l2YEwDQYJKoZIhvcNAQELBQAwgYIxCzAJBgNVBAYT AkRFMSswKQYDVQQKDCJULVN5c3RlbXMgRW50ZXJwcmlzZSBTZXJ2aWNlcyBHbWJIMR8wHQYD VQQLDBZULVN5c3RlbXMgVHJ1c3QgQ2VudGVyMSUwIwYDVQQDDBxULVRlbGVTZWMgR2xvYmFs Um9vdCBDbGFzcyAyMB4XDTE2MDIyMjEzMzgyMloXDTMxMDIyMjIzNTk1OVowgZUxCzAJBgNV BAYTAkRFMUUwQwYDVQQKEzxWZXJlaW4genVyIEZvZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVu IEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNVBAsTB0RGTi1QS0kxLTArBgNVBAMTJERG Ti1WZXJlaW4gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgMjCCASIwDQYJKoZIhvcNAQEBBQAD ggEPADCCAQoCggEBAMtg1/9moUHN0vqHl4pzq5lN6mc5WqFggEcVToyVsuXPztNXS43O+FZs FVV2B+pG/cgDRWM+cNSrVICxI5y+NyipCf8FXRgPxJiZN7Mg9mZ4F4fCnQ7MSjLnFp2uDo0p eQcAIFTcFV9Kltd4tjTTwXS1nem/wHdN6r1ZB+BaL2w8pQDcNb1lDY9/Mm3yWmpLYgHurDg0 WUU2SQXaeMpqbVvAgWsRzNI8qIv4cRrKO+KA3Ra0Z3qLNupOkSk9s1FcragMvp0049ENF4N1 xDkesJQLEvHVaY4l9Lg9K7/AjsMeO6W/VRCrKq4Xl14zzsjz9AkH4wKGMUZrAcUQDBHHWekC AwEAAaOCAXQwggFwMA4GA1UdDwEB/wQEAwIBBjAdBgNVHQ4EFgQUk+PYMiba1fFKpZFK4OpL 4qIMz+EwHwYDVR0jBBgwFoAUv1kgNgB5oKAia4zV8mHSuCzLgkowEgYDVR0TAQH/BAgwBgEB /wIBAjAzBgNVHSAELDAqMA8GDSsGAQQBga0hgiwBAQQwDQYLKwYBBAGBrSGCLB4wCAYGZ4EM AQICMEwGA1UdHwRFMEMwQaA/oD2GO2h0dHA6Ly9wa2kwMzM2LnRlbGVzZWMuZGUvcmwvVGVs ZVNlY19HbG9iYWxSb290X0NsYXNzXzIuY3JsMIGGBggrBgEFBQcBAQR6MHgwLAYIKwYBBQUH MAGGIGh0dHA6Ly9vY3NwMDMzNi50ZWxlc2VjLmRlL29jc3ByMEgGCCsGAQUFBzAChjxodHRw Oi8vcGtpMDMzNi50ZWxlc2VjLmRlL2NydC9UZWxlU2VjX0dsb2JhbFJvb3RfQ2xhc3NfMi5j ZXIwDQYJKoZIhvcNAQELBQADggEBAIcL/z4Cm2XIVi3WO5qYi3FP2ropqiH5Ri71sqQPrhE4 eTizDnS6dl2e6BiClmLbTDPo3flq3zK9LExHYFV/53RrtCyD2HlrtrdNUAtmB7Xts5et6u5/ MOaZ/SLick0+hFvu+c+Z6n/XUjkurJgARH5pO7917tALOxrN5fcPImxHhPalR6D90Bo0fa3S PXez7vTXTf/D6OWST1k+kEcQSrCFWMBvf/iu7QhCnh7U3xQuTY+8npTD5+32GPg8SecmqKc2 2CzeIs2LgtjZeOJVEqM7h0S2EQvVDFKvaYwPBt/QolOLV5h7z/0HJPT8vcP9SpIClxvyt7bP ZYoaorVyGTkwggWsMIIElKADAgECAgcbY7rQHiw9MA0GCSqGSIb3DQEBCwUAMIGVMQswCQYD VQQGEwJERTFFMEMGA1UEChM8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRzY2hl biBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLEwdERk4tUEtJMS0wKwYDVQQDEyRE Rk4tVmVyZWluIENlcnRpZmljYXRpb24gQXV0aG9yaXR5IDIwHhcNMTYwNTI0MTEzODQwWhcN MzEwMjIyMjM1OTU5WjCBjTELMAkGA1UEBhMCREUxRTBDBgNVBAoMPFZlcmVpbiB6dXIgRm9l cmRlcnVuZyBlaW5lcyBEZXV0c2NoZW4gRm9yc2NodW5nc25ldHplcyBlLiBWLjEQMA4GA1UE CwwHREZOLVBLSTElMCMGA1UEAwwcREZOLVZlcmVpbiBHbG9iYWwgSXNzdWluZyBDQTCCASIw DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJ07eRxH3h+Gy8Zp1xCeOdfZojDbchwFfylf S2jxrRnWTOFrG7ELf6Gr4HuLi9gtzm6IOhDuV+UefwRRNuu6cG1joL6WLkDh0YNMZj0cZGnl m6Stcq5oOVGHecwX064vXWNxSzl660Knl5BpBb+Q/6RAcL0D57+eGIgfn5mITQ5HjUhfZZkQ 0tkqSe3BuS0dnxLLFdM/fx5ULzquk1enfnjK1UriGuXtQX1TX8izKvWKMKztFwUkP7agCwf9 TRqaA1KgNpzeJIdl5Of6x5ZzJBTN0OgbaJ4YWa52fvfRCng8h0uwN89Tyjo4EPPLR22MZD08 WkVKusqAfLjz56dMTM0CAwEAAaOCAgUwggIBMBIGA1UdEwEB/wQIMAYBAf8CAQEwDgYDVR0P AQH/BAQDAgEGMCkGA1UdIAQiMCAwDQYLKwYBBAGBrSGCLB4wDwYNKwYBBAGBrSGCLAEBBDAd BgNVHQ4EFgQUazqYi/nyU4na4K2yMh4JH+iqO3QwHwYDVR0jBBgwFoAUk+PYMiba1fFKpZFK 4OpL4qIMz+EwgY8GA1UdHwSBhzCBhDBAoD6gPIY6aHR0cDovL2NkcDEucGNhLmRmbi5kZS9n bG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDBAoD6gPIY6aHR0cDovL2NkcDIu cGNhLmRmbi5kZS9nbG9iYWwtcm9vdC1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDCB3QYIKwYB BQUHAQEEgdAwgc0wMwYIKwYBBQUHMAGGJ2h0dHA6Ly9vY3NwLnBjYS5kZm4uZGUvT0NTUC1T ZXJ2ZXIvT0NTUDBKBggrBgEFBQcwAoY+aHR0cDovL2NkcDEucGNhLmRmbi5kZS9nbG9iYWwt cm9vdC1nMi1jYS9wdWIvY2FjZXJ0L2NhY2VydC5jcnQwSgYIKwYBBQUHMAKGPmh0dHA6Ly9j ZHAyLnBjYS5kZm4uZGUvZ2xvYmFsLXJvb3QtZzItY2EvcHViL2NhY2VydC9jYWNlcnQuY3J0 MA0GCSqGSIb3DQEBCwUAA4IBAQCBeEWkTqR/DlXwCbFqPnjMaDWpHPOVnj/z+N9rOHeJLI21 rT7H8pTNoAauusyosa0zCLYkhmI2THhuUPDVbmCNT1IxQ5dGdfBi5G5mUcFCMWdQ5UnnOR7L n8qGSN4IFP8VSytmm6A4nwDO/afr0X9XLchMX9wQEZc+lgQCXISoKTlslPwQkgZ7nu7YRrQb tQMMONncsKk/cQYLsgMHM8KNSGMlJTx6e1du94oFOO+4oK4v9NsH1VuEGMGpuEvObJAaguS5 Pfp38dIfMwK/U+d2+dwmJUFvL6Yb+qQTkPp8ftkLYF3sv8pBoGH7EUkp2KgtdRXYShjqFu9V NCIaE40GMIIGtjCCBZ6gAwIBAgIMHxoBcB9CcQPHriXDMA0GCSqGSIb3DQEBCwUAMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBMB4XDTE4MDUxNTA2NTMyMloXDTE5MTEx NzAyMDAwMFowgcAxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIDAZCYXllcm4xETAPBgNVBAcMCE11 ZW5jaGVuMSkwJwYDVQQKDCBUZWNobmlzY2hlIFVuaXZlcnNpdGFldCBNdWVuY2hlbjEiMCAG A1UECwwZRmFrdWx0YWV0IGZ1ZXIgSW5mb3JtYXRpazEWMBQGA1UEAwwNVG9iaWFzIE5pcGtv dzEmMCQGCSqGSIb3DQEJARYXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGUwggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQCADTpwPRPWfSf9fi2ZhFfIjICiK0m69uj995i1vv8ajdIH XwulShY6KCmrezG6KZULjEi5GyRbZiCon/Ag+/0K/vLg3fIioBPPCw6lbEnhLeTyDfTDQJjo zpnlt24Eqp1Mb3ErO73WvAACYFJtChMZL6aF6WiHsL8MYTE0FhlHeuT9A56JLZvfqfEiuG4N dCf19A0EYvRxQiHk4HyV8ib/idJoTWfQSqBDYM/nLbmF6nVizuHlicNYwftM00hgqA2UM4im LSB4FytvRUSPNdmc0eY9zcHDpSz5nZbDWPjmQeMWAlFuV2sBqNcYUyeTzOuvoXPsSTBFRmcX KlFdysPnAgMBAAGjggLfMIIC2zBABgNVHSAEOTA3MA8GDSsGAQQBga0hgiwBAQQwEQYPKwYB BAGBrSGCLAEBBAMIMBEGDysGAQQBga0hgiwCAQQDCDAJBgNVHRMEAjAAMA4GA1UdDwEB/wQE AwIF4DAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYBBQUHAwQwHQYDVR0OBBYEFP4tlXbsLniS Wq9uFYP/UEre4Ek6MB8GA1UdIwQYMBaAFGs6mIv58lOJ2uCtsjIeCR/oqjt0MIGuBgNVHREE gaYwgaOBEG5pcGtvd0Bpbi50dW0uZGWBEW5pcGtvd0Bjcy50dW0uZWR1gSBuaXBrb3dAaW5m b3JtYXRpay50dS1tdWVuY2hlbi5kZYEXdG9iaWFzLm5pcGtvd0Bpbi50dW0uZGWBGHRvYmlh cy5uaXBrb3dAY3MudHVtLmVkdYEndG9iaWFzLm5pcGtvd0BpbmZvcm1hdGlrLnR1LW11ZW5j aGVuLmRlMIGNBgNVHR8EgYUwgYIwP6A9oDuGOWh0dHA6Ly9jZHAxLnBjYS5kZm4uZGUvZGZu LWNhLWdsb2JhbC1nMi9wdWIvY3JsL2NhY3JsLmNybDA/oD2gO4Y5aHR0cDovL2NkcDIucGNh LmRmbi5kZS9kZm4tY2EtZ2xvYmFsLWcyL3B1Yi9jcmwvY2FjcmwuY3JsMIHbBggrBgEFBQcB AQSBzjCByzAzBggrBgEFBQcwAYYnaHR0cDovL29jc3AucGNhLmRmbi5kZS9PQ1NQLVNlcnZl ci9PQ1NQMEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMS5wY2EuZGZuLmRlL2Rmbi1jYS1nbG9i YWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MEkGCCsGAQUFBzAChj1odHRwOi8vY2RwMi5w Y2EuZGZuLmRlL2Rmbi1jYS1nbG9iYWwtZzIvcHViL2NhY2VydC9jYWNlcnQuY3J0MA0GCSqG SIb3DQEBCwUAA4IBAQAMTylJt407CL/HwgO4Om/yrpB/yDMKHLj4A1hvkSedvYvTFLk9gVTw U/fAKYrZxqazGcd0mCcRKPhj4lEbXUm5A6emrBRcolPiekw9/uEp1aZUz082cgi7HXnQS+Pi by5BJ4bBeMwt3FrFgdz18nl/+DcxX5KR3LMSujZu4d4ZmD19fifGxcAsOk2emYvA5JAMsmuw DWtYgnI08t+w73QAbkEPLpxqtkxzWK3Djv3aiMC6tA1cZUdgi5EVZGaEh9yZ8qWh2a7LR2ts XvbumZ++H+C0zQjn7FFgp8uQpqxN+dVKPjXx58LmHymKRKU2xMsyKE6W2x32qaVIClKPXdqc MYIECzCCBAcCAQEwgZ4wgY0xCzAJBgNVBAYTAkRFMUUwQwYDVQQKDDxWZXJlaW4genVyIEZv ZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVuIEZvcnNjaHVuZ3NuZXR6ZXMgZS4gVi4xEDAOBgNV BAsMB0RGTi1QS0kxJTAjBgNVBAMMHERGTi1WZXJlaW4gR2xvYmFsIElzc3VpbmcgQ0ECDB8a AXAfQnEDx64lwzANBglghkgBZQMEAgEFAKCCAj0wGAYJKoZIhvcNAQkDMQsGCSqGSIb3DQEH ATAcBgkqhkiG9w0BCQUxDxcNMTkwMjE1MTkzOTExWjAvBgkqhkiG9w0BCQQxIgQgr/j/BkDR iTI4H0tgOMCempYB7tz2Cf/hLE2zTRlutF8wbAYJKoZIhvcNAQkPMV8wXTALBglghkgBZQME ASowCwYJYIZIAWUDBAECMAoGCCqGSIb3DQMHMA4GCCqGSIb3DQMCAgIAgDANBggqhkiG9w0D AgIBQDAHBgUrDgMCBzANBggqhkiG9w0DAgIBKDCBrwYJKwYBBAGCNxAEMYGhMIGeMIGNMQsw CQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2VyZGVydW5nIGVpbmVzIERldXRz Y2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQLDAdERk4tUEtJMSUwIwYDVQQD DBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFwH0JxA8euJcMwgbEGCyqGSIb3 DQEJEAILMYGhoIGeMIGNMQswCQYDVQQGEwJERTFFMEMGA1UECgw8VmVyZWluIHp1ciBGb2Vy ZGVydW5nIGVpbmVzIERldXRzY2hlbiBGb3JzY2h1bmdzbmV0emVzIGUuIFYuMRAwDgYDVQQL DAdERk4tUEtJMSUwIwYDVQQDDBxERk4tVmVyZWluIEdsb2JhbCBJc3N1aW5nIENBAgwfGgFw H0JxA8euJcMwDQYJKoZIhvcNAQEBBQAEggEADv+teE++x2qgmjxupZlbabQyx+3/062gR6QP l5dN8KtEb5O1wDCdhJwKLMT77mtROc2cYW98FrOWGge4Xdqw7oEbDZUvy4gXco8/y6pSzBkl 3JlWQth4cnCgPDWTxR1lpAfvZcN/sfKcraimBN5WBJe7Ztau6Lk6/ZUaGWZh0LIWPoFjvqgN Xzh9P1VRkQnQBnWLw+zgcf2S89JKKKliA1yfS4k9zBx7DMScJacoupjBoTQ89mkcaf8Tk9qD M6uTcqRE8O3Ma/T1nlEhvtRxq5rkV2YfwDCK7pHI3VWJJxaxQrz9MLeWmU/3xEP2kfwQSxrX 1CPXLRZyYZt9+EMSSgAAAAAAAA== --------------ms090807080701020607090007-- From noamneer at gmail.com Sat Feb 16 03:05:12 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:40212) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1guqHw-0008Mq-NV (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 16 Feb 2019 03:05:12 +0000 X-Cam-SpamScore: s X-Cam-SpamDetails: score 1.8 from SpamAssassin-3.4.2-1853564 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.182 listed in list.dnswl.dnsbl.ja.net] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (noamneer[at]gmail.com) * 1.6 HTML_IMAGE_ONLY_24 BODY: HTML: images with 2000-2400 bytes of words * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.4 HTML_IMAGE_RATIO_02 BODY: HTML has a low ratio of text to image * area * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta2.cl.cam.ac.uk ([128.232.25.22]:54502) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1guqHv-000BIb-Ld (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 16 Feb 2019 03:05:12 +0000 Received: from ppsw-33.csi.cam.ac.uk ([2001:630:212:8::e:f33]) by mta2.cl.cam.ac.uk with esmtp (Exim 4.86_2) (envelope-from ) id 1guqHv-0007Jy-Jz for isabelle-users at cl.cam.ac.uk; Sat, 16 Feb 2019 03:05:11 +0000 X-Cam-SpamScore: s X-Cam-SpamDetails: score 1.8 from SpamAssassin-3.4.2-1853564 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.182 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (noamneer[at]gmail.com) * 0.4 HTML_IMAGE_RATIO_02 BODY: HTML has a low ratio of text to image * area * 1.6 HTML_IMAGE_ONLY_24 BODY: HTML: images with 2000-2400 bytes of words * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f182.google.com ([209.85.166.182]:32791) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1guqHu-000Yby-gB (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Sat, 16 Feb 2019 03:05:11 +0000 Received: by mail-it1-f182.google.com with SMTP id g137so9455703ita.0 for ; Fri, 15 Feb 2019 19:05:09 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:from:date:message-id:subject:to; bh=WeWWCoY3YNuSd5oZO3p8eqtDSJIlEnXyiprjnCWGNdk=; b=DPoArSmaiLq1k8uEaOd2D4miktTHVW+9fMtfjRnpR2t1O9kMOSEMVzaONjA8Ew5qbZ eBUDqQ9SjwIkDd0Kw0IG5rNySr8e31CaXAlgavzU8pjyWPnQmhdxN9WsTZLi+VU59aEg JBLjvKUg7mbt8TNcbgJLr7oAUA2pCnK1J1g0zFuODJerhN0vTOW8YhmXAFgDPOHXev6w Bujnzo4+t00DomMOJYXUrzW1IQsFHZNT7SCbVnoNaRzbsO7DlijuugZ/1nUeZzzroNq5 K5BdNeYimtwUEmrtZl7VmddLM0Gx+ZlkWWOw/1NXnn75W9hCstGiVsW+boUwhGtnTejI 4ZEA== X-Gm-Message-State: AHQUAuZiK2h5OV7UYq93Ls51RD0gCahFDlA1yad4E3LWYKIX4y4X8WUl 0l15WbKkb3Klf4Mq5SeF121+ijwVNHY2iXF3Qfc+Cttg X-Google-Smtp-Source: AHgI3Ib1byuebZs/U86ur2thPDL2gleA5puhIVpfD3y+GzV8ruuzoKvImMcqXVyZyfov/ufQ9FPG+Q38iXFSnm5+0vw= X-Received: by 2002:a6b:b409:: with SMTP id d9mr7436610iof.265.1550286308063; Fri, 15 Feb 2019 19:05:08 -0800 (PST) MIME-Version: 1.0 From: noam neer Date: Sat, 16 Feb 2019 05:04:30 +0200 Message-ID: To: isabelle-users Content-Type: multipart/mixed; boundary="000000000000b16d760581fa2877" X-debug-header: local_aliases has suffix Subject: [isabelle] some proof problems X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sat, 16 Feb 2019 03:05:12 -0000 --000000000000b16d760581fa2877 Content-Type: multipart/related; boundary="000000000000b16d750581fa2876" --000000000000b16d750581fa2876 Content-Type: multipart/alternative; boundary="000000000000b16d740581fa2875" --000000000000b16d740581fa2875 Content-Type: text/plain; charset="UTF-8" hi everybody. I have two problems I encountered while proving something. I'm bringing them here in a very simplified form. I'm working with Isabelle/jEdit 2018 on win10. 1) here there is external lemma which is not really important, so I simplified it to "Y=Y". inside the proof there is a lemma L7 whose proof is again not important, so I used "sorry". the problem comes in the "apply" statement where the cursor stands. for some reason the simplifier can't apply L7, and I don't know why. maybe you know? [image: query_19_02_16a.png] 2. it seems I can solve the first problem by applying 'subst' and 'auto' instead of 'simp'. but when I'm trying to continue the equality, before even applying anything, I get some typing problem I don't understand. maybe you do. [image: query_19_02_16b.png] I'm attaching the text files just in case. thanx in advance. Virus-free. www.avast.com <#DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2> --000000000000b16d740581fa2875 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
hi everybody.

I have two problems I enc= ountered while proving something.
I'm bringing them here = in a very simplified form.
I'm working with Isabelle/jEdi= t 2018 on win10.


1) here there is e= xternal lemma which is not really important,=C2=A0
so I simplifie= d it to "Y=3DY".
inside the proof there is a lemma L7 w= hose proof is again not important,
so I used "sorry".
the problem comes in the "apply" statement where the cur= sor stands.
for some reason the simplifier can't apply L7, an= d I don't know why.
maybe you know?

= 3D"query_19_02_16a.png"


2. it seems I can = solve the first problem by applying 'subst' and 'auto' inst= ead of 'simp'.
but when I'm trying to continue the eq= uality, before even applying anything,
I get some typing problem = I don't understand. maybe you do.

3D"query_19_02_16b.png"=


I'm attaching the text fil= es just in case.
thanx in advance.


3D"" Virus-free. www.avast.com
--000000000000b16d740581fa2875-- --000000000000b16d750581fa2876 Content-Type: image/png; name="query_19_02_16a.png" Content-Disposition: inline; filename="query_19_02_16a.png" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: ii_js6vdll60 iVBORw0KGgoAAAANSUhEUgAABM8AAANSCAIAAAD9Kn6KAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7N0JQFT3vS/wvGes11iTZzWWeo3X 0uR6fV6ftbaJ11prUmsWm8VYE5smaUyMUYmi4hZjjPu+7ysq4IYgKm6IoiLihrggCiqKiIobLoC4 RH3fmd+f42GWM2eGAUG/n55O/tv5n3NmDjPn6wzDMw+JiIiIiIiIvI1pk4iIiIiIiLyPaZOIiIiI iIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvM+NtBkXF6dKRERERERE RIbMps3Ro0ePGDFCVYiIiIiIiIgMuZE24+LiVkd8sG9Xq9RjfJOTiIiIiIiIjJhKmzt27MDtti0L bt2q+fDB/9od8m9LFr0bEz1eep1Y3/GZjutV2RhGNpl0QlWc04YZjUefeDSioKnQOpZG3e45HANo t4zCf2x6CrcUrA6FW23nK10su23iTtDYDdCO2+g4bbZiYjuOYKXSfWcSEREREVFhrtPm36DV31CY O6bt1YON7x2qd2R4hbTUCvl55aKCW8sYRxAPSjxtnpg0SW1SP1h2Q2s5MakJ4k9H3e45mxkjHbaD rgXFR72WyXUdNmuVHnZ3gqXB5o6ygfbCAxzc2zbs72q37hT9WHfWIyIiIiKiUsBF2ty5c+eYMWNQ WL5s7ZIZXy8e8b+ygp49OvSFwK/qZq0tH9qpsgxzBPHgUcYwZDJIaMPMjC8Iirq9KGgSjjt0rdZ2 VbHfotZiCVSFjvNRg/1apc2jw9XfOfryI7q7xm6A4zUK6NZE2Y27RH8Hlv47k4iIiIiICnGRNnfs 2BEXF7c4JHTf3tNbo7dP/fGl3Vsqj//i5W0NG8Z/+b9X+VU9tT9RDbWlZQxL/BJaCFNUBrEGifVq 1KNI4WA96dQFD9sxGrX1QjFItQl9RRtVaARaCyq6LSoFLZYdeLSKlX42m7VMsExo0WTSJAfHqy8X jNTfPx07oq1JE/0+Ge0F+tRAbadtyppCjY/WE7b1wnS9lmJHmw/Sok2xnbOApR1Vm5PEcvyP1rD2 qzIREREREZUCRmmz1Tut5Dc2+wT8MGrIkoljglKS6z988L9yT1Sc++tfrGtbLqz1/0T913/JYDuW YGHJAgX/tWPNB5bAgUJB9rAkCK3xURyxlvTjnY1RtA7nGalQxbpdC12TfgDK9qwTF9qA0FKQthfm WTYkW7Xukayun0cr6xof3T8FTSgW7LuuaK/wON2Wte1pCh1o4UlRsx+vY7OVR/tYeC37afQtljVV zVK0ToiCbmLdHhERERER0ePn+vc2lyxeNX1q0OQxa3t06n8hrvbDzL/8FFJ+dO0XRv3uvxNbfxj1 s5+pcbYKrv91sUmxBgcrLT086lerWdd6xNKkDSsoOBgDhcKS84ykq+gGPWotFF+1TWv0+/BoUitt Ovu1CljWKrTTiu3u2s+j366OZRqbYTKz8SdXtWEWBVNa3iC1X8l219R6lpWMtmCh24p+g7p9tG4X bGZCh9bisKybwtVOEBERERFRCXOdNqPWJe5PSOvSuXfIgsVHVv7vW1ueyZv5vwc1/X8jf/e7Da+8 vKric2qcLS0JWEiSsdQtJWnX8os+SBR0Pxqm0WcMa8HBGG3OArq9KNz3qKNQu2q2mUfbtEZrsduJ Rw32a7liuytS0c9TULbbrM3mZKZC8zmAVWwmsXDZWjCtq+kV3Zr6qaX86EDsZ8MIrcVxWdYxuR9E RERERFSSXKfNSaNXjRu+dOniqIMHzkz8vvmpFeVWfv4fe998c/CLv1zY8HcZ1o/aOqIPFhYqEmhJ wRIzpIQmXXpQa+kaFW1NfaHwGDQU2qbNhPqxuqG6HlXEWoXmsVkXCq/zaKuWis1k7ng0l2XH1eqP jkE3vX5DovDmsJLjNyn1sEqh47QoPM0j9veko7Ud0Y/TZi+YrlCDlLQmreC8bOowiYiIiIjoMXCd Nvv1nDqw3/xB/edPHr/8xRdf+7J2je0ftt77y+pHBg1WIxxDJLBmDPxXkchhSRUWj0KCJTxYv97G 4lF+KRhoUSiXFA4baoRljL4GalDBDjya2QKtjjZlbUPVbrBNnincUrAJ0K2oa7VNhs4VrKT7liDd TJav2ClodHr/KJaVCh+GHQzRRjzahtN1CobICMf3tgP6rehWU20F9cLng0ymNmgZ+aixcNk6xvku ExERERHR4+I6bSYmHho+eLpfx0EjBy37xS/+3KnB74KbNt3688rxo0apEU+aUvJLgIUylQew/tOQ wp6SwyQiIiIiKnNcp02BzDllwuLp0xaivDlwwfy/fyTtVGyKljZP6H+X0fL+n46ZdFYyqxRZocMk IiIiIqJSxGzapBLncdqUz6Y+8SHsKTlMIiIiIqKyimmTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiI iIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOI iIiIiIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvM82bT6jIy1169bd sGGDdM2bN08azZOphGrSQaPMqW3FpMzMzHbt2lWqVKlixYoBAQGqtWi0nTEDgxs2bKgqBcaOHWty Ere25RbMrFFNjqDXfge0RncfDgPVqlX78ssvVeXhQ39//ypVqty/f9+LmwCbw3F4dPZnssN9KPqO Yf6inBvehY1CuXLlXnnllZCQEK3R3T3xyuNlv12DPfFgJ4mIiIioVHGQNr178We8ln3vG2+8sXDh QlVxrkGDBs2aNbty5cq9e/eGDRumWovGrQPEYATd2NhYVbeqXbt2+fLlzUzi2Z1phsmZHQ4rjr3q 2LEj7hZVefiwTp06fn5+quI9NnuuVR2eTvaHafKsMwnzF+Xc8C7tYCXuJiUl6RtLmP12Dfbkce0k EREREXlLqUubJrdSrly5gQMHqoqXuHWAGNyuXbsWLVqo+sOHERERjRo1QswwM4lb23KLyZkdDiuO vYqJicG0x44dQ/nEiRMo28Qwr7DZc63q8IjsGx0O8xhmK8q54V3aod2/fx/lwMBAfWMJs9+uwZ48 rp0kIiIiIm9xnTa1Fq1w6dKlN954o3z58k2aNEHZOsop+wnPnz//6quv4sp7xIgRNpPjViODnenQ oUPlypWXLFmi6o72qmnTpthKhQoVWrdunZ+fjxZM27t372rVqqGMlq5du1aqVAkDsCfSO378+Dff fBOTvP3223fu3EGjMxiMHX7llVcOHTokLc2aNVu4cKG0o2q8dW3Y559/Lp8Ett9//fjp06djV6tX r46yMW1mDWZr06YN9gSrz5w5Uxq1YQYPhxTGjh2L4IQde//995FY0JiZmSmrmPl0KFbRtovbGjVq SLu2os2B169fH48L2rOzs9G4bds2lD/99NMGDRpYVnPCZjekiluN1mhfsHQX0PfaPyImHwWZwa1z w+HZqD36Dh9Bt3YGBUmb8mFarVEr6MsOH199wf6UcHdnNFqL/b1ts0Xch9glf39/y2pEREREVBY4 SJsarcXmcvOTTz7BVSbCWN26dXFBbB3llHUmRVratm1br149ZInw8HA02kyuFVwaNmwYAmejRo3k w4HO9urYsWOYMzQ0FGUUECPl+hgX93Xq1ElLS7OOskCvfDp33bp12irOyH5Onjy5Xbt2qB44cAA5 Si7o9fvvbOsybNSoUbI62O+/fjySxoABA6wDXcBaGmnBzIhwOTk5QUFBaJQIhILsp8uHw/4+wT7b r2Kgc+fOODQUcNujRw9p1Fa0OfBBgwbJLz1OnToVYzp27IgyoqbxW9k2u6FV9e32jcbD7B8Rk4+C zODWueHwbNQefYePoFs7gwJukdaQJPWNWkFfdvj46gv2p4T5nbEn0zo8/7UtItzi8BGVUY6Li7PM RURERESlnoO0KVd4Gv01nxRwZYmyaNOmjXWUUxhjMyFW15KD1mtfMAOXvK1bt0bmTE9Pt9+r+Ph4 FKpUqYIWbXKEGeuqDytVqmQTYNCL+KeVjXdDBuTl5WHrCAkdOnSQmbUVjbeOMva8cePG8tYW2O8/ Ctr4pk2b+vr67t27V6oGsJbNnmPmIUOGoCCBR35BURvm8uGwv08QWrRooTUa2LZtG1ZBkChfvrx2 CNqKNgeODFauXDlECyTML774AncgVkSL/JuCM1h39uzZqmKt2n9kVCsbFPRl+0fE5KOA8ZjBrXPD 4dmoPfoOH0HzOyOQZrWv+UFVtqsV9GWHj6++YH9KuHXPqIqV1mJ/b6OgbXHs2LEo6A+fiIiIiEo/ D9OmmfcxhP2EiBzyWUH9uz32BZMQRbAKooX9XtWqVev9999HInU4OcbbX99rvS53QxsQEBCAOIEL 9KysLH278dZRxlq1a9fGAGmx33/9eKSvzp07o8XlGzv6tQRm1meVoKAglLVh5h8O41WM+fj49OjR 45VXXlF13Wz2B45chKCFdjy4NWvW7N27N5KM6nMC8+P+lDICPCbX3k+233+Dgr5sv2MmHwVtBvPn BrZlcDY6fATd3Rk9rRExfvz48SjoH0oPTgmPd0Zrsb+3tS4Upk6dioL8sMvhExEREVHp50nafPPN N3H1f/78eWu/C/YTNmvWrGHDhrg8lY8F2kyOi075tT1jGCM7gFCBdaOjo+33ClP17dt39+7d9luB du3a4aLf5rOLWq++7JA2ID09HeUvvvjCpt1461LGhf4bb7whLfb7rx8PuMfQ4vKNHZu1oE2bNtrn MJEuUlNT0agNM3449LNp5aZNm9qvYgyPV5UqVfRxQlvR/sAxrFq1anKX9u/f/4UXXsA9KV3OINdh kuzsbJTHjh2LbWH3UNafTvYHpRUcDnN4npt5FLQZzJ8bxmejw0cQ3NoZPa0RB9ikSROkOPmQqjQ6 fHztCzZlz3ZGazE4/1HAj0l+fr78Hql2+ERERERUynmSNjMyMho3boyrXkQCm8H2sJZGWpKTk3FZ WblyZf0FrlYYMWIErsXRax3r1JAhQ+RPStSpU2fy5Mlosd8rBBUMQKKz3wpcunQJl/jYVsWKFadP n27Tqy87pB/QqlWrhIQEKWvtxlvXyu+//778RRD7/dePr1GjBrpatGihvRfqjH4tgSN9++23sTry THh4uDRqw4wfDv1sWvnAgQP2qxiLi4vDSGxL1XWz2R847kz0RkdHo4xVUEYws6zjnPYtO3g0MZv2 kU796aRt0b7gcJj9jpl8FLQZwOS5YXw2OnwEPdgZjdYYGRmJeZDn5V9tpNHh42tf0Jc93hmtxeD8 R2HgwIH4SccuyZ1DRERERGWCbdokMk/eu1u2bJmq05OllDy+WuwkIiIiorKlUNrEVZ0N1eEpNYuO 6igaNZeO6igpaqvOqXGlgNqhwlRf0WRnZ7///vuVKlWSX0p0Rm2yMNXnJWpSO6q71FO7q6M6ikxN V5jqc8Xk42ue2rwjaoQTGMC0SURERFQWlZkrcio9GjVqVNGqadOmsbGxqpWeFKXt8a1QoYJ8wzAR ERERlS1Mm0REREREROR9TJtERERERETkfZa/WEBERERERETkXXxvk4iIiIiIiLzvmetERERERERE 3sa0SURERGXeXStVISKi0oFpk4iIiMo8RM0zZ85s3LhR1YmIqBRg2iQiIqInAaIm0yYRUanCtElE RERERETex7RJREREZR5/b5OIqBTyStq8dv3aFcutp44eTQ5avGDBonmBi+Y6XKQrftdOtYI5gSsX /2PwrMbfjNWWt3pM6Dt5+qGj+9QI8raTRxbELSy5f8J4b87Psq5kqkoxW7wkaPzEMSkpx1S9sB1x 20eNGT5n3ixVNyfxwP6YrZvNLBip1vGGwYMHf6qDqup4smzcs+yjkXWa9q7QJODZPwY8++e+z3Wd 0fLMhTTV/Zjk3IjLu7E878YC3KKsWukJsmHDhh+tNm/efPjwYdX6mFy5khW2csa8RQEz53dZvHzU xUsZqqPEXb5yddfBE0kpZ655frHgAn9vk4ioFHIaDKI3b8LVs8tlzNih8+d+v36Vf9Sabnt2Lrxx /ZJa3x0rVi5Vf5DFuZs3byKRqhVMOH0mpWXAtE5ztgyPONx7edLE9Sd6L0/+amFip9GzPvl+/LZd m9Q4T5m8f/RL9OYotbK3xe3cEbFqpcGCAWpocUo/sQlRs4TTJpZzl9JVvdggTE6eOiE2bvuChfNU U2FTpk08nHRoyrRJy0KXqCYTNm+Jzjdn2/atah2PXLuWfflSFpbE/QldunRGwpw4ceikScOwoIAq Gvcn7JMxGKxW856QJUHjJoxGXC9Yxk6YNFZXfbSsCFum1nGH/fytB9T9Y0D5f055ZeLOz5akdw05 6Tdk4/stB1b5U++Kx04dUKuVuNwbq/NvDr6b8+W9nI9xi3LujTWqj4pfyTxvI2deuph1587tlJRj KO/bt++ak4CF9uxs7/+46SFnxiV12Jf26b5T/4g/2mH6vPaqo6TsSEj9dmT4n76c8fJ7o//vh+Pq th5b5/0xb3eZN2DquhPp59Ug7+HvbRIRlTZOgwFeZVXOc+7Bg7sP7hz86dqE/OwJt7JnZab452Wv v37tsprCiaSkpM5+nbp826WzX+fOfl16BPRYujwEs/30072fHJHPxmRnX122YrGawhVEzY6jZ3UO PvDX7+Y3D5jxx28nv/lDMKJmr2VH/BYnvTNo2V+7jdt7sEjvKpi5f2xgFbWytyFPYv77TqALA9TQ YiNR817WmyWcNsdk/L4EAueioMBjKUczMjIWLJi3M972zIlcuxoZ6ezZswcPHXQrLG2JsaRN6+cC jBaM2V6EtLlt9eze77/Q9a/PYunQ9o/9+wfMnDnGZvn++94dPmqKAd/+9dle772wddVstbKXjB47 AufhA1cwBllRreMOm/l7zm31l+9fmLr/05Xn+gWd+brfkf8IOFx98NH6QekdP5pY650ff6VW86qT aSc2bVlvsMTvmnYypcO1C81uX//LnRttcZuf3RKB8+Z1U29/YX4cplsLVlErm1DW5zejZJ63MzMz ETJv59/KuXlDAica7QNnWkbWkJlr+s4s0j8kuTR3Uffdx/+xJfnl6KTfxB57ffq8z1RH8bt85eoP 09YjXv6t24KR82Mitx9NP5+NZW3ssZGBMR/0WFivzfgl60rjR4227F/ZccqfrmZfUXVvWLJkyWN/ o5uI6LFwkTZPnTp15syZ9PR03OJSG3BJjZdSq7MXz+3JuTD81pUJeTfP3MrLuXllbf6VUTevJasp nPD37xqzNUZbli5fvH3HNmxr3769q9esjoxcE7l2jeXWssAaNMbu2I60uWR5sJrClRHz5kxcurTX 5Nm79lteyBOT4lv1nvDWwKDP5+zC8s8Z21sNXvp2wLjLVy7KeA+YuH8yzxVA2bOrFpMkbWIf9lmN GTNq7NjR+/fvT0xMzMrKQhcGOPvHda9QUTPzlXvn6pV82iyBwDll2qTLly/j8T2ZdnLe/EJJDD8I 4yaMPns2A6dBSmrKzNnTVYcJztLm1atXtAVycnK2botR67jp2rXs7z6sum3oy8sHNunVvcOXX7Yf P37Upk2rrMvq6GgsazZvXjNp0pivvvoSAzBs48Df9PuwqlrfS8aMG4nzUH+MDhcERc/Spn7+rfsj mvWu+Pextf7ct2LTXhW+nPN/g8983euwDwJn36Sawemdmn/33LKtU9Wa3oM8iX0wci/yYf43D2+9 8/DOyIf3luEWgfNuzpe5N1apKQwhfal5TMMqamUTyvr8ZhTr8zaeY0+cUPEY6yJkXrlkeYdT0qbN e5j7j2b8/mvLP7N+N33j16OL8b241ZGLpi94d+vRRlGHfrMr5fO5CwNURzFLTD79x39Nb9hu4sI1 Cecv3whZl9hv6ob3eiz6oGfwDzOil286fPFqzqLI/b9rN+nz75dkXfJOrpN/m1YVT4VsHv/JuPp/ 6vNvl65kqSZvmDBhwvTp03fudO8XgoiIngAu0ubp06fxSoyXZIGS5YVZvTSnXz6/JTdrYN7VoLzc nFt5eTevROdfHnQz28U/VXbv4b8mcs2gQT9iGTN2NDLkvXv3rl27isvinJwbeXm5eXm4ur558+aN mzcxHJeP2bm5N4+fOG7+k7RfDZ08K3Txhayzqo4LwR3r/vjt5Dbj1rWbsgVp84v5+/zHTp2+dL7q dp/N/bPeaoMjFy5cOH/+vFtXLe7S0iZMmTJp6tTJWKZNm4KoeenSJXRhwNWrV9Vob9Oi5q2zLe5l vYcylvjQ/9638ZO05BWXL3vzs1IXr54P3TcO2VJbEDUHpNUq7sA5d/7swAVzcX/iHl4TuXpD1HrV cf36kmUhO+N3yJkwa870HXHbVYcJWtpM0/Huh04vX8ryb/nszlH/2btHhytXr2B+P78un9tBIy6U MaCn/1dxI//z27/8L7W+l4wdPwrnoaRBZwueATxOm/r5242u2yTg2Rbf/yJ023Qsf+7znP+K349O bdrjwIv+CdVGHPljp5D6fx/xslrTe5A2Hzx4WPudkc6WbsP/uXVH48sXWuflBGNvETjv3Gh7L+fj vBum3g9H9ML8YxduNbnk5eW5mwbL9PxmFN/zNk7fdevWIVhiQmmJjo6+evmSljZtSNRMSEiIiIj4 eliYai0G2dlXJs9ut/1Y8w0HfxOb2DksYtY168+aLGqQt126fLXJv6a16hp4+lz28qhDf/h0WoOP Jzf657RXP5/R+ItZ/9N+dpMvZ7f0W7AuLjX9fPaHPYN7jDX1Dy4uIWriYfX4k7TZ17JHLOv4zfQ/ bjq64PXvnvd62ly0aNHMmTNxnhTrP/4SEZU2LtJmeno6kqUKnBnWqGkNmufOYTl78cLem1lTb10c lHdtw62cU1cyh+dfmXbz2lE1hRP9+vWNit4+1QpRMz39NBoPHkycN39uyJIQLIuttwuDFmJZumxJ fHzcjRvX4+JjV65eITO4NGr+rLUbwrp199OW3t992/ibsYia2tJp9NS/9/xeP2btuki1vgk29w/g 0kSgBVcqNsxftXhAS5tjx47WlnHjxmC5fPkyujAABTXaq7SoeTf9Z7cvfHw36707mb+7k/n768cb nTvw7r4NrQ9vei/zrONv1nHX9mPhiJRLV/51xrE/y1uaWIan/fa7Y7V67q1ZrIEzM/MsHj6cq3jE AalS2lNSjk2ZNhH3/KlTp/Yl7HPrjU2wf2/z6tUruMLGQ2b9QKgRjDETzCRtxo+s07lLB6xivSrO vnz5ks1ive68hgGdOnfYWQxpU3vvcdeueIdLfPzO7GzP06Z+fkTNP/X+t7i47TJz8Jrpr39XaXbq p112/qLzjirddtQcG9/mz32fU2t6jyVt3r+PFOFs6Tmp18bYNy9feP3mtSG3ckMeFLy3mXPd1Gcp LWnt/v3p4ftNLp6kwbI8vxnF97x96dIlpMqsC5l4pkUhPDwcW7hyKevu3TtTp0zU3vMU8sbmyZMn ETVRSMvwZqqBDRtXTp7z8cSZrSbNfHfCrL/NW/zPzUmN1iX+Zs+RAWOntxwzrcXoaX8ZPeWNkZP/ NHN+F7WOV30/Zd1v201Ckvx21Kr6H036cnD4uriUs1nXb9+5l5N3+3jGlSnLd7XwW/B658Ah87am n7/WsN2k6HgXn4oyyePf27x4+bzfjL/0XtRq3ZFZW48vLo60GRSEy5qFs2fPXrJkyZUr3vyYLhFR aeYibeIyGtkS8KqM1075tJHlM0bnz1/AciHjUlbC9ayQvItD7maP37u9883shBvXL6gpnOjZq8fa tWvnzp07fMTQRSGBFy9mHTiQsHff7j37du3duxvLvoQ91tvdCfsthfQz6Xv27pm3YE5C4l41hSsx Ozf07O13qzCbtPnFvL1oUX1WCJxqfRP0988Of/+QZ55xuIT94x+4ZLl48aL5qxYPSNrEYySPzrRp U7Bgo7juwUsaujBADfWqjLStEjVvnn4TUbNg+ez2hU9vX2h/O6Pp7cy/nt1Te//q3x1PjVXreGpH yiqEyTkn/zzxXNNByfX6H/EdcPQ3Pxx/uW/SS0ibnbZW7by9qgTOS1ddnIGeWbV65aQp43GXnj59 es+e3evWW/5tYvbcGUeSk9LS0nDnj5swGqFUBptk/97m8RPHvfuhU/u06WxB4MQAS9ocUYzvbco7 KvolO/sqFuvHhq96nDb18//lu+fnrhukn/+PAT8LPNr5q+gXvox6vv2G5+ce/OaPvX6m1vQepM2f fvoJD6gzt2/tuZs3/H7uuw9uvf3g1icPbr1z7UKz/JtDblw39f4/opfx/DY8SINlen4zbF7X5L1N hzx43l62bFnWhfM3b1y7evkicublixdkkbc3sTkZJlHz7t278m8QqEq7Fy1aPGRPSufNR/5r0+Hf bDz0mw0HfrNu/2/WJfwmcq/vmj2+q3b5RsT7hsf5rtpZf+Tk169Zfvy9aUdC6n99MDZ47f5lUQcR NX//6fTlmw7jnrSxfPORVj0Wv+UfvGn3iSUbDzb6ZNKFrGL5J1EzTmWmfDyyzuCwdhGHJgyL+nBz 6sI3f6zaJOBZ/fLOjz7mf5Nz5syZiJd6U6ZMQdqcM2cOAieuf+bNm3f+vPe/JImIqBRykTbln34R YCxvaRZETes/BF+4kGVx0fJqevrqxcQHd5KmTfvR+p20Ll66ps2YankbMyRk0pSJmDY5OSl8ZdjC oAULFy1YsChwwYJ5gQvm4XbBovnBixeGhS9PTz+FqLlvv9moCfsT9w8dPghBCxkS8UBI2vxg9BpJ m18tOogW6Uo5noJbrOLs71vY098/SJWn36hlv6T98d/RdckKg01etQwbNgyXWapiQmpqqqRNPDry u5qzZ89cvDgER4R7ANfa6MIADFMrmGBmH04dXSxR88bpFjnpb+vS5sc5Z/6WfeLPR7c9e/7wf187 0ejC4dcOxXS4csXzEHj83CHEyMnn/jwu8w+Il5blyEu9D9ZEoU9Kdf99L0ra1AKnmWsCd+9nmDBp XOyObenp6YiF8wPnbNu+NWRx0Emr1WtWRa5drcaZZv/eJh4y737oVEubnQrS5tKlS+wXQN7DALfS pvn70Nl7m3gS6Bng371H127d/Xr28o9YvbIo720uWBiI2d4K+A+/bh2+7fnV+OlD10aviNy0Amlz +r4vP1/z/KcRP/8kvNLMvV//sVf51PRDsqgpnDB/jEib93766bZEJVu3pf1O3oa7t4b/lNfhp9x2 9291PHHs65vXk9T6riB62c+PRv2iWi1uY7fRolY2AYNd7r+ON+dHV1HmN/8Y2byuCXmKdgiDzadN PAMjVBzYvxd3FhLmnTuWWxU4b+dL4JSoiR9e3MbsO6nWNMGt56sFwQN3HfsqClHz4G/WW6PmWmvU XL3bEjVX7rREzbBY3/DYOiMnNVfrmGByH/xGhH/QY+G5Szde+3z67z+b/sev5izbdHjjrhPfz9zS cVTkkk1HcK/Clet5f+8f1rrv8nYDVqDcrt/i5RsS1BTOGe+D9dc23f69zcTUuFaDa4zb8HXIvh/7 rXmj35rXo47N35y6KOZ48NbjIdtOLJHl9X6Vzb/biTMB2VKzqMBsq8DAQATO6dOn46VErUBE9ORy kTbDI8Ks2fK8JWhmSs5E0ARr0rxofUG+fEneQBs1Zpha2dCy5UtHjR6BbLlsRcjGzVs+7z1R/onX fmnaaREWm8bvx7v+rqDozZvmzp+NvcK+IXAiVcqiT5tfLkhES9Ouk3F7JuMMstm0GZPN/6UQ/f0j aRPV26mHE555BgsKqKb+vxfRhWRQcP94P23Gx+/8YeD3kjZx2SQPDC7id+/edfXqVfleCnRhAIZh MHZGVjRmch+0j9Eibeakt0DIvJj8O4RM/XI87tkb6e/sjmy6f7Pn37z/Q+Q7Ew82mnKueZ+kmgiZ 2tLrSPV+J37pF1dN/96myQ/TunU/i4T9+5BqLl26iHh59OjR5SuWbt+x/cSJE6dOpbn7GVpR+L3N k1iOH091Fsy0xa0PndqnTZtF3v27ehU/AZZr62JKm/YR+tDhg917+u9L2Hv8xMkjR1MPJaceSzm+ d++erv5+yclH1GqmjRg1tEfP7jLbgaTDmC1w7Tj9+xKz9nb6eOlzbRdX/Hvwv03f2UnfpaZwwvwx Im3iSjfvVh6WW7JgTdQsZbC2593Kzz2an7v2du6Ke7d3bd7qxocOEL1s57cuaJfF2vNoiyiYTGvC wfwFs1kmL9zi3fnl/rFpQcHk/OYfI5vXNfU+plXrAsgGqLr7vC3wbLBy5UoES4F5EDjlfU4c0IIF gXgJu337Nm5t3tJ0+czs1vOVJW0e/XoDomaiNWruU1EzQqLmDkvUXLHNd3nMr4dPbKLWMcHkPjT9 Yvq4oO0L1yQ0+ue0Jl/OfqPzglY9F3/QZ1nb78M++XGV3/iNuFfhek7+50PXfPJjBNrXx5+YtHTn 91PWqSmcM94HnGBn3Py9zai9y/826FfTNn87Y4df17CG/uG/7xnxP31WN0Ps7B/Z4od1bw5c9/aP 69+JTlngbtrUsqWYpTNz5sz58+fPmzdv6tSpSUlm/72JiKiMcpE2ETFxiwxz7jyiJsLMo/c0JWvK G2hXr1zFMJOvyps3R3/Xv9/iZUGpqSkjxoyPTjy7+UCmZTl4bvPB81sOXYg5nIVbKdgvH/V2/bcZ pk2fkpCw7+zZs9g9QJ78Yt5eLN8EH0babD1WfVfQpzN3fD47Hr0y7MCB/SsjzH5bg/7+kbQpCVOD qpY2cS2PFpP3j/mrComamBlh8ubNm/Lv9PbQhQHBwQslcEoENWZ+H7TAmZn4H8iWKNy78CcsOad/ n5VUM33Xc2f2Vbpw5L/SD3ywM7SuWsd9yJBjM3/fP7XWd0drjcv8w7jM1yafazbJukw898cusdW6 7a3m7u9tunX1plkUvAAnyenTp3FZuWpNRMzWLUieiJrm3xXX09JmgWych9790OmjtNnZwXubS5Ys Xrw4JCQkOCQk6OJFy2+pFfd7m7t370Jg3rhxvX+Pb4+fODFz+fYes3f2DTrQc0Gi/6y4+St3nDp1 Cl0nTrrxpy9SUlNktlmhsZitz6JEzNZ1euw3Ez5DmPwu9J2psZ3n7PL/YP7P3ptr+WapWXHdpsR8 82P435v0Kj9hZU81ixPmjxFp886dO7mQY10K/m9drP/Lkf8qGIxV1MomIHrZza8WdFnarQpac7Db 7qZBh/uPdlm0FuvitfmxWCYv3OLW/OYfI5vXNeuLmZKYmPjNN990tsLPF3783Hretoet7N27F5kT gfPC+czo7bv/2mM5DtCDqAlmjjEsYvaC4B9wOycwYGdyB0vUTLBEzTV7rFEz3hI1w3b4rtjuuyym Vkj0LxdtrDJ0QuPNWzauCJ+OgLopeq2ayAkz+3Dx0pXfvDt6067jfSavb/zFzObfzH/LPxhR8+MB 4Z8NWdNh1PrEVMvXpEPsobPfjI36cuQ6tM8I37dlX9o73zr+a8Z6LvfBrd/bXBA18v1htebs6DVy U9uvlvym47L/6hJav2vY77qHvxoQ0aT3qj/1Wf3nfmtex7Lx6Jzm/X7ubtpU4VIHORNmWM2ZMweZ E4EzLq5If4+NiKiUc5E2kVXkJdkSM1FAsSBnWoKmJWpiwYuyG6/KuNbs07dP0OIFiK/vdZ0eufvM 6JVHTS7BW0+9132Omsi5bt39zlu/9cG6j5cPH01o2nUy0uZ7I1d9MGq15Xb0GtwibaI94dBOGYbY bP5XN/X3j6TNhGeesbyEFkBVS5uAFpP3j8krJy1q3riejTDZrdu3337b2eEycsTQsBXLMjPP7tu3 RwKnmsI581dvgMAZG/Rz5MzjOyxpE+FTlvULfp64sW7a7spn9te4nPq3rYv/Q63gPiSESef+9MNx 33GXfjs5qR6q2jIhs4kHURPcOkYN7kakwdPpp44fP56SkhK5dvWmzZuWhy5V3W6StInTw/ppXDiR mur0vU08cAXiPHlvsyBtymLNrjjlceLjx9nykfgTJ1IwoLjf27RuN7tHgD/uwLFLd/ZccGBP6uWz l3NPX7y5fn9mwILE8Ut3IMljgFrTBJlt3NJ4mS1DZkvIROb8fPSHf+r9byPXff5Z0L9r58xnwf+O lmZ9nhux9Gs1hXPmjxHR8fbt/JtWN+Q/9nQdt2/fdjdtYn7cqvUNWQffNpnWhMwvq2u7iUb9olqt vDW/KhUug/n5zT9GNq9rsVYfffRRWFgYCrhFGVC2PGu787ztDE5mBM75q/YiZJ4+ffofP6xYunQJ GqUXm5CCS2aOceLs9/cd77bjQOcpc97fnfK17hc1fx2+s9aK2BrLtlVfvOUXQZueX7jx54Hrnwtc 93zQmlcHjvnvBavqL1jzX2OntFYTOWFmH3YkpP7fD8dduHLzvR5BTTvM+eu3i97ttbTt92GWqDl6 w75jln/SgjNZN/rO3tF96la/CdFo7zsj5vzlm//1gesnNPOPtUujQzt/Mq7u3LhevVc3+2TRLz8P rtl+8a87LH2l84p6fhH/3WXVf30T8RssfhF1e655dW3y9D/3reRW2ly4cKEEy+lWkjD1aRONyJ8I nCi79X4sEVHZ4iJtIrPhJRnx0vrafOHiRfXxWS2eWZJmdjYuIDHY5Kty+pn0jt98vWDR3ITEfX/v PnXN7nSbSGmwTA/f98mAJWoiJ1JSjvX9rjd27Zbulzb3HoyTdzgRMiVzImqiBe0yAIOxyo+DB5p8 k0p//xinzRs3bmA8WkzePyZfTSVqAuKKFIxZ/5XgYlJSElZUUzjn7iu69g6npE1pPHogZEdYnSNb Xjm155eXUt/cuNDnxrV0LNLrFiSESeeajb5Yr0/yL9stePFohvorO2iffM7y/bQouPtttB5ftURt 2jB34tiMjAykza3bYpZPn6I63FeQNi0BzOrqpcuX7D90qr2xaXVFCm6lzZ26tGn5Hc2CtzSDgxfh hzsr6/yFC5n7E/diAIbFFVvaxFEgKweHBC1dtiQwIq7ngv1HTl/JvJxz+fqtjEu5yRnXI3af7TF/ f8TmfUuWhpj8E6OboqOWhy6bvzIW2TLl7PXMSzkXr+VhtgMnLy7alNwjcH/7MW/+uU/FERs+/nvg CzhPcIty876V+s3/u5rCkPljRHS8lX/rxnXLz7sVigVl638LVa7fwEPvbtrE/Li1ZDDMLIsomF8W GYP5LSNNw2B397+I86NFZtBurQW35zf/GNm8rln+2fTSpU5WBw8exG0Xq6NHj7r7vG0vLSNL++M3 iJq5ubl/H7AyJHz9vXv3kD8zMzPxU6yGmmDmGCfOenPT4f8r3wkkv6gZEV8jdEeVpdt+vjimUsjm SkHRlRZFVVqwodL8dc/NW/vc3DWVFqz71eyIyjPCn5sR9ny/Yb5qIifM7AN+pOu2Hpt1NeeDXiHN v5n/tn/wh/1CPxm06quR69fsPIH7E9Kzbg4N2Tdgwe5+c3f2nL7Nb2L0gDmxF67k/PajiWoW54z3 4a6VqrjSJ/CDTyb815y4Ht3DX20zv3LbwP+DJ4ePQ174eGmlf6x47p8rK3266udYUPgktFJo0jB3 02ZgYKD1q/eVaVZa7AQtbaIQHh6u1iQieuK4TpuSUi7itTnr4qWLuBi+ZH0/0/qGpuUXAy1RE5ew GGz+Vblrt2/DVoZu275l5JyVq3eZTZuzNp4Yu3jnrl3xahYn4nbumDBxPPbw3Llzlt8GunULO6oP nDZRU8ZgMFbBiiZ/dVN//0jadPZJWvl3erSYvH9MXjlZQuO17FWrVl24cB6XLzt27MBh4hAsD0m2 5QOZ1n8ayMqyfLOipYBl7NhRMTGbiyNtIg+dOLraEjiz3sSt7AMcPxIeFfTiucN1zh/5w/r5/+f6 tTOWxX0ICVPPvbHoSrvW857bmbpGtVrbJWqevuD2B1ndPUbNwf79p/n7rY+0fCcQblFGi3S5S9Im 7qgTiuX9UpsPncq7mtobmxI1ceXqZtr8T0mb8kFcy280W9/StObMc+fPnz13LmPjxnUYUKxpE1vH s0dnv47Hj6d2nLQ1PD4jNfN6+sWcs5dzcHvw1NWpa4/3mrtrcPDe1NQUDFMrG3o0265Csx1IuzJp 9bGBiw9hti/HN3mjX+Uh69v8ff7zuP1L/+c7TTX75SjmjxHRMe9Wnpz5lqdFy78QWP+hQP1rgZRV J4p42nE3bWJ+iWRYrNPYzZ99TRuA+XGrVjYBg2V+7J3l9pplKpmwUFnXi0WtbAIG6+8fWR2Ltv+P WiwDLPcPymplQ+YfI5vXNTxP4odBEqaf1bcFUlNT3XretiFRs/eklSGbDk5aEiOBc+nqLdu3bz+b cQY/vAic+IFXo00wc4xT5ny889hHMUlvxBz4IObQX8PifrEsttKSrZUQNYMRNTdVWqhFzcjn5qx5 bvaqnwetrzs3otbMsP8zI+wXP4z6rZrICTP7gAfuP98fE7MvbcCM6Dc6L/hbz8Vtvw/7fGjkN2Oj zly8gfsTAqNSRi0/OHxp4qCgvQic3aduXbA+aXvi6Y/7uP5SBuN9cOv3Ni0nYWiXD0bUmr7t2/6R LfA68uHCCh8vrYh4+a+1lb/c+HyH6BcsX2S98fl/RVZedmRgUdKmTc4Uc+fOlU/SYofxU6DWJCJ6 4rhImysjwvGSfOnSJcutJWrixVlFTVw4Wi8JrE+RN9z7N+COHTuEhi/p1HvIwlXbF8WkjQo/OjI8 eWTY0ZFhuFUFXaMsyUFbT/WcuCb9jIu3sFZGhOG5+4I1ZeFWy5yQlJIggbNp18koSyMGQEbGmfT0 9NWrVy1dtlhNZEh//0jaRBUJM8HuW4JyrMzfPyavnBAak5KS8AKWk3Nz69at6emnrd+CeAfJE6+4 uIXb+fmy5N/Ku3H9ev/+fXHPeD1t4jTA+YDrttQjEYiaWKxvGFigMWZxraup/+/k3n9fP6eyxy+o uA4Yn/navCutUMg8l4J5BKoSNVFWQ01z6xjhwuHDez77bEOVKit/9rPjDX+7q8n/hJYrh1uU0YJ2 9GKMGm0O0ibOQAmQAj9qNh86lXxojYi4Oy+jFRfBuP3pp588SJv6j85mZSFnZu7fv2f79pgNG9au X78GA4o1bVqPwvJ59ZTjJ3oEJm5LunD49JXUzGtpF24cO3t9c+LZ6IMXvp8Whq6MjAz/Ht+qlQ1h mMy24+jlQ6eupJy9dvLctWMZ1zbuPR25+/SK2FMy2xsBL741oNrkLV+/OaDqP0b/t1rZBPPHaEmb uXnWQ7Q+ZJZby3+s/y14DC0F1YJp3U6buSptWiewsJlfajIG8+NWrWyCZRU397+I86MFC2q41aoe zG/+MbJ5XbN+kPbRB2g1//rXv4YOHXrq1CkMNv+6ptGiZtLpS0ErN89fn/jV99PRgoSJnCnfUutu 4DRzjKsjF02Z84+pc/45dkrrqH1vL9tuiZohWwqi5sZKgeufQ9Sci6i5GlHzuVkrfz4n9LfT5nSY t6Lx1JDacxf2VhM5YfJ+btlpzrRlO5dsPNTCb+F7vZZ+/MPK9sPXdpkQ3Xf2jsFBe0aHHpgQcWTy mqPjI46MWJr4w4LdATO3bz+YMSt8z6j5m9UUzrncB7zGgaq4gtMsZNPEt354cVxU+xHRbT5e/PNP wixREzmz0/YqfvG/6LLzF99sr/LVphdCj/3YrG+li5fNfrO6Pm1qUVM+Rmv9/U3LW5owZcqUnTt3 4pT34CWMiKiscJE2kdZwa7nI1X0h0FXJmdl4crQ8P96wcO/fgMePHzty1PDBkxeH7Tw9ZV3qoOVH LMsyLEk/Wm4thcG4VY2WZcra1MDNaf/oM1dN4dykKRMOHjyIgCcx0kZ8wjYEzj2JO1TdClEz4+wZ HEZiYuLc+a5/LxT09w8iZdof/x3Z0n5BF+JEbm6u+fvH5Cs6QuORI0fwMtand68ePbp16/Zt165+ uO3W1VLAon5v06+zX+dOMqBv395r1671YtqUPISzApdu562OHAhF2lR3q9X2JS9dP/nagS11oxa+ hJEYr1Y2DVvpsPiVsI3NEDiRLSV+4RZQPXkuWcruvlqbPEZxdNKk6Nq1j9SocfI//uPMr3+NJfTZ Z5E2cStVtKMXYzBSrWMC0ib2wXppDbh7LPek/kOnVnFWO2D//v3y+50InHfu3Bk3YbSayDmbtGn9 hyP10dnz589mZmZERIShXeDOLqa0OWbcyPv370tgRto8ffp0n4X7V+w4HX80C4HzcNrlLQcytx8+ uyP50oBpod3n7sVVuH+PrmplQ0ibltkWJETsOrsz+cKhU5cPnbwYvT9j28EzuI3Yecp/zh7Mho2+ P/g/mgQ8+5c+VXE/q5VNMH+MiI542rEcoQ3Lc6cDuTm57qZNzI9btb7G0fwYhvlNpjUh86v1C6BR v6hWK2/Nr+2/x/Obf4xsXtfkH8XkeQlPIHDs2LF+/foNHz4cIWHBggUYZv51TUjUHDZv/bGMq+Nn LUbOnL/x8Bd9J6MR56EETvmWWrcCp1vPVwuCB67b1VxFzWikzSrLY+qGrG8QtLZe0Ib/mLO60qyI 52aufG5G2M8HjKx37fq1DRsjVq1ZGBOzRa3vhMl96D9l3SffLz1/+ebfeoQgbbb7YeWXI9b5Tdyc dOryhat5F6/dWrD55NzotCmRx0aFHhy4aM+A+Tuzb+b/87ul67a7/tc6t+4HYzgB8AqFZ4/I7Uv+ OqDq4FV/nxb/VfvV1b5Y//zKtEFrzgxbd37E2nPDUYhIGxqeOqRZv0qnz6RhLbW+czidJG1qcC4t tELO1P7kJqImLjnwupmVlYVpsZZan4joyeIibeJJEC/GeB7EVaLlWrjgKh8vzRhjzZnWr3tw5707 WL582fcDvpsaGjsn6sR3wYfVEnIIt/0KCt+FFDRaq+NWp/iPW71ho+uLM1xWWt+z9JDJLwrS3z8b OnZEqnS4hDdvjgssvDp6cNViDKEREWTTpqiwFaHz5s0JnDdn/ry5WObNnTNz5vSxY0YNHvTj0KGD hg0bPHz4UCwjRw6fMH6MybRpEs4DnBS4E/CafebMGbxsn7Ky/DWPAjFhja+nt9wRVm3Lsia4yMPd hbXU+ibg+g/jR2z8eM6yqhPONka8xNlow3JmWt8OsZyXxfAvxKc2bFjn63uyVq1dvr5rq1dP/OUv 97344u4ePXZPn4pblNGCdvRiDEZivFrTFaRNnB4qaFpp720iU0s2K7gkvoheHB0G4xY/c/n5+R6k Tf1HZzMzz2RknA5fGYp23NMZGWeOHj3iVto0D2nz7t27ciyz587EqTtiyd6RyxJX7Di1ds/pbYfO btibvjs5c1fK5S5jVowJ3bd3797AhfPVyobmzp+NRD588Z7RKw4t33Ziza60LYnp6/ac3p18LuZA xvDgXaOXY7Y9gQvmZWZl9Jr//uDRP+CMVSt7lSVt3sxBmgdLqC9gTfiFSAOeNt1Om7r5ZRHoUiUr bX6TaU3YzK9Buyyq7u35cf/oJwfP5jfD5nVN3tu0sWrVqt69eyMPhIeHu/u8LVFzdviO0xeuD566 vF3XYYiavSet/GeP0WjPyMhITU21eYdzxIgR5t/hNAlpc83OPyFqBkVXCtr0wrLo363a9M3R1Ojk 1KiQVe8Erqk5I/y56SuemxZa6bvhddQ63nMi/XzdD8dFbE2O2HZUvbc5wvLe5sVrltdBWBB9HFFz QsSREcss723uPnphTWzKu90Ci/7kbfmtTXO/t4mnU8Q8vGalpKQcPnx447bVfxtYo+/St+Yn+neO qhl+YlDLwf9H+yNJsrw9oPrJtBNYy/glTF4WZ8yYgcCpN3nyZJxUs2fPxi0C58yZMw8dOoQdwFmB F1Cck/IMr2YhInqCmE6blot5XM1jKXg6tORMS9TEBUSOO+/d4TIiOjq6i1+nNXEpI1ce67HgYMFy AEt36y2WnrrGkSuPYmnbbZyawhDiIpJPoiP7HUnQwYoepE1rJCj0750SwnNzc5Ezb9++jRBr/v4x CaFx27ZtUZs2btywLjJy9YoVy1eELl+2bCmWJYtDlspft7B+DUxQ0MJFixYsWDA/MDAQ109Y0a28 54wkHxw+Xn1xvyFhyte0Jicn48Ubr6MHDx7cu23czlWvXD792YqZPvu2jcIYDDb/moph8sp98mwy cubY9Eafzvr3yP1zcLfbw55gZHEEzp2ff3bhlVf2VK26p2PHhL59j9WsubpCheTAQHQdXbAAZbSg Hb0Yg5EYLyu6tHlLtPyTjapbD1n/oVNr4MSRXcI9Ib1yauEWSRURTtYyYJM2z5/PPHfuLHLm0WNJ +/btWrdudVjYMrQjau7bt6djpw6rBzUsprSJeIwDwY9//K64CZPGH0o903NBYsjWk5G70xELI3am xSWd3ZBwFo2HU9MDevVYY/3NWJd279mlzbYwOmV1fFrMgTOrdp2OTz6HsszWM6D76jWrcG5YLu7H DDt16pTXTxJAdMTjYv3mbsvNBcuXeFvK1v9aWKrSYhmRhadPd9Omfn713wsX0C6L/fxupTWb+dUO W/+LLof776358X9VlRaP5jfD5PN2Zmbm6tWrt2zZ4tbz9v6jGYiUi9buzs65haj5RZ+J+qiZlHIK z37IFXhilMCZefbMv/71ubzDqabwEqTNiNjGQdbvBAqJ/tWKDW0vXzkvXUnH1s0K/Q9EzanLn5uy rFK/Ya9Iu3eFRO79w6dTLly5OWjutrbfh/1raGSncVEXs1XanLXu6OjQgyOWHRgUvDck+tjF7Nzf /2Ny8olCfxXGM4iaJn9vE09EZ8+eRc7HCxauDXbt2rUxeu3Hw/+7y5w/LjrYOyxlcLO+z0WsDo+K isLrLHoxBiMxHmvh5FGzOKK9LOIsSk9Pl1fGo0ePInAiZ+KVWD5Gi5dItKMXYzAS47EW1lWzEBE9 QVynTXlJtr6niSs0i+uWryq8YUmaCJqWv4uWm5frxnt3x44dW7x4cbt/tPObm1hombO/y5zELnP2 S0HfODQ0eVhgzMTZIdgJNYtzkjZ3796NF4bJkyfjmT04JGjVqlVr1qxByt28efPOnTvxRI+XELwA 2Nx6kDbl/lH/Kl4YoiZyJtImrrPN3z8mhYWvQG7EseDW5ILXuTFjR82ZMwshRs1SBDgT8NKI12xc P+H1Evc2ouaRI0cOHDiA3L5nz57du+N3rKp3LrlR8PTfbN0wAu146DMyMvCaauZxBNkE7l5sZfmu sQicI1Ibfrro39MzTuMlX09ereXhkDNVTeEN0U2aXKtbd2uVKsfCw9fXqJHh6xtVu7bl4tj6tZYo owXt6MUYjNz0P41N7kDigf2bt2zSL9Gbo/QfOpWoKY8XjgunkH6ZH+j6U99Im92saTPA/8tLly/h PLSHe1ofNb2eNnFv4KBwVa3p+12flREro/aeRBr8bu62zQfPBcWc/G7W5oAFiTsTDk+dPmXM2NH+ 3bu6/CVt0fe73ouXLHY5G84lbBpp8/Tp0949Q4RER2uisCyWP1Fs/TPFqqhjaTp/Hs+j7qZN3Mrq 2oJG/WKZVzc/WmRdM2SwrG6ZwTKJ5T+qqOP1+bU9F57NbwZ+anDCF9PzNiLl5CUx13PzZy5ebxM1 d+9Pit93CHElKSkJz43YigTOnJybWBFlk0+JJiFthm/9vXwn0KKNVZes/euFrFPStSdx4Yzl/26N mpa02WdobWn3unZ9gz/9ftmFKznrdp74cnjkV6PW+03cHDBj+3fzdv6wcPePi/YMDdm759iFS9fy /tl/2ZwVrv8ul0kmf2/TPm3iAmBj1IbO4/766YR6wYnfGaRN4xdQg7QZGBg4Y8aMJUuWHD58GC32 adO7pwERUSlhNm1afk3Ten0mSdPylmbOTflj3HnImu68d4cna7zWjhs39vdfh5hf3vObtGXLFqyr ZnFOS5vINtOmTZs5cybC7fLly8PCwjZt2rR9+/a4uDivp028wMjrhPWesXx0Vq5X7ty5U0zvbeLo ECA3bFiH/Ix7ZqvO5s2WUG0VvWnTRlnWrVu7YoUloO7btw97q2YpGhwyjh25C/fbqVOn8EqMvTp4 8OD+/ft3796+a2PLI3F/Wjr7t3t3BOGlGpdZqampeAQ9S5u4q6MPLkHg/GHD77st/0PMwXC8SGuw AyAv2FjFi1kCu7rupZfO/PrX+3/1q11Vqpz9zW821Ky5+dtvcYw4KNjStWvUSy+hHb0Yg5EYj73F FYlnu6H/0Kn2AVrADx6SEkI7bIqOwum0a4+L72cGLW1O6vqH7t2+RKR0tmwa+t8SNYvjvc0VYcuR HLBgt2X5tlvnSZMnnsi4OCPycL+FCQiKM9cmJZ/M9Pu288aNG4aPHNa7b0DPXt2PmfiLRKdOpeHH 1uFsXfw6yWy9+vTs1KXj4GE/4vzHGevZQ2MM0VEeKWE5feXGwlKwnNHXLf+z/Nd6erubNq1TKdap rTcWloL9/G6ltbI+vxk48YrveRupclX8ias3bw0eY/ldTS1qbtq6E69H8gdzd+zYgdcgvAKuX79+ 8uTJyJmIH158ThZIm8s3/9by9bNrn5u39ufzV70StnIm2q9czfpx9O+nh1axRk3L0nvwS7KK113I utxt1MpXP526Ni71Ynbuhl0nZ68+MHB+3NCgXcGbjm0/lJl9M3/dzuO//+cUL0ZN8/C8itcL7ZO0 CQkJeIDw0OBVc8jcLh8O9/1T7wpR0RvQgnb0YgxGYrzLZw+cUZgc59g5y1dCZGAVCZxIm7ggWbdu HS42MJVETZtP0qopiIieLC7SplvMvyrjiRVPskeOHMFr8C4TMAwX90gyWFFN4ZykzT179iAJ7NwZ J/ESSVLIhN5Km24xf/+YJG9vurUsWboE11hq/SLDiy4ukhAF8QKMGInUd/LkyaNH9x85tOHQvqVx m3+MWf897lg8cMiZ6MLLqlznmU+b8sqN1IUV4dipg/O29R+29qPl8RP2HI1JSUtKP2OJmphZ/2Ek rAhqliLAJNj6wV69dv7iFyk1ahz08Vn/3HNRH3ywadMmXJQg5KMAGz/4AO3oxRiM3Ovvj13C3WLy MG3oP3SanX0VIRNwKZybmzt6/EhEzbXr1uJcitocpVYwhEP47sMXowb6xo38z50jHi1asLRdRv7n 2u99+334olrfe3BP4mHC+YCfzZiYmLDwsB4B/iNGDJs6bSp+SPGEgEKPnv6rVq3q2s1vw4Z1o8eO wo/qt127qPUNIXD2699n3PgxM2fNxKU8ZpswcUJXf7+JEyfazIYLO+/+e4TmxMnjSI9uLSfT3PiF PcyP9OXW8lTNb0axPm8jWH47fBFy5rZDGZOXxEjUjNmxx/JLGgkJe61QQLYEvDwlJyfjRMWTpzxr qVmKDOf28rBpgyf8v4Hjag0YW/P70b/6bkSNcVM+O3HiRNKRvd36/6LHoJ93H/Sc/8AKWAaN/hN+ MD17pnIJP2tLVm//7UcT2g9aMW9Vwu6ks1dv3MKy50hm4JqEzwcsbdFh2tpN2/ECgZFqnaKx/tqm 2b+3iQPHdvEQIPjhsTh48CAeHbkmCVw58dNRv9u125Iz0Y5ejMFIvAaZeerA/YmXOQyWdzjxcoB1 g4KCcCmChCnQgnbtUzne/ecGIqJSxWna3BS9Ea+ybi0xW039NXY9PCnjSdYkkxeIiIt4LcfzuAfw SmMybXpw/2yJcf317u7CfYKLlZSUFLyMhYWFLViwYMaMGePGjZswYcL48eNxqT137tzVq1cjq+NC 33zMMwObhqtXr1y8mJmVddb6t2YyzmbgpTs25WBwavKW0ycPau86IouiG6+pWhpUsxgq2ITlVxgl fWEGHO+J9ORlu8bM2dZnafyYM2dPn808c87y9aqnz58/g1EY78XDxGzYbuLAgTHNm2/+859jBwzA SbJz507LP1rs2mX5otgdO1DY+t13m/70py1//vO+77/HBQT2E/ts8jBtIG1aPjxg/eVMVHGLnIn8 eevWrRFjhsu7mnv27pbBZsRHhXzX9lfd/voslq4tyhUs/9tuUV29P6i2btmUK1e89q8SGtwhuFvk OgyPI+6obdtigoIX+vf49ttunRcvCcblHcaEhoYiFu7btxfR1GTaFFgdk/QI6IbZgkIWbtu+Fad9 cHCwfjbLKVUMUZPKhGJ93k5IPiOBE4v8yZOtu4/sP2x5Qwzk69NACmjByan9A5m3nrJwbuP5KuPs mYOHt+3aExkbt3LL1uVR0YujN6+KiYnZvHlT5PoFGzYFb45Zti02LH535JFky7cVFEfawZP/gQMH tmzZsnRZWI8fp7/fcdQfPhrxm7+N/M93h//h74Pe/XJQ135j8PIUHh6OMRiJfVBrFgGiJg7HzCdp Be4u3P94IsLDIb8MgmcJZMsjR47gFmW0oB29eKTw3KVWMwd3qZY58fKHrQBeCqWAFsmZmNaLL1hE RKWQ07SpsV6bmaJWeNw2b45GYvR4QTBTE5mA1wm8tuFlCQkEL5mRkZGIditXroyIiFi7du3mzZsT EhJSU1Px0uJx9jADr1V4VZPL95MnT+IFEhuVl0m85MuVRPFtHTNjB7AJHKNkQsBG9dCCLnlZdXdP 9PPjMDGPthUNWtDl2fwuyQ7I0eFOxjWiJUBbyUUk7mTc8+jCAOwnYLxa2X1hK0PljR2bq96RY4aN HDt8YVAg9kQNdQfuPOx4auqxxMR9sbEx69evDg1dHBISGBoaEhm5csuWqD174pOSDqWlnUQS9Pp9 6IzcsfqHVQpRUVFdu/khHO6I26GGmuDd2ehJhZMEP7zF8bwtgVOW46fPyZOSQNn+zER7MT1lYWZs Bc+9iDQ4EHnWkn/+k3/7w/MVerFLxbEDAvuATR8/fjwxMTE2NnbdunXLly9ftmzZqlWroqOjcecn JSUheGM3vLgDJn9v0waetHFXyN2F+0e7i3Af4iiKsntYV56XQB50bAjlIr5MEBGVIa7TJhERERER EZG7mDaJiIiozHPr9zaJiKhkMG0SERFRmefu720SEVEJYNokIiKiJ4Fnv7dJRETFh2mTiIiIiIiI vI9pk4iIiIiIiLzvmRXhkVy4cOHChQsXLly4cOHChYtbi8qUTgwZOcmSNs8QERERERERmca0SURE RERERN7HtElERERERETex7RJRERERERE3se0+Xg888wzqmROnz592rZtqyqlUtWqVU+ePKkqnvLK JMXE431z9lh7fUI9GWNm0zivAgMDpUxERERE5EVup80tMZtHjRluv2yKjlIjSlZycvKLL76oKmfO 7Nq1q2HDhs8++2zjxo0TExNVa2H79u2TMX/4wx/279+PlpEjR9arV+9nP/tZ3bp1w8PDZZg9m23B wIEDceGOqVTdkP7S30xg0Bw+fLhmzZpHjx5Fefbs2b/85S+xGyhIb9OmTSMiIqQMNjNr1TFjxvz6 17/GruJ27Nix0ojeli1bShlat24t43GrhxaX233zzTcXLVokZVkL9+drr722detWaTQmW9FPYkMG mGF+pDA53mDfjDmb3/4eA6kaMzNMxjgbqd80zitfX185u4iIiIiIvMjttIlgedYRtKsRJctyha67 pEbIHD9+PApdu3b96KOPpNEG2gMCAlDA7WeffYZCq1atJBQhStWoUcMyyBGbbc2YMQOpVfKqGfp1 9WWXhgwZ8u2330r5hRde2GNVuXJlVFetWtWkSRPpEjYzSxW7ikSxefNmlHH78ssvo0V669evHxMT gzKCOsoy3n73XG73m2++QWiXsqx++vRpifHSaIZ+Ehv2u+SM+ZFuMdg3Y872x2ZC7x6gjDG5aZxd kydPVhUiIiIiIi/xPG2eO3fu/IXzkJl5zj5tJiYmIo08++yzCDDlypVDi/7CV8oY88Ybb/zsZz+r VauWvKOI9sOHDyPvJScnV6pUKSUlBY3Hjx9HwkGLZU1H9DPLtiAtLQ0zSNlG1apVZeajR4/+6le/ kkaBgPTcc8+piiP6beEAEbpUpQAmxFFjE2PGjFFNBbCukLK/vz/2ECMR/IyP9+23316xYoWUMQyR D8lQjs5+H2R+jVR/+9vf6t+zxWzIySigFwG7devWKCOBoKztnmWcjsvt4ijatGkjZf3q8sYvWuSR RRmTYH/QjluUpVdW0U+C/PPiiy/i9HjvvfdQlTEgZW02sLnPZRigbH+OoaV58+b2Z6b9SJsd0O+b dgiNGzfWV7Ujwmx//vOfZSvO5tdPCDIMbLYL9gfYuXNnmWrDhg1osZ9cZjO5aZwPcg4QEREREXmR J2kzMzPzYlbW5SuXr169cuXqlUuXL1+4cN4mbeLitWvXrghvuPjWX/gKKb///vsLFy5EYc2aNS+/ /LK0ax/wa9eunbz9givsL7/8Uhod0s/861//es6cOSjExMTgAl0abWiJFGzGDBkyRPukqEP6bf3b v/2bXMTXrFlTLuI1O3bssE+tNvfA+PHjcf9EREQgWqDF4Hh/+ctfYqSU0Yu8hziKgv0bjICZbaAR h6nNAChj51GQXl9f302bNsmbkNJiXU9BFVxuF3e4JFiQtbCVgIAAhC5p0R5ZhL2BAweigFvpBVlF PwnuQJw8mGTQoEGoansC+tk02n2uH2l/jiFlIaph2v3798tIubUfabMD+n1r0aKFvD0u7I8Is8lW kPScza+fELTdttmuRn+AOMkxAKfQH/7wB7Q4/FHSbl1uOi0trW7duqpCRERERORKZKSDb/axb/Qk bWZlZV29evXGzRs5Vhh05fIVm7SJDIarYSnrL3yFlDEGBWH//icizW9/+1sUcD1t/Lt/+rWQ+mrV qoVwhQAgl+b29AlTX543b15wcLCqOKHfFsq4akcBK2KjKCBafP7550i8yHL6kcJmXVUqKBscr00k 1sgbjIjH+t+otNmuVI3T5tChQzEDbrUWm0lsONwu5tTucKwOeHxbtWqF+0RapAu0cwO3KEujDNBP Ur9+/bfffnvatGnyK4X6GfRl+/vcZluoCjnH0KJ9QQ4atVv7kTY7oN837RCEVtWOCLeIcNZOp/Pr JwS0S8FmuwYHqN+cZV4r/Y+S3LrcNMj5QERERETkUnJy8kcffTR37lxVt0IVjTafSPUkbV66ePHa tWu5ubm38vNv3crPuXkT4dMmberjDa5xtVshZVwEa2OEfgzUrVt3zpw52ttfztisJdauXdu0aVNV KQwZSa7jcV+gLI2ITAiNUjag31blypW13CKBEPfvkCFDDh48iOOy3yt9i8Oys+PFTtrcUYC8JyNt fqPSZrtSRY7VPosLKEuylV7kIsQb2YS02Eyi52y7gDnlV0PtV9e3aI87biUsgTZAmwSPERLXe++9 J2+76WfQl+3vc4fb0jg7M+1H2uwAaPtmM9j+iPQDnM0P2oSg7bbNdg0OEA+cpET7yfUjXW6a720S ERERkVtsAqfDqAmepM3Lly/fvHHz9u3b9+//9NO9e7fybl27fs0mbTZu3Hj4cEvLokWL5JL3xRdf jIiIwFXv2LFjpaVVq1a4jEYLrqQ/+eQTtGiX0WLo0KGINMuXL1d1J2zWgsTEROzADOsX4djDHdGr Vy8UevToIdtdvHixvAXnkn5bmEe+vGfKlCnygUZktq1bt+KIsGltpFbARb/8Uh/o59HKzo4X09p8 UheaNGmCRI2CzW9U6mcGqSK9/PrXv960aRPKuEUZ+6z16kmLfbvG2XahTZs2cp87m1Y0b958wIAB KHz//fdatNYGaJPg0UHu2rdvn7wL5+zes7/P9SPtzzE8UmOsv/2Is1HGy639SJsdAG3fcCf069dP GsH+iDBAzv/AwEBn84M2IWgHZbNd+wPErYTPrl27vv/++2hx9qNkctP8vU0iIiIicpcWOJ1FTfAo bV66dOPGjfxbt+7dvXfn7p3cvLxr12zTZkxMjK+vL67733vvPbnkReCpWrUqkgmSnrQg4OE6GGMA V8NokXbN4cOH//M//1NVnMAqQtWtYaNGjRry8U6H9u/f36hRo2effRa38o2yaooCMsye6i4YgP1H qMA8DRs2lHizZs0abBo7gBSqDdMKiJH16tWTCKE1glZ2dryDBg3SvpNWIClpOU3/G5Wo6mcGrYqQ X6tWLVQRNfV/AUUKGmnBrZ50gcF2Afnqm2++QUG/itC34L7CPaa/30AboE2COIR7EueMfF2qs3vP /j7Xj7Q/xzZv3owzs1y5cphf3pGWtexH2uwAaPu2Y8cObAKrv/baa6jaHxG28vLLL6Plyy+/dDY/ 6O8xgbLNdu0PEDsvJzBOP0yLFvvJZaTcGm8aMLN2jEREREREJkngdBY1we206ezvbaJdjbAjl7we GDp0KK6JVeUp4Ox4te/pVfXSatGiRW+++aaquAOZHwcoZY8ncdeKFSvc/fio1/etxA7Wnrbpo0eP IhjjVtqJiIiIiMxDSDHIKW6nTQ/8rOB389z12muvab8YCfLmjJ7qMKSG6qgOQ2qojuooTjbHq9en T5+PnPz50NIDOy/fr+su3L3a260eT2Ler371K2wRESsiIkI1meP1fSuBg3VG23S7du3kG2uJiIiI iLyrJNImERERERERPW2YNomIiIiIiMj7mDaJiIiIiIjI+8ymTS5cuHDhwoULFy5cuHDhwsWtRcVK Jyxp80Sxmf3MbCwPiYiIiIiInjiDBqlCmaAioHNmxriFaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRp rHSlzWc6zpZF1YmIiIiIiEorpk1jjyFtGkRKgy4qeampqaNGjWrcuPEzVqpVZ+/eva1atapUqVKF ChVq1arVt2/fnJwc1WdOfn5+//79fXx8ypcvX6NGDZTv3Lmj+h4+PHDggL+/f/369StWrIgB2ETn zp1xXqluc1weBURFRb355pvYCg6kSZMmq1evVh1ERERERM4xbRpj2iSnJJ5pVGuBuLg4JEDVV6Bp 06aq2xyEVbVmAbSoPrsdEAi3MTExaoQJarUCqlVn/Pjxqk9H9REREREROce0aYxpk5xq0KDBsGHD UlNTHQawZs2aofHTTz/NyspCNT09vXXr1mgJCQmRAS5t2LAB46tXr757925UcYsyWtAuAxo3bjx5 8uSkpKT79++jisIbb7yBAfXr15cBZhgfxbFjx6T9k08+wSGgBeftF198Ib1ERERERAaekrSJy2NV clPJpU0tSdovMgC0luTz2c3GrqnQZV7lboF+S+Ly7/6kRjx8eCP/TsCKXT69gst3nlut56KOwbFZ N26pPqvsvNs9QuOrBwRhAG4xGC2qr4C2ofPX89rM2lTRbz4mnLk9GV2vjohAe+3vlshIaDg0HC0N hoSpugkZGRnt2rWTj5jiscnJyZFII736ssam8d69e8hIderUKV++PObBbJKF9LRVMLJKlSovvPDC 1KlTpatJkybo0gc/iXaNGjVSdXdYt2O7wzg0NObn56s6HpobN9DStm1bVXcFB4XxyJOq/vAh9h8t CH6qbufKlSsYUK5cOdw/qsk0rAiqUqBr165ofPXVV1Xdkb1793bo0KFGjRp4LCpXroxQfeDAAdVH RERERE+xpyFtIs4IVXeHSptDnZPc6BmP02bNviFaGQsSowzIu3MPqU/fhaVGn+AruSrzYED9wSts BmAVfV4FraveoFCtjAVds2OPSnnv6Uuo3rl3v1ynOagOWLXPuqprly5d8vHxkWwjJFaBDNCXNfrG +/fvy5t4etWrV8/MzJQBQtpn4z7Wka7AwECU9Z9rRQhEiz7amWed2HaH5WO09mmzZs2aqu5K7dq1 MR7niapb31dEi6+vr6rb0XI7tqWaTJMVVaVAgwYN0Lhs2TJVd0RW1MOxb9u2TXUTERER0dPqiU+b KmgWUK2mPUqblnRox4tpUyNZDouq62hd/st33n/wIGT3CalWDwiSAYMiE6Sld5jls5djow5JVYuj 2oCOwbGYofPiHVJFuwwQ0ojFt//S3acuoiU777bMmXP7bvnOc9HVN3wPqpGHzshICZ9mBAQEIJA0 atQI9wCqx44dQ1lSigzQlzX6xlGjRqHcuHHjpKQkVBFfP/30U7T4+fnJAGFdw7KhiIgIBFQEMGxa uu7du1etWjX0Jidb3rDNzs5GQIIrV67IALfIhlSlAKIsGrVP0qalpUmgrVixogxwCSMxXj4l28QK ZeMZevTogQE1atRQdXdgRVCVArIPiPGYuVKlSqjiuKKjo1W3VYsWLcLDw+Xri3And+7cGas0b95c eomIiIjoqfVkp00VMa0hU5XcDJylNG3KZ18RF6VartMcGaC9b4lMqB+A0GgzIDXLcmfhVqp1f1wu A4Q0YolPsyQlG18s3Iou+TBt/4i9KNfqt1i6zKhTpw7SiPwuokDZEnRMp015w03/0VmHbxta13hm 5syZql5Y79690YtohLJ8QvX999+XLndZt2O7w1FRUdKukU+lItOqEa7IWlJGtEbalEZnM4wYMUJW MX4r0hlZV1UKSKO/v78UNNrvjtpDkscARFNVJyIiIqKn1dOQNlXFrmpGKU2bqm7XIu862i9otxkg VZBqhS7zVN1KGrEgr6omnW2p56V37+lLLSauRcF/+U7VZ0K5cuWQRuQtOyFv2YFU9WWNvhFxS6o2 bGKYNDr7TCnCKnorVqyYk5Pz6quvouzxH/awbsd2hyE6OrpZs2YVKlTAVhDYMjIyMMzgnUkb8r6i /R1lPwMCXocOHSw78cwzEydOVK1uktVVpYD89mnr1q0l22dlZcnbyPoPIS9ZsqRVq1aVK1eWR1ag rLqJiIiI6Gn1xKdNVSpQpLSJWz2t3WMlljax2AyQqvbmp7O0qep2fPsvRW/vsN0yYUzKOdVhggdp 02aAs7QJMkDYt9h48803McDPzw+31apV0++SW6zbMdqQQCrDMPNfGGvy9zYvXbok33+LQ4iMjFSt 7sMMoCoFatasiUb9nwm9c+cOWrTEq72hak8GEBEREdFT62n4lqCiKGPvbWoflL2Rb/klOnvufpJW 1e0MWbsfvS/4L8Btle4LVas5r7zyCqKIwSdp5T09/a9Q2gxo2LBhhQoV9F/A45B+FYeQzWQMdO3a VbW6T2ZQFefkHVR/f39Vd8XMd9ImJCRIIPz8888RO1WrRzAJqEqBNm3aoFGfNuWLiLS0+cILL6A6 e/Zs+b1NyMvLs0xk4g4hIiIioicb06axx5A2K/rNl6R3IMP2G2ukHYuq27VoXwLUZtamjGxLQrhz 737EgdNvTFBveem/JQhV7VuCkB5lgJBGLKpuB5PLV9Fi+WLhVtVqjvYtQampqagmJycjPerzSfPm zVH+9NNPs7OzUUXUrFu3rn7A+PHjUcaw+Ph4eUMyKytr4cKF+o93gn4VZ2rVqiXD4uLiVJP7ZAZV 0fniiy/kGNPS0hARMaZcuXLHjh2TXpdc/r3NoKAgpG7ck8ic0lIUlmOwO4qQkBA0tm7dGoeAKu5n ORDtrpaP2q5evVoeCDya7777rmUiV/c8ERERET3xmDaNPYa0+cm8LVrYk0V1OAqBNi35d39qPMry 9zDtF22A/HlM/YIWZ38BRdUdeXPyOhmDNKuazEFisfkLKBJgQAYgN0pVM2TIECnIAHj77belxYbq trJvsTds2DCMKcqXuNpT3Y4GICerPnNatWql1iyAFtXnfAdAe6fRJbWCHdVd8OW6euXLl4+Ntfxr Bcg30OrJvyaADCAiIiKipxbTprFHadMZyY2ecZg2L93M7xgcW7NviLNv9DFuQW4cti4RAbKi3/xy nebU6rf488Ct+q+Wzc67HbBil0+vYMyPW5TlG2717Ke1N3lLEgZU6DLvnvu/7piRkdGuXbuKFStW qFDhiy++sP/s5eTJk2vXrl2uXDlfX1/5KKnNAJg5c2azZs0wCYZhcMeOHffu3av6rOxXsTdgwACM Mf/pVj2Z357qfvhw9erViGrYPewk4rHB97g6k5+f37dvX4RhBDzc9u/fXx8j1fYc8WLazMnJwT7U qlULB4LHC3E3Pj5e9Vm/oEj2EL01a9YcMWIEGm1mICIiIqKnE9OmMZU29YqYMPUcps2youmY1Uib 7eZuVvWieVz5BGkW29XeqSMiIiIiIm9h2jTGtOlYVPJZefMzZPejb0wtiseSNmfj7rf7K51ERERE ROQVTJvGmDYdkJyJpUafYA8+RutQyadN2SIMGTJENRVQHY6oEUWmpnNEjSgyNZ0jagQRERERUXFi 2jTGtOlAhS7zsPj2X6r/ddAiqmClKiUCm6tYsWKHDh3s/8ym7IxDakSRqekcUSOKTE3niBpBRERE RFScmDaNMW0SERERERF5gmnTGNMmERERERGRJ5g2jTFtEhEREREReYJp0xjTJhERERERkSeYNo0x bRIREREREXmCadMY0yYREREREZEnmDaNPZ60+czsjrKoOhERERERUVnDtGmMafMp9UxhqrUse2IO hIiIiIjKCqZNY0ybjpXAHqanp/v5+dWqVat8+fIVK1Zs1apVdHS06it+ks00qrVkyaabN2+u6g8f oiyNqu4Oj1ckIiIiIvIM06Yx/t6mY8WdNmNiYipXriwBSU91l6DHtV2QTZcrVy4vLw/VnJwclKVR BhARERERlWZMm8aYNh0r1rR55cqVKlWqIFN9+eWXqampaLl37150dPS7774rA0rSY0x3sumGDRuG hoaiumzZsgYNGkijDCAiIiIiKs2YNo2VaNrUIpy2qA4raZmevLXifL9Xlg3Ydj717fVTys/tXGf5 D4euntWPwXLgSkaj8OHorbv8x3VnkqRXZN/O6xEfWj0oAL24Ddi1Ai2qr4A2z/m86202zcIWfYJ7 zUzerrXbL2pNq8lJW16NGIG1sAms+GnM/PisNNVnwpAhQxCo2rRpo+qOnD9/vkOHDi+88EL58uVx izJaVF9BTgsPD69cuTLSWlZWFuasWLFi3bp109IseyIDcnJyvvjiiwoVKqCrbdu2GRkZsrqejFSV wpCBhw0bVqdOHexDpUqV2rVrl56ervoePsQuYcV69erl5+ejilvJimiXAS5Zt/zMwIEDP/nkE1Qx f//+/aVRBsDevXsxYY0aNbAPONjWrVsfOHBA9VnJeI1qLaA1jh8/vnbt2pjE19d36tSp0ktERERE VBRMm8ZKXdosN6eTFBDkpIAFgVA/BkuN4D5aGatocTTv3p36KwZrXbI0CBuS/9NdGSC0rnqhg7Sy 8aLWfPgQ8dWmSxbVbUKzZs0QgWJiYlTdzqVLl5CvJClp0IJ2GSAt8gYpvPHGG1KATz/9VBuAFCcF 4ePjo82gkS5V0bl//75+WlG9evXMzEwZYBMvbcKnGdYpn0GeRJzG5nAbFxcnjWpEwRg9JMZt27ap brsBqrWANCIzS0ETEhKiRhAREREReYpp01gp+pYgaUm6eu7AlQwpJ1xOP3btAgrVgwL0Y7B02B50 /8GDjrHBUv18a6AMGJQQKS3owoDOOxZLFe0yQEgjFt+l/XdfPIWW7Nt5vXeHSS9oA1Rdp8K8LtIV e+E4qvfu34/OPPruxmnSa0bFihUReJCvVN1OQEAABiDLHTt2DFXcNmrUCC09evSQAZbAZM2rWjyL jo7evXs3CrVq1dIGaDOkpqbKDL1797ZO8IiMVBWdUaNGob1x48ZJSZa3jhFTkWPR4ufnJwMAD7H8 9umXX36JW5Tlg8EmYRVAATF4yJAhSJv6RtGiRYvw8PA7d+6gfOPGjc6dO6NX/8VCGpsVhTTWrVsX mRZVzCAJHIFfBhAREREReYxp01ipS5sOywh4WlkWpFBUU69nSbVmSF8ZoL2xiS79gLrLf5QBQhqx OPsErDZA1XW0t1VbR81cdnLf+TzLo+IWiUCq4kidOnUwAOlR1R8+lCT5yiuvSNU6gSWvgk0ZUVYb YDCDRkaqio68b6n/6CyiGlpq1qyp6lZLliyxTmCBsmo1R9ZCAWG1WrVq7dq10zc6dO/ePfRWqlRJ 1XUcriiN8fHxqm79pVm0yL1ERERERFQUTJvGykbaLDenk1bWd4FUtTiqff5WqmAzQEgjlvsPHqim wrQBqq6DhKl93FcWRNnZR2NVtwny3iaCk6rbKV++PAYgPaq69XOtaKlQoYJUUQaH5XLlymmNBjNo ZKSq6Mg+2EO7GlHg888/R/sXX3yh6qbJhChERESgIGFVaxRobNWqVeXKlbWvqwU5RhvSpSoFzDcS EREREbmLadNY2UibNmWtiqwoVWdp036AkEZtmD3jAek5V4bsX9s6auYLC/y1kQP3rVHdrjRu3Bhp x+D3NouSNqUsBfsZ7LOijFQVHWdpE9QIq/z8fHkn9pVXXjH/G5vCfjbQN44YMUKq9mSAnsN2841E RERERO5i2jRWVtOmtz5Jq+p2XA7QbMg4IiMrB3ZTTa4MHDgQaad169aqbsfkJ2kNylKwn8HX11fV C9gnW9GwYUOEW5cB0t/f37opi65du6pWc2QtVSmgb3zhhRdQnj17tvzeJuTl5ekH6DlsN99IRERE ROQupk1jZTVtyrcEaV8C9GnMfBmg/5YgVLUBQ/avlQFCGrGoup2K8/1kwIErtn81pOnqMYEpOzNy slHGPqw7kyQjbd4+NaD/e5vyLT4Ie9HR0e+//74MkG8Jql+/vvQmJycj+6HF5luCDMpSwAxYF9XU 1FSZATNbBz6CMWhHolP1AuPHj0d78+bN4+PjJYtmZWUtXLiwadOmMgCwzxiDUBoZGYlblA3esLWH 8aAqBfSNMufq1atlB3As7777rn6AnsN2841ERERERO5i2jTmOG3qqVaP2KRNSWUOF61XP9JZGYuz v4CS/9PdhuFDtS5Z0OLsL6Coup1PtszTxtiMtGnXFr84N74jJyoqSr7N1Yb0OvsLKMh7MkBaDMpS aNu2rRSEj4+PNoNm8uTJqttKtVq9/fbbqrUw6c3Ozq5ZsyaqmAFVmQctaJcBLlknK7RF0DfKN9Dq SQ4HGQBStafvlbLGYSMRERERkbuYNo05SJteVHxpMzn7fKPw4eXndq4XOmjdGcuf6NBk384L2LXC J7gXenGLMlpUXwFtHlW3cyn/ZsfY4Johfe2/dgjJFnM2jhhVwfqnUCrO92u2ZuzkpC2q27S0tDQ/ P79atWqVK1euQoUKiHaIoKrP+kZihw4dqlSpUr58edx++eWX2h+6BH1ecliWQk5OzhdffIHJK1as +Mknn2Rk2L5PK4YMGVK9enVZRTUVmDlzZrNmzbA6drJ27dodO3aUPyUC8uVAb7zxhlShefPmaJE/ +GmGdYO2W9Q33rt3r2/fvojZ2Dpy7IgRI2wGgFTt6XulrHHYSERERETkLqZNYyWaNotOgp8++5FD DFRERERERMWNadMY0+aTiWmTiIiIiKi4MW0aY9p8Mj32tCk74JAaQURERERUxjFtGitjabPCvC6y qDo5UcFKVR4H2QGH1AgiIiIiojKOadNYGUubREREREREpQTTpjGmTSIiIiIiIk8wbRpj2iQiIiIi IvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGnti0yb/MicRERERERUr pk1jJZo2SzIBluS2iIiIiIjoKcS0aYxpk4iIiIiIyBNMm8ae2LRJRERERERUrJg2jTFtEhERERER eYJp09jjSZvJ2ecbhQ8vP7dz/RWD151JUt1WN+7kB+xa4RPcC73VFvXsGBucdeuG6rOKz0prGD5U 1o05l6LNKb1aVVukXaO1H7p6ttmasRXmdakc2M0vbkn+T3fVCCIiIiIiIhOYNo2ptDnUOcmNnnGW NmsE99HK5eZ0QvCTAXn37jQIG6J1yYLBV/JzZUDajcsIh1pXpfldtbIM0KraIu0arV2/D1gQcdUI IiIiIiIiE5g2jT1Km5IPbRRT2uywPej+gwcdY4Ol+mnMfBkwKCFSWnrvDkN17KEoqWpR0C9uibR8 vjXw3v37WFGqWGSAxmW7/87l2IeQE7ul6hPcS40gIiIiIiIygWnT2ONJm8euXUA19XqWVGuG9JUB 9VcMlpacu7dRRRqUqu/S/jLglWUDpEVmwK1UscgAjcv27Nt5qGqbKDenkwwgIiIiIiIyg2nT2ONJ m6pe0FJhXheplp/bWRujX9BuM0CqWlbUWjTm2+1biIiIiIiIXGLaNFYobeJWT2v3mHHa1LKiy7SJ RQaUm9NJX2XaJCIiIiKix4Vp01ip+CRtjeA+MkD7JO2NO/nSYqPW4n4ywGYGLDJAY77dvoWIiIiI iMglpk1jj/NbgjrvWCxV+28JarNpVkZONlru3L8XcfrAG5ETZABW1FbBDEX5liBVZ9okIiIiIiKP MG0aezxp09lfQMn/6W7jiFFal36RAanXsyrO99MazfwFFG2xGSBVsG8hIiIiIiJyiWnT2KO06Yzk Rs84S5sHrmQ0Ch9efm7nOst/WHcmSXVbIXAOS1zXMHwoUiWCaK3F/T7fGhiflaa6Hz7cdj4VvVj3 lWUDNmQckQm1b5TVNmG/2AyQKti3EBERERERucS0aUylTb0iJkw9m7TpdTfu5EtQrBzYTTURERER ERGVCKZNY2UvbbaOmhmflXb/wYP8n+5qv8bZZtMs1U1ERERERFQimDaNlb20KfFSv5Sf2znhcrrq JiIiIiIiKhFMm8bKXtqMu3Cy3ea5lQO7VZjXBbdto2cfuJKh+oiIiIiIiEoK06axsv17m0RERERE RI8L06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGm TSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIi TzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9ok IiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE 06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIi IiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBt GmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0a8yRt7j+S MmLV7k9mbv7r+I1Y/jlry+jVu9GounX0afOZjrNtFmknIiIiIiIqi5g2jbmdNpdsO/C3SVGdF+8a s+nonJ0nsKCAaquJG9GlBhVg2iQiIiIioicV06Yx99Lm4m0HWk2MGh11ZPaOEzYLGtGFAWqolT5t apg2iYiIiIjoCcC0acyNtLn/SMo7EzYMXZ80ZWuqLLLTWhVdGJCg+0gt0yYRERERET2pmDaNuZE2 R0bs/teCuDHRR7Ul/WouFn0LBgxbGa9W8Cht3si/E7Bil0+v4PKd51bruahjcGzWjVvSJWtN35pc 0W/+KwOWbUs9//aU9RhW54flh85eNTNAxB6/0HZ2dOVugejCbYuJayMPnVF9RERERERE5jBtGlNp EwnTGcmN0G5GdEB44uD1SQYLBnw8I1qt4H7azLtzr8GQMG2ALDX6BF/JzUevVMt1miMFZEUpYGkz a5OZAUJr1C/RRzNVNxERERERkQlMm8YepU3Jhzb07X8Zs65vxIF+qx4tstP6lr4RiW+MXqtWcD9t DopMkK7eYbtRHRt1SKoBK3ahKuWkc1cPZFyRckL65WMXrqFQPSDIzADRfFxkeOKpO/fuo7z6YLqM 1MdRIiIiIiIil5g2jbmTNkev7Raa4L/i0SI7rW/pGrqv5dh1agX302b9wSukK+f2XVTvP3ggVd/+ S1GVsnWgbblCl3n2jfYDHJKRlbsFqjoREREREZEJTJvG3EibH02N+nxhXMfFu7VFdlrfggEfT4tS K7ifNvWffdUvaEevlGWkTblcpzn2jfYDAAl2bNShV0dEVPSbr33mFotsgoiIiIiIyCSmTWOF0iZu 9bR2MSw8/m9TNn++cKe2yE7rWzBgSJjn3xLkLG1iQa9WcFZ22GhT9l++U6r2iwwgIiIiIiIyg2nT mBvvbSYkpbQYHdlm9raP58XKIjutVdGFARimVnCSNrVIef/BA9VUQPsk7Y38O6pJR7oMyg4bbcoV usyTavTRTOzAvfv3paoNICIiIiIiMoNp05gbaROCYhKbj4x8b0ZM61nbbBY0ogsD1FArh2mz4dBw SXdD1u63CZzatwS1mbUpIzsHLXfu3Y84cPqNCZEoS5d1oOOyw0abspY2D529iq33Dd8jVW0AERER ERGRGUybxtxLm7BoS2KL0ZF/Hb/xnalb/jY9BgsKqKLRJmqCw7Q5NeaIFvC0Rbry7/7UeFSETZcs 6NUKzsoOG23KXy7aJlVZqgcEaWUZQEREREREZAbTprFHadMZyY16+4+k/Bga12bShmbDV/9lZORH UzcOCduJRtWt4zBtwsTNh+v+uFz/JT2qwxo4h61LbDg0XL7Fp1a/xZ8Hbo1Py0KXfqTDssNGm3LO 7btdl+6s0n0hJm8yetWhs1elVxtARERERERkBtOmMZU29RwmTM84S5tERERERERlHdOmMaZNIiIi IiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRorubS5/XQ2ltJfJiIiIiIiMoNp01hJv7fp LOOVtjIREREREZExpk1j/CQtERERERGRJ5g2jTFtEhEREREReYJp0xjTJhERERERkSeYNo0xbRIR EREREXmCadMY06ZTz8zuKIuqExERERER6TBtGnt60+al/JtfbF1YZWH38nM7O0yVTJul3zOFqVYi IiIiohLBtGns6U2b7TbP1fKkw1TprL00ePddBK2HvXurqggIsDS+/baqPg1UyiygWomIiIiISgTT prGnN21WmNdFwmRm7jXVVHakpj4sV+5h+fIP09JUCwpowXLsmGp5qjBtEhEREVHJY9o09vSmzdL8 1qUZXbta3sls21ZVUUDVz09VnzZMm0RERERU8pg2jT2NaVPLmTaLs15p13y+NVDa47MsbyziVqqf bJknA+DGnfyAXSt8gnuVn9u52qKeHWODs27dUH1Wk5O2vBoxouJ8PwzAsE9j5sts5l258rByZUvC 3Lv34e7dlkKlSpbG0kbLgcOGDatSpcoLL7wwdepU6YJ79+6hvU6dOuXLl69UqVK7du3S09NVn9Xe vXs7dOhQo0YNDKhcuXLr1q0PHDig+nS0rRARERERlRimTWNMm48WZ73Srsm+nVcjuA/am60Ziypu UUZivJKfKwPy7t1pEDZEW10WrKINQBC16ZVFes0bMcISMhs3tiwooOoByWmg6nZUt6dZTtadjRNB R7ru37//xhtvqKYC1atXz8zMlAGgWnUQO7dt26a6C0iXqhARERERlQimTWP8JK3TjGcwIOpssnQN 3LdGCqvTD6o+nHMJkdLYe3cYqmMPRUkVIVMGaL8yGnvhOKr37t+Pzjz67sZp0mvenTsPa9VC0LIs KKDqAclpoOp2VLenWU7WbdSoUUREBOLljRs3AgICpGvUqFHoaty4cVJSEqqXLl369NNP0eKn+0Bw ixYtwsPD71iPDet27twZA5o3by69Gss2mDaJiIiIqGQxbRpj2vQkbULnHYu1AV9sXahareqvGCzt OXdvo3r/wQOp+i7tLwPkrVEsraNmLju573ye5XH1TEiIJWpiQcEzktNA1e2o7qKlzZkzZ6q6ToMG DdCl/+gs8iRaatasqep27t27hwGVKlVS9QKWbTBtEhEREVHJYto0xrTpYdpEkqwZ0he9VRZ2z76d p1qttD/gabOgXQYgYZab00nfVXf5j7OPxkqvuyRtllqSAxEjVV2nfPny0msD7WrEw4dLlixp1apV 5cqVy5Urp7qfeQZl1V1A2lWFiIiIiKhEMG0aY9r0MG0eunpWG7D30mnVauUsbWJRIx4+TM+5MmT/ 2tZRM19Y4K/1Dty3RnW7o0ykTVUpzFnaBBkwYsQIVbcjAzQOG4mIiIiIihXTpjGmTQ/TZsPwoeiq HhSA2wZhQ1SrlfZJ2ht38lWToQ0ZR2R85cBuqskdCFmlOWcZ5MCGDRtWqFAhP9/pvfTCCy9g3dmz Z8vvbUJeXp7DCSW43r9/X9WJiIiIiIof06Yxpk1P0ubUIzFoLzen07bzqfKZ2LGHolQfzrmCbwlq s2lWRk42Wu7cvxdx+sAbkRNkQNPVYwJTdkrX/QcP1p1JkvEV5nWRAW4pYtqU8Aaqbkd1e7oNg3XH jx+PrubNm8fHx0tQzMrKWrhwYdOmTWUAsigGrF69WnqTk5Pfffdd63y2E9avXx+NyKWqTkRERERU /Jg2jTFt2oZJrd1+kQHn865XDuyGattoy6HhFuVK87tm5l6TAfk/3W0cMUpbS7/IAJtGbfGLWyID 3ILk5WkStJDwBqpuR3V7ug3jdd9++20ZYEN65Rto9QICAqQgAzSTJ0+WdqFaiYiIiIiKE9OmMaZN t9OmxEssCZctX6a6++IpqUr4FAicwxLXNQwfWnG+X7k5nWot7vf51sD4rDTpPXT1bMCuFUik8qdQ MKbZmrGTk7ZIr7uQrYoSr1Q+cz6F6vZ0Gy7XnTlzZrNmzSpWrFiuXLnatWt37Nhx79690nXv3r2+ ffvWqFEDXTVr1hxh/YuiziYcMmRI9erVnfUSEREREXkd06axpzdtEhERERERFQXTpjGmTSIiIiIi Ik8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPa JCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2ix7cssCta9ERERERE8upk1jTJtlj8pzpZvaVyIiIiKi JxfTpjGmzbJH5bnSTe0rEREREdGTi2nTGNOmrWdmd5RF1UsfledKN7WvRERERERPLqZNY0ybtspQ 2nzeyr4MbdqgJbdfP1UVffpYGj/4QFWNmZxBv119We0rEREREdGTi2nTGNOmrScjbR4+nFulSm7V qrnJyaoFBbRgOXhQtRgzOYN+u/qy2lciIiIioicX06Yxpk1bT0bahO7d0Zj7z3+qKgqo+vurqhlm ZtBvV19W+0pERERE9ORi2jT2NKbNyUlbXo0YUXG+X/m5nX2Ce30aMz8+K0316dJmcvb5ZmvGVpjX pXJgN7+4Jfk/3VUjHj7Mvp3XIz60elAAZsBtwK4VaEH7/QcP0IJ1c+7elpEaDEA7ejEGVeN9MCZx DvTpTl8WZ8/m1qhhyYdxcbmxsZaCj4+l0TwzM+i3qy+rfSUiIiIienIxbRp76tImkqGWJ/WL6tal zZohfbUyFqwoA/Lu3am/YrC+C0uDsCESR5uuHoPqujNJMlgTeeYQ2pusGo2yy30wJnEO9OlOX9aM HGmJiK+/bllQQFUj4x1SI6wMZhD6VfRlta9ERERERE8upk1jT13arDCvi0S72AvHUb13/3505tF3 N06TXtCyn//O5fcfPAg5sVuq1YMCZMCghEhp6RgbjAGddyyWKtrR6xe3BOWpR2JksGZy0ha0oxdl l/tgTOKcGdeu5data0mJWFBAVSPJ0CE1wspgBmNqX4mIiIiInlxMm8aeurRZI7iPJL3WUTOXndx3 Ps9yn+pJLxbtw7FSLTenkwzQ3thMvZ6FKm6lWnf5j6iGpiWg/PnWQJTbbZ6LMm5R/mTLPJTRi7LL fTCm8pw5QUEqK6LgGc9mUPtKRERERPTkYto09tSlTaQ75EYJe7IgJc4+Gqu6HX1LkE2L/Gam/YAK 87qgnJGTjfKrESNQrrW4H8o1Q/qi3Ch8OMrpOVdQdrkPxlSeM02yYlF4MIPaVyIiIiKiJxfTprGn 8VuCEPmG7F/bOmrmCwv8tbw3cN8a6dVapAo2LTZpU3vzU9ImVFvUE+WsWzfQ+Oa6ybhFGfES7TIA jPfBmMpzpjnMiupTs46oETpMm0RERERE9pg2jT2NaVNvQ8YRSXqVA7tJi5b9pAo2LcafpIU2m2ah OixxHW6jM4/iVn7VE+0ywIb9PhhTec40pk0iIiIiouLAtGnsqUubTVePCUzZmZGTjfL9Bw/WnUmS pKe9MylVLFIFmxb9twShqn1L0JD9a2XAqAMbUa0R3McnuBequJVf1ES7DHC5D8ZUnjPNg6xog2mT iIiIiMge06Yxx2lTT7V6pBSmTcl19ot8W6x+gFTBpiX/p7sNw4dqjbKgRfuDnPJ+JpZPtsxDVb4r CEvU2WQZIFX7RdsHYyrPmca0SURERERUHJg2jT11720euno2YNeKxhGjKlj/DEnF+X7N1oydnLRF dZtIm5B9Ow+T+AT3Kj+3M25Rli+wFffu35cvAZp3LA5V3KKMFrTLAJf7YEzlOdOYNomIiIiIigPT prGn/fc2yyKV50o3ta9ERERERE8upk1jTJtlj8pzpZvaVyIiIiKiJxfTpjGmzbJH5bnSTe0rERER EdGTi2nTGNNm2aPyXOmm9pWIiIiI6MnFtGmMabPsUXmudFP7SkRERET05GLaNMa0WfaoPFe6qX0l IiIiInpyMW0aY9ose1SeK93UvhIRERERPbmYNo0xbZY9Ks+VbmpfiYiIiIieXEybxpg2iYiIiIiI PMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGns6U2bl27mf7Fwa5XuC8t3nvtMx9lYVAcRERER EZEJTJvGnt602W7uZgmZ2qI6iIiIiIiITGDaNPb0ps0KXeZJyMy8xi9QJSIiIiIitzFtGnt60ybf 0iQiIiIioqJg2jRWomlTC3gHMq40Gh5evvPcuj8uX5d0RnUX0Iadv57XZtamin7zfXoFz9yeLL3Z ebd7hMZXDwjC6rgNWLELLdIlXA7Q5rdZVDcREREREZEJTJvGVNpEwnRGcqNnnKXNGn2CtXK5TnMO nb2qRlhpXfUGhWplLOjKu3Ov/uAV+kYsDYaE5d/9SdZ1OQBserVFdRMREREREZnAtGnsUdqUfGij mNJmh6Dt9x886BgcK9XPA7eqEVbaMN/+S3efuoiW7LzbvcN2ozAoMkG6sC5m6Lx4h1TRbl3V9QCN tGNRdSIiIiIiIncwbRp7PGnz2IVrqKZmXZdqzb4hMkBow+LTslRTAe19S6yLqjZD3R+XmxygkXYs qk5EREREROQOpk1jjydtqnpBS4Uu81TdSht2/8ED1VTA/m9jSlWbweUAjbTrR7rld4WpViIiIiIi emowbRorlDZxq6e1e8w4bSJMStVZ2lR1HZswaT+DywEaaddGukulzAKqlYiIiIiInhpMm8ZK9Sdp VV2Hn6QlIiIiIqJSgmnT2OP8liDtK3w+nR+jRlhpw1RdR/8lQKhqMwxZu9/kAI20Y1F1IiIiIiIi dzBtGns8adPkX0BRdZ38uz81HBquDZAFLdofOHE5QKP1qjoREREREZE7mDaNPUqbzkhu9IyztJl8 PrvR8PDynefWGxS6LumM6i6gDVP1wrLzbges2OXTKxir4xZltKg+K5cDhPFWiIiIiIiIjDFtGlNp U6+ICVPPWdpUdSIiIiIiojKLadMY0yYREREREZEnmDaNMW0SERERERF5gmnTWImmzQpd5smi6kRE RERERGUW06axEk2bRERERERETwymTWNMm0RERERERJ5g2jTGtElEREREROQJpk1jTJtERERERESe YNo0xrRJnsglIiIi8jZ1nUFUdjBtGmPaJE+o1wQiIiIi71HXGURlB9OmMaZN8oR6TSAiIiLyHnWd QVR2MG0ae+rS5jMdZ8ui6uQR9ZrgjgEDBrRo0UJVSiuDnTx37lzHjh19fHyet1KtublS1ajW0s3l Y/EYH6yWLVsOHDhQVYqHy00UfUBJ4k9W6VGaf3B4VnvdU3JWO1N8Z5S6ziAqO5g2jTFtlkbPWKmK IzLAXrly5dSIYqZeEwpeO+3LNg4fPlylSpWVK1equrcZbNo8453s2rWrbEWo1jJ49eDysXA4oE0b HGluv36qKvr0sTR+8IGq2oiPj8cdol2N7dmzp2fPnq+99lr16tWrVq1at25d3KVHjhyRXg22i61j H1TdCYd3tbc2UfQBJcbhg+VF1pOaP1mmODzM0vODU/QBJhX9wTI+YYrOekLxrHaqxE45/Z2gL6vr DKKyg2nTGNNmaSTRUVUckQH23n33XTWimMlLAuhfIfRlG+3bt3/ppZdu3ryp6t5msGnzjHcSXdhE bGysqtvxyj6UAJePhcMBuGCoUiW3atXc5GTVggJasBw8qFpstG3bFnfIhg0bpCr3jw0fH5+oqCgZ ILDd2rVrf/bZZ6peGPYtMTERBayLW5S/+uora4+FzGnD3U1A0QeUGP5klR6l+QcHij7AmPHPplt4 Vj9esm82iuOUk5nty+o6g6jsYNo0xrRZGkl0VBVzGjRogFVwgaLqxUxeEkD/CqEv66WlpVWpUsXj Kw8znG3aPJc76XITLgeUBi4P02BA9+44xtx//lNVUUDV319VbRw+fBj3RuPGjVU9N/f111+fPHly QkKCXJ+h8M4772DMa6+9JgM0X3/9NfYBe6LqOiEhIa+88kpERARWxC3KaFF9XtqEKPqAEmDwYHkL 7j1QFY+43EmXm3A5oDQwOMzS8IMjivWsNv7ZNM/lCVN0lvOJZ7VzJXbK6e8EfVldZxCVHUybxp7e tJl8PrvZ2DUVusyr3C3Qb0lc/t2f1IiHD2OPX2g7Oxrt5TvPxW2LiWsjD51RfQ8f1v1xOVZ/f3qU qj982GrqBrSgXdUfPryRfydgxS6fXsGYoVrPRR2DY7Nu3FJ9JribNvFigPE1a9ZU9eInLwmgf4XQ l/XGjx+PdvsrD208BtSrV69q1ar169efOnWq9Iq4uLhOnTrhwgW9NWrU+Pjjj/fs2aP6CmZwSI0w zXgn7aluHWftgNdaHAUeIBwFblG2efV1OQC0+YcPH/7SSy9hmM19ZYazw9QYDDh7NrdGDewGHpTc 2FhLwcfH0uhQly5dME9QUJCqO3L27FmMwbUInolUkxW2jnZc7qh6YcnJyU2bNsUAXBLZf7jLhmeb gKIPKAH8ySoTP1ml5AcHij7AmFs/m87wrC49Z7WmmE45yy4W3An6srrOICo7mDaNqbSJhOmM5EbP lOa0WbNviFbGgnCoRujG6Jfoo5nS2ztsN6oV/ebff/AAVdwisqKlb/geGZB3516DIWHairLU6BN8 JTdfBrjkbtrs3Lkzxg8cOFDV3SHbAlU3R14SQP8KoS/r/eMf/0C7/WeKZDxeC6Wg0V9pqSYdvL5G R0c769XIAPOMd9Ke6tZx1n7mzBlc/UivBi1oNzlASPusWbOkIFSfac4OU2M8YORI7Ebu669bFhRQ dejkyZO4LsG1oKo7cfHiRetBPH/hwgXVZIVLRjRiT1S9sJSUFLmixS3KqtUJzzYBRR/gjGVvnFAj THP2YMls/MkqPT9ZpeEHB4rvrBZu/Ww6Y3zC8KwuybNaU0ynnHVKtVf6srrOICo7mDaNPUqbkg9t PMFp03/5TgTFkN0npFo9IEiNePiw+bjI8MRTd+7dR3n1wXQZ0GbWJundlnpeWuLTslCNO3lBqmiX AYMiE6QFuRTVsVGHpKoPtMbcin95eXkVK1bE+PT0dNXkDtkWqLo58pJgUu3atfEqcu3aNVUvIK8u jRo1wgsSqngZ+9e//oWWli1bygBo1apVaGiorIsBXa1fvfDWW29Jr8Y6k+cvpeBsJzUuN+FsQJ8+ fdDeuHHjg9bf08KtXJD16tXL5ACBFkBXWFjYzZs3cW9gRdVnmsvDNB6A5rp1sSeWBQVn0/Tr1w+T uPyndBwghuE6SdULYOtox56ouk5ISEidOnVWrlyJAbjFuvZvL+h5sAlR9AHOYC1n1AjTnD1YMht/ skrPTxaaH+8Pjij6AAPu/mw64+yeRCPwrC7Js1pTfKecQ+o6g6jsYNo09vSmzey826gicEq1XKc5 MsCeDKjcLVCqWAVltCBGojpq4wGUX/BfIL1Qf/AKWSXn9l1UtU349l8qA1xyK/7Nxn38zDMtWrRQ dTfJtkDVzVGvCeZUqVIFrzeqooNG2L59u6oXfFynevXqqm4HpywG+Pj4qHoB60xFunpwtpMal5tw NqBhw4Zo1/8rOMpoadCggVRdDhBogRkzZqi6R1wepssBQUHYE8vi7LN+uKzBA+Tr62twKQYjR460 HtDzS5YsUU06aK9ataqq6LRv316usTAAtyijxdrjgGeb0BR9QHHjTxbay8pP1uP9wdEUfYAzbv1s GuBZjfZSclaL4j7l7KnrDKKyg2nT2NObNlXdrgXhEDHy1RERFf3mI4JqveU7z5UB0G7uZrTIr27i FuVP5m2RLsBIbS39op/BmFvxr1GjRhgcGhqq6iVCvSaYg1cavN6oio7l5cuu3aYxJCTkww8/rFGj hry6C5RVdwFpVxWPONtJjctNOBsgM8vXLQiU0VKtWjWpuhwg0AK4JFV1j7g8TJcDAP0GQ+Sjbnjq UHU7eN7p1KmT5WCef37ixImqtTB0YU9UxREMUCVHvLWJIg4obs4eLDTat9s08idLgxYo7p8sQL/B kBL7wSniAJcwgyp5xNk9iUb7dptGntUatEARz+qSOeXsqesMorKDadNYobSJWz2t3WNlMW36L9+p tdgsMgCW7TuJKuLovfv3cYsyWlSf87SJRY1wxXzaPHToEEbiZeb+fcvnfkuMek0wx/iTUapSQN+o /ZOqPRmgcdjoluL7ZJR3rx5UxVMuD9PlAMBeONsRrOjr6+vj4+PsKufMmTMtW7bEJrChiIgI1VoY JsGAl19+WdXd5JVNFH2AM1jLGTXCNGcPlsPZ9I38yVJ1K7SAqniqTPzgFH1ACeBZjfbScFaXzCnn kLrOICo7mDaN8b1N2xb5yh8s0Ucz7z94gDxpMwBybt+Vtz0nb0nCLcryoVmhfZL2Rv4d1eQm82lT vh+od+/eql5S1GuCOfKFCvpPQAk0gqoU0DfWrFkT5VmzZmkv6pcvX9YP0DhsdIuzndS43IT9RYDw 7iejVMVTLg/T5QDAXjjbkWnTpmF1Z78gFB8fX6dOHQz46quvbL7TQk8O39kXSxjz1iaKPsAZrOWM GmGaswfL4Wz6Rv5kSVWgBVTFUy4PE7ARZ9spmR+cog8oAc7uSTSCqhTQN/KslqpAC6iK+0rslHNI XWcQlR1Mm8aYNp2mzUNnryJt9g3fYzNANB8XiZZ6g0Jxi7JqtdK+JajNrE0Z2TlouXPvfsSB029M KDTMgMm0eefOnUqVKmFkamqqanKfbAtU3Rz1mmDO1KlT8Xpj/40RaARVKaBvrFatGsorV66Ul+TE xMQ2bdroB2h8fX3ROHfuXPsXb5Oc7aTGulmjF+/XXnsNA3Cto+oF5Esd0Cu/1ISjaNKkCVpsvvXB YIBAC6iKp1wepssBgL1wuCO48+UvE5w8eVI16SxcuBAPaNOmTXEdo5qcCAoKwj548GcYvLiJog8o AfzJQntZ+ckCbMThdkrsB4dnteBZbawkTzmH1HUGUdnBtGmMadO25ctF27QWLNUDgrSyDBDjo9U3 zWKZuPmwarXKv/tT41ERWq9+USNcUfnPETXCat68eWjBS4Kqe0SmBVU3R70mmJOW5vgPYVtfDY2u HuQbBfXkhRZkgKZ79+7SrlEdpjnbSY3LafGCKmOEanX+hfWnT582OUBIu6p4yuVhuhwA2AuHOyIX Fl26dFH1wmT/HdLeixCfffYZ9sH+L8i5pKZzxN1NFH1ACXD2YMkhq0oBfSN/smSAkHZV8ZTLwwRs xOF2SuwHh2e14FltTNZ1yOunnEPqOoOo7GDaNPYobTojudEzZTFt5ty+23XpzirdF5brNKfJ6FWH zl61GSCOXbimtaOsWgsgcA5bl9hwaLh81VCtfos/D9wqfzHFDJX/HFEjrF599VW0BAaqL8v1jEwL qm6Oek0wrX379i+99JLNPyTLq5eqFNA34gT97rvv8DqKl6s6deqMtP6VOv0AzcWLF3FhUbduXYx0 OMAMhzupMTMtfl7kX81tRuI6oFOnTpi8atWquO3YsaPNmxguB4D9tJ4xPkxwOQB74XBHGjdujD2U f3G3J/vvkP4KBtvF1nGNouruUNM54tYmij6gxPAnqwz9ZGEjDrdTMj84RR9QYnhWP96zWtZ1yLun nDPqOoOo7GDaNKbSpl4RE6ZeKUyb5BXqNcG05ORkvK6HhoaqeqlUJnay6Fwepmf3Q2RkJK5Fiv4b X2FhYdj64cOHVb0YuNxE0QeUGP5klR6l/AeHZ7V3PSVntYHiO6PUdQZR2cG0aYxpkzyhXhPcMXjw YPu/sl3alImdLDqXh+nB/fDOO+9Uq1bN5e/5uIR5Bg0apCrFw+Umij6gJPEnq/QozT84PKu97ik5 q50pvjNKXWcQlR1Mm8aYNskT6jWBiIiIyHvUdQZR2cG0aYxpkzyhXhOIiIiIvEddZxCVHUybxpg2 yRPqNYGIiIjIe9R1BlHZwbRpjGmTPKFeE4iIiIi8R11nEJUdTJvGmDbJE+o1gYiIiMh71HUGUdnB tGmMaZM8oV4TiIiIiLxHXWcQlR1Mm8aesrS5c2cZWIiIiIiIqCxg2jTGtFn6FiIiIiIiKguYNo0x bZa+hYiIiIiIygKmTWNMm6VvISIiIiKisoBp0xjTZulbiIiIiIioLGDaNMa0WfoWIiIiIiIqC5g2 jTFtlr6FiIiIiIjKAqZNY09j2pw8b82r/YMrdp5bvtMcH//AT0ctj18V/Sjs7dyZvTW2x6Sw6t3m YwBuAyaHo0U/AMszHWfLcn7z9jbDl2I2TDVzQaSZAdg62mv3XKANbtgvCC0N+i6yVImIiIiIqCxg 2jT21KVNREctB+oXLfjlbd9Rv+8im17kwPzYOG0MFq2rXp+FWhmLmQGzF0RKee/qzajeiY0r942l OmBahGVdIiIiIiIqC5g2jT11abNCpzmS9GJXWt7PvBcXF70i6t0hSywxz7oMmhEhAzqOW3E/Lq7z +BVSRbs2Bos0YvHtuWC3NTRmb43tPTnczICc7TvKW3ej75SVqEYu2ygjJXyqXSUiIiIiotKNadPY U5c2a3SfL9Gu9fClyxavP795uyXg6Rbtjc3UDVtRxa1U6/ZZqB8mjVhsPoWrLcYDvhizHF3yYdr+ U1eiXKtHoOolIiIiIqKygGnT2FOXNpEw5WOr2oIYOVv3+5byriMWrUWqFTrN0Vq0Riz34wp9wlZb jAdsC98kvXtXb24xaDEK/pPCVC8REREREZUFTJvGnsZvCUqP2jZkRkTr4Utf+HaeRD4sA6dbPtSK xSZtIitK1Vna1DfqF5cDfHsuQG/vyeGyxZjwTaqLiIiIiIjKAqZNY09j2tQvG0LV70xW9psrLe5+ klbfqF9cDkDiRa8k3irfznvURUREREREZQHTprGnLm02HRAcuGhtRvQ2lO/Hxa0rSJvaW5f6bwlC VfuWIIRDGSCLNGLRN+oXlwOwD9pner8Ys/xRFxERERERlQVMm8Ycp0091eqRUpg2tRBos/hNUL82 mR8bJ3/9Ur+gxdlfQNE36heXA7C8OdjyG5tYIpZueNRORERERERlAdOmsafuvc1DkVsCJoc3/j5I /hRKxc5zm/0QMnnemkdhz/qnSjDGxz+wfKc5uEUZLfoBWCQlYrFp1xaXA7BguxiAPbmn/yYhIiIi IiIqC5g2jT3tv7f5eJemA4KRNtuNXFaonYiIiIiIygKmTWNMm49tiVoRJW9+hgSvL9RFRERERERl AdOmMabNx7NIzsRSo/v8Qh+jxUJERERERGUB06Yxps3Hs1ToNAeLb88F8auibbrUrhIRERERUenG tGmMabP0LUREREREVBYwbRpj2ix9CxERERERlQVMm8aYNkvfQkREREREZQHTpjGmzdK3EBERERFR WcC0aewpS5tERERERERewrRpjGmTiIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aY NomIiIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmTiIiIiIjIE0ybxpg2iYiIiIiI PMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmT iIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGmMaZOIiIiIiMgT TJvGmDaJiIiIiIg8wbRpjGmTiIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aYNomI iIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmz1MklIqLHTT0jExERGWLaNMa0Weqo Kx0iInp81DMyERGRIaZNY0ybpY660iEiosdHPSMTEREZYto09tSlzWc6zpZF1UsfdaXjjgEDBrRo 0UJVHHE5wGMtW7YcOHCgqpRBzxemWu2UqsMsvkfTiwx28ty5cx07dvTx8bG5z6WqUa2l22P80XOp BE5al5so+oDHSD0jExERGWLaNMa0WeqoK52Ci2/7so3Dhw9XqVJl5cqVqm7H5QBnsOLo0aNff/11 g61jWkyOkape1sihaVSrHa8c5tatW6taoaCa3Ofxo2mS8f1gkvFOdu3aVbYiVGsZTJsuHwuHA9q0 wZHm9uunqqJPH0vjBx+oqo34+HjcIVpq3bNnT8+ePV977bXq1avjdKpbty7u0iNHjkivxuRJ6/Cu 9tYmij7gMVLPyERERIaYNo0xbZY66kqn8HW/vmyjffv2L7300s2bN1XdjssBzshGNaq1MExbu3bt zz77TNXLLINjhKIfZkpKiq+vb4MGDRo2bIjC8ePHVYebPH40TTK+H0wy3kl0YROxsbGqbscr+1AC PPvRQ7CqUiW3atXc5GTVggJasBw8qFpstG3bFnfIhg0bpCr3jw0fH5+oqCgZIIxPWuxbYmIiClgX tyh/9dVX1h4LmdOGu5uAog94jNQzMhERkSGmTWNMm6WOutIpfM2tL+ulpaVVqVJFf5low+UAA40b Nx4+fPjhw4edbV18/fXX2AQ2pOplk/ExQlEO8+LFi3/4wx/q1q2L1aFOnTqoolF1m4Z1PX40TXJ5 P7jkciddbsLlgNLA5WEaDOjeHceY+89/qioKqPr7q6oN+QHED6Oq5+a+/vrrkydPTkhIkByLwjvv vIMxr732mgzQGJy0ISEhr7zySkREBFbELcpoUX1e2oQo+oDHRT0jExERGWLaNPb0ps3k89nNxq6p 0GVe5W6Bfkvi8u/+pEY8fBh7/ELb2dFoL995Lm5bTFwbeeiM6nv4sO6Py7H6+9OjVP3hw1ZTN6AF 7ar+8OGN/DsBK3b59ArGDNV6LuoYHJt145bqc0Vd6RS+5taX9caPH492/WWiDZcDzLBu3OnVPyZH L65NVd3btK0j+r700ks1a9acOnWqdAFOYrQ3bNiwatWqPj4+n332WUpKiuqziouL69SpEy6mMaBG jRoff/zxnj17VJ+OthVninKYH3zwwcsvv6y9nynvc6JRquY5ezSt+27ZeQyoV68ejrR+/fr6ewmM 7weZwSE1wjTjnbSnunWctQMyCY4C5wCOArco26QUlwNAm9/hGWVSUX70zp7NrVEDu4EHJTc21lLw 8bE0OtSlSxfMExQUpOqOnD17FmOQ2fDjoJqsjE/a5OTkpk2bYgCypf2nZG14tgko+oDHRT0jExER GWLaNKbSJhKmM5IbPVOa02bNviFaGQvCoRqhG6Nfoo9mSm/vsN2oVvSbf//BA1Rxi8iKlr7he2RA 3p17DYaEaSvKUqNP8JXcfBlgTF3pFL7m1pf1/vGPf6Dd4EOJLgeYYd2446t/QIxBLzak6naMVwfj AdI7a9YsKQjpunnzprzloocgd/LkSRkAqlUHOSQ6Olp1F5AuVXHE5WE606tXL+ySfGpRgyoae/bs qermOHs0rfv+PLKTFDT6iKKadPT3g2pyRAaYZ7yT9lS3jrP2M2fOIC1LrwYtaDc5QEi7wzPKPJc/ WcYDRo7EbuS+/rplQQFVh3AmI+DVr19f1Z24ePGi9SCev3DhgmqyMj5pU1JSJG3i1ubfaOx5tgko +gBnLHvjhBpRNOoZmYiIyBDTprFHaVPyoY0nOG36L9+JoBiy+4RUqwcEqREPHzYfFxmeeOrOvfso rz6YLgPazNokvdtSz0tLfFoWqnEnL0gV7TJgUGSCtCCXojo26pBU9YHWgLrSMad27dq4tLp27Zqq 23E5wAzr9ZvTCzhMjl5sSNXtGK8OxgOkFxfEYWFhiJe42O3Tp490jR49Gl2vv/56QkICqggV7du3 R4u/7lOJrVq1Cg0NlXsA68pX1Lz11lvSq7Fsw3AnXR5mCXD2aFr3/flGjRrhwh1VHOa//vUvtLRs 2VIGgLfuB5dcnnIuN+FsAB53tDdu3Pig9RcccSthCXne5ACBFnB4Rpnn8jCNB6C5bl3siWVBwdk0 /fr1wyQu33rFAWIYcrWqF8DW0e7wpA0JCalTp87KlSsxALdYFy2qzxEPNiGKPsAZrOWMGlE06hmZ iIjIENOmsac3bWbn3UYVgVOq5TrNkQH2ZEDlboFSxSooowUxEtVRGw+g/IL/AumF+oNXyCo5t++i qm3Ct/9SGWBMXemYU6VKFeNLK5cDzLBev7mIB1WrVlUVO2ZWNxggvTNmzFB1HeQKdOnflkFyQAsu o1XdDk56DPDx8VH1ApZtuLqjMMDgMEuAs0fTuu/Pb9++XdULPvdYvXp1VbdTlPvBmMtTzuUmnA1o 2LAh2vXvFqKMlgYNGkjV5QCBFnB4RplX9B+9oCDsiWVx9iFZnMx4gHx9fZ1FVjFy5EjrAT2/ZMkS 1aSDdocnbfv27SWTYwBuUUaLtccBzzahKfqAx0I9IxMRERli2jT29KZNVbdrQThEjHx1RERFv/mI oFpv+c5zZQC0m7sZLfKrm7hF+ZN5W6QLMFJbS7/oZzCgrnTMwSUaLtRUxRHjAejSU612jHsBvcV3 sShbx5W3quvI0dnT70xISMiHH35Yo0YNufoXKKvuAtKuKk5gQPEdphnOHk3rvtu22zR68X4w5mwn NS434WyAzCzfWyNQRku1atWk6nKAQAs4PKPMc3mYLgcA+g2GyEej8SSs6nbwDN6pUyfLwTz//MSJ E1VrYejCnqiKIxigSo54axNFHPBYqGdkIiIiQ0ybxgqlTdzqae0eK4tp03/5Tq3FZpEBsGzfSVQR R+/dv49blNGi+pynTSxqhCF1pWOO8af1wHgAuvRUqx3jXvkg3Msvv6zq3mawdbmgd0gGaO/J2JMB GoeNesV9mGY4ezSt+250RF68H1xyeU663ISzAfJweyttqoqnivijJ7AXznYEK/r6+vr4+DhLxWfO nGnZsiU2gQ1FRESo1sIwCQZ4fNJ6ZRNFH+AM1nJGjSga9YxMRERkiGnTGN/btG2Rr/zBEn008/6D B8iTNgMg5/Zdedtz8pYk3KIsH5oV2idpb+TfUU3uUFc65sg3keg/QmnD5QAzrNdvTi/g5MOKHnzJ h0kGW2/SpAmCxNWrV1XdTs2aNbHurFmzcEUrLZcvX3Y4oX1QsVHch2mGs0fTcjx2R6RvNH8/OGx0 i8tTzuUmnD0W3v0krap4yuVhuhwA2AtnOzJt2jSs7uwXSuPj4+vUqYMBX331lc13IOkV5aT11iaK PsAZrOWMGlE06hmZiIjIENOmMaZNp2nz0NmrSJt9w/fYDBDNx0Wipd6gUNyirFqttG8JajNrU0Z2 Dlru3LsfceD0GxMKDXNGXemYM3XqVFxaGXy9h8sBZliv35xewAUFBaHX4A8YGK8OxgMMeuWPTLz1 1lu4ppdwcvr06cDAwBYtWsgAZFEMWLlypfQmJia2adPGOp/thK+99hoakcdU3Y7LwywBzh5Ny/HY HZG+0fz94Ovri8a5c+caBG9jLk8562YdP6DC2WMhXwKEXvmFQxxFkyZN0GLzLUEGAwRaQFU85ZUf PeyFwx3BnS9/yUb/7cqahQsX4gFt2rQpAqFqcsLjk9aLmyj6gMdFPSMTEREZYto0xrRp2/Llom1a C5bqAUFaWQaI8dHqm2axTNx8WLVa5d/9qfGoCK1Xv6gRhtSVjjlpzv+CvHA5wAAuAR1S3QU+++wz bML+rxpqHK6lZzzAuPeDDz6QATakV755VU8CCcgADS52pV2oVh2Xh1kCnD2aDvdZ32j+fujevbu0 a1SHaS5POZfTOnsszjj5AyenT582OUBIu6p4yuVhuhwA2AuHOyIBrEuXLqpemOy/Q9p718Ljk1ZN 54i7myj6gMdFPSMTEREZYto09ihtOiO50TNlMW3m3L7bdenOKt0Xlus0p8noVYfOXrUZII5duKa1 o6xaCyBwDluX2HBouHzVUK1+iz8P3Cp/McUldaVjWvv27V966SWDd6JcDnBGXV3aUd1WmBaT43pR 1R2xX8uG8QDjXpgxY0bLli2rV6+Oa9Z69erhGl3+EAjgFP/uu++QN9BVp06dkdY/a+hsQpzt8s6e fa+ZwywZDh9Nh/usbzR/P1y8eBFBtG7duhjpcIAZxqecmWmdPRbIjZ06dcLkVatWxW3Hjh1t3v1z OQDsp/VM0X/0sBcOd0S+bFneobUn+++QPgoW5aRV0zni1iaKPuAxUs/IREREhpg2jam0qVfEhKlX CtNm6aeudExLTk5GMAgNDVV1Oy4HFEVYWBgmP3z4sKo/oUrPYRbro+ktZWIni66YfvQiIyMR6jz7 ZUu9EjhpXW6i6AMeI/WMTEREZIhp0xjTZqmjrnTcMXjwYPs/06/ncoDH3nnnnUGDBqnKk6tUHWbx PZpeVCZ2suiK40cPJ1u1atVc/sKkSyVw0rrcRNEHPEbqGZmIiMgQ06Yxps1SR13pEBHR46OekYmI iAwxbRpj2ix11JUOERE9PuoZmYiIyBDTpjGmzVJHXekQEdHjo56RiYiIDDFtGmPaLHXUlQ4RET0+ 6hmZiIjIENOmMabNUkdd6RAR0eOjnpGJiIgMMW0aY9osddSVDhERPT7qGZmIiMgQ06axkkub6gWc iIiIqDSRCxUiIg8wbRpj2iQiIqKnmlyoEBF5gGnTGNMmERERPdXkQoWIyANMm8aYNp8EAwYMaNGi hao44nKAx1q2bDlw4EBVKYOeL0y12ilVh1n0R7P4zgcvMtjJc+fOdezY0cfHx+ZRk6pGtZZuj/Gx cHlWF31ASeJZXfqVwBnl8QxyoUJE5AGmTWNMm2Xe4cOHq1SpsnLlSlW343KAM1hx9OjRr7/+usFV DqbF5Bip6mWNHJpGtdrxymFu3bq1qhUKqsl9Hj+amqLPYMz4njTJeCe7du0qWxGqtQxelzs8zDZt cCC5/fqpqujTx9L4wQeqaiM+Ph7Hq8WYPXv29OzZ87XXXqtevTrOt7p16+IeO3LkiPRqXJ7VRR9g UtEfLOMTpuisJxTPaqdK7JRzyeUM+rtRX5YLFSIiDzBtGmPaLPPat2//0ksv3bx5U9XtuBzgjLwS a1RrYZi2du3an332maqXWQbHCEU/zJSUFF9f3wYNGjRs2BCF48ePqw43efxoaoo+gzHje9Ik451E FzYRGxur6na8sg8lwOFh4jq5SpXcqlVzk5NVCwpowXLwoGqx0bZtWxzvhg0bpCqHb8PHxycqKkoG CJdnddEHGMPhJyYmooDdwy3KX331lbXHbTyrHy/ZNxvFccq55HIG2Tf7slyoEBF5gGnTGNNm2ZaW llalShWDSzSXAww0btx4+PDhhw8f1r8k2/v666+xCWxI1csm42OEohzmxYsX//CHP9StWxerQ506 dVBFo+o2Det6/GiKos/gkst70iWXO+lyEy4HlAYGh9m9Ow4h95//VFUUUPX3V1Ub8hOKn1ZVz819 /fXXJ0+enJCQIMEGhXfeeQdjXnvtNRmgcXlWF32AgZCQkFdeeSUiIgL7hluU0aL63OHyhCk6y/nE s9q5kjzlXDKeQX836styoUJE5AGmTWNMm2Xb+PHj8WJpcInmcoAZ1ldkp1c5mBy9uNRQdW/Tto7o +9JLL9WsWXPq1KnSBTiJ0d6wYcOqVav6+Ph89tlnKSkpqs8qLi6uU6dOuJDFgBo1anz88cd79uxR fTraVpwpymF+8MEHL7/8svZ+przPiUapmlf0R9PZDJaDtx4+BtSrVw/3Vf369fX3MxjfkzKDQ2qE acY7aU916zhrB1yD4ihwFuEocIuyzVWpywGgze/wnDTJ4NE8eza3Rg1sBfd5bmyspeDjY2l0qEuX LpgnKChI1R05e/YsxuASHD8vqsnK5Vld9AHGkpOTmzZtihkQV+w/eGkSz+rSc1Zriu+Uc8l4BnSB fVkuVIiIPMC0aYxps2z7xz/+gRdLgw9fuRxghvUV2fFVDuByDb3YkKrbMV4djAdI76xZs6QgpOvm zZvyL+h6CHInT56UAaBadXC9FR0drboLSJeqOOLyMJ3p1asXdkk+MahBFY09e/ZUdXOK/mg6m8Fy 8M8/j6tMKWj0GUY16ejvSdXkiAwwz3gn7aluHWftZ86cQa6QXg1a0G5ygJB2h+ekecaP5siR2Eru 669bFhRQdQinOi7oEaJU3YmLFy/KTl64cEE1Wbk8q4s+wFhKSoqkTdza/DuRecYnDM/qkjyrNcV3 yrlkPINlnwqOS1+WCxUiIg8wbRpj2izbateujRfLa9euqbodlwPMsL4iO73swOToxYZU3Y7x6mA8 QHpxMRoWFoZ4iWuXPn36SNfo0aPR9frrryckJKCKi6f27dujxV/3ocNWrVqFhobKPYB15as43nrr LenVWLZhuJMuD7MEFP3RdDaD5eCff75Ro0a4UEMVd9S//vUvtLRs2VIGgLfuSZdcHqbLTTgbgDMH 7Y0bNz5o/Q1I3ErU6dWrl8kBAi3g8Jw0z/gw0Vy3LjZkWVBwdmf069cPk7h8Dwr7j2EIGKpeAFtH u8FZXfQBBkJCQurUqbNy5UrMgFvsnv1bf2Y4uyfRCDyrS/Ks1hTfKeeSZzPIhQoRkQeYNo0xbZZt VapUwcuqqjjicoAZmMF4EvRWrVpVVeyYWd1ggPTOmDFD1XVw/YQu/VsiuEJCCy5hVd0OTnoM8PHx UfUClm24uqMwwOAwS0DRH01nM1gO/vnnt2/fruoFH4SrXr26qtspyj1pzOVhutyEswENGzZEu/79 JZTR0qBBA6m6HCDQAg7PSfNcHmZQEDZkWZx9SBZnO+5/X19fgwwDI0eOlB1esmSJatJBu/FZXfQB zrRv317yD2bALcposfa4h2c12kvJWS2K+5RzyYMZ5EKFiMgDTJvGmDbLNryg4mVVVRwxHoAuPdVq x7gX0FvEiwMDsnVcWKu6jhydPf3OhISEfPjhhzVq1JCrPYGy6i4g7ariBAYU32GaYfxomuFsBsvB 27XbNHrxnjTm8jBdbsLZAJlZvshEoIyWatWqSdXlAIEWcHhOmmfm0US/wRD5jCiesVXdDp7iO3Xq ZN3Z5ydOnKhaC0MX9kRVHCn6AJcwgyp5xNk9iUb7dptGntUatEARz+qSOeVc8mAGuVAhIvIA06Yx ps2yzeWns4wHoEtPtdox7pWPLb388suq7m0GW5erKIdkgPZP7PZkgMZho15xH6YZLh9ul5zNYDl4 w/vEi/ekSy4P0+UmnA1wedntcoBAC6iKp8w8mtiIs+1gRV9fXx8fH2fx4MyZMy1btsQmsKGIiAjV WhgmwQCDs7roA0oAz2q0l4azumROOZc8m0EuVIiIPMC0aYxps2yTb57Qf1TMhssBZmAGUBU78qGs onypgzGDrTdp0gQXTFevXlV1OzVr1sS6s2bN0i7yLl++7HBC+wsyG8V9mGYU/dF0NgMaQVUK6BvN 35MOG93i8jBdbsLZo+ndzxyqiqfMPJrYiLPtTJs2Das7+826+Pj4OnXqYMBXX31l82Uwei7P6qIP KAHO7kk0gqoU0DfyrJaqQAuoivtK7JRzybMZ5EKFiMgDZSttrvH1NV4wRsVEL2HaLNumTp2Kl1WD r9ZwOcAMzACqYicoKAi9Bl9Yb7w6GA8w6JU/KvDWW2/hGk4uwk6fPh0YGNiiRQsZgCyKAStXrpTe xMTENm3aWOeznfC1115DI647Vd2Oy8MsAUV/NJ3NgEZQlQL6RvP3pK+vLxrnzp1rf1lsksvDtG7W 8SkhnD2a8nUp6JVfF8RRNGnSBC0236diMECgBVTFU2YeTWzE4XZw38qf9NB//bJm4cKFeLyaNm2K AKCanHB5Vhd9QAngWY32x3tWl+Qp55JnM8iFChGRB5g2jTlOm3qq1SNMm8UtLc3FXwx3OcCA5dLD EdVd4LPPPsMm7P96m8bhWnrGA4x7P/jgAxlgQ3rlGyb15MILZIAGlybSLlSrjsvDLAFFeTSFsxkc HrW+0fw92b17d2nXqA7TXB6my2mdPZpnnPwpiNOnT5scIKRdVTxl5tHERhxuR66nu3TpouqFye45 pL2JJ1ye1UUfUAKc3ZNyyKpSQN/Is1oGCGlXFTfJug55/ZRzybMZ5EKFiMgDTJvG+N5mmde+ffuX XnrJ4F/cXQ5wRl0s2FHdVpgWk+PVXdUdsV/LhvEA416YMWNGy5Ytq1evjiuMevXq4RJc/uAB4BT/ 7rvvcF2Frjp16oy0/tVCZxPizJd3MOx7zRxmyfD40dQ4nMHhUesbzd+TFy9exCV73bp1MdLhADOM D9PMtM4eTVxhd+rUCZNXrVoVtx07drR5e9DlALCf1jMuH01sxOF25NuY5a0qe7J7Dukv/V2e1UUf UGJ4Vj/es1rWdci7p5xLHs8gFypERB5g2jTGtFnmJScn4wIoNDRU1f9/e3cDHVV953/cY0gDptls bHjYnBzKsnL4a8uipa3oP0UOUl2qFBFRZHMoZRGMUSgi0lL+iEgjlfWBRWR5LEIEFCMiUsEHtLal VK1oKYupopRSSinSsilVSjH/78z3x4/LnZk7d27uPCXv1/mcnHt/9zd37tyZkfmYyUyMpBNa4skn n5Sd//KXvzTrrVTu3MyW35tpfTyEJS8OsuWC3cyNGzfKi/iW/GGbSvqobvmEjOFRnRcy8IgKvAd9 oQIAAdA2vdE2W4O777479uvInZJOCOxrX/vazJkzzUrrlVM3s+X3ZvoeDyHKi4NsuQA3Ux6N5eXl Sf9ALqmkj+qWT8gkHtW5LwOPqMB70BcqABAAbdMbbRMAALRp+kIFAAKgbXqjbQIAgDZNX6gAQAC0 TW+0TQAA0KbpCxUACIC26Y22CQAA2jR9oQIAAdA2vdE2AQBAm6YvVAAgANqmN9omAABo0/SFCgAE QNv0lrm22dy8l4SSs3xwXYTkceTe9I5rPiGEEEIIyVSibdM9mLNxdcvYyI0xNTEktM38S9IySdts VbGtMlFc8wkhhBBCSKZC2/RG28y/0DbbVmyrTBTXfEIIIYQQkqnQNr0Faptvv9W4eP47U2p3j7k+ kim1jUsWyKDZ6tAW2+Y117jjmtDiuMrkrl0vlJQUV1V9yY6k2ja/EOUazIssGtfsjGtrfkXuweLi cxobX3aNu7tlbFzzCSGEEEJIpkLb9JZy2/z1xvXv3Fz9m+9O+MO82R8ufVAiC7L6zs3/LpvMpFNo m5G4JrQ4zjJ58uT7vXr9Hxl54okFdpC2mcnI2fY+4TohVkFBgXPa+vWLZVDuTblPnePubhkb52RC CCGEEJLB0Da9pdY2pU82jrvx4IP3HF78gCsyKJtchbMttk2bjLTNOXOmymppaYmzojgntJHkY9sc PHigc5rcg3I/yrjcp85xd7eMjXMyIYQQQgjJYGib3lJpm2+/tXv8yN/P/X9/XHCvJlIhm5vtqmx6 Z/zId9/aYebTNtPcNo8ff7esrFRWR40aZrdK7IS2k1xum7Hp3ft8uchzzz3qGh8xYrCMl5ef+9FH jafHtVJ6xM4khBBCCCGZDW3TWwpts3HJgg/uGPeHB++2aT55UuIckQmNi+ebC+Rs29z1UvN9M5tv vKF52LWRn3dNbX590+mttiW+/9PmybdF5tw6vvmNH6YwwTXNNS6ZMiEyPm7M6ZHbb42MfOuW0yOJ Y7vNihX3R4rOWWetXv1fdqtEJ2zZ8tiUKbX9+lV9+ctf6tv34muuuXrWrDt/9asX7DR9A61lx51b X3ppbVXVpTfeOOzDD99esmTuJZf0HTbs6/v3/9xOOHZs9113TZb9y6Y777z14MFfOHeSNMf+/Nsf rWz6wcSTS2o+kZ+yLCN2q+2Qb79wZPV3TsicNdNO/Grrh3aCTaK2+fT3P5bxd7f/0Y7s+9UfZKTh e8ftSAujd4Fr0CNvvLFR5ldW/pNrXFJf/5DubfnyuafHtVJ6xM4khBBCCCGZDW3TWwptc/eU2v13 TTo4Z5rN348c/vufPnSOyIR3ptSaC+Rs27Q90Jm3tri3jvnG6eVrr23+YJvfCa5pzkHNltVm07uv RlZP7IlcXFYfe+SMaQkibUQXhg0bpOXkJz950m6VyMjDD39P22AsO82sn2LHnVv79++nC+PHf0MX xPTpk+yEadMm6oL66lcHHDnyS+d+PPLR//521Z1/16JoIyMyrhN05M1Nf7JbNc726JzpGpS889PD Mr7hvo/tyAuLjsnIzpfclVXPpHCNJ02ql6qpqZb5M2ZMdI1Ltm9/Wvc2fPhVp8e1UnrEziSEEEII IZkNbdNbKm1zzPUH7r79wKzJNh+/t/vjPY3OEZmwe8xwc4GcbZvT72j+2TORjifLP99oit/37zJb dVWy4PvNn3zQ/Mh9ZnVend8JrmnOQc1HjZHfiMqmlQ9HVl/fZGZq+UwWaSO6UFn5T1pOjh9/126V yEjfvhdL91u5ct6f/7xTB//wh188++yKsWOr7TQbLYpxB19//dm33tqsy9u3b9i58wVZ+NrXrrAT Roy49oMPfiqre/du+/d/Hy4jDz00y+7EOz9bd1SK35Ozjv/p97+TVfnZ8L3jMrLtiaM6QZYlj9/1 t0MfHJDV4x/te2npX2Tkmbkf6QQbnekalJw8uffR20/KpiMHIlfx8bF9S2o+kXz0l33OaRI9k8I1 njQpXerYsd0dOrSX+Xv3Rk6aK3I/6t4qKjqfHtdK6RE7kxBCCCGEZDa0TW+ptc393711//TbbP6y /dW//PzHzpHffvfW3TeNMBfIl7/b1KZ34w1nrEr2vxZZ/d3rZvU/Rvud4JrmHLT5r7rIJn0zbf2C yPJN3zxjQuJIG9GFgoICLSd2k0ZGBg8eJMXv9ttvnj590pw535We+cYbjncLn5lobYzfNk+efF/i Wr7kkr52gvRPexHtotdcc7Ud8c7j/+9v0gP/8P7v7Ygsy8ja6Sd0VTvkwT2nJ0hLlJFltZ/YEY3O dA1qtj8Z6bQ/fux/ZflXWz+U5S0LjjknaPRMCtd40qR0qUWL6mTywIFVrnEb3VthYbvTg7Jz79iZ hBBCCCEks6FtekvtnbR7J43Zd+d4G+mWEueITHjnztx+J+0nHzSvXx75y8nrh5v3r2qGXWsm2BF7 EV0dfp3fCc5B5zRnfvWS2fruq5E/HJWFpQ+65ySItBFdkE6i5cRu0sjI229vGTr0ai2E1rBhX//j H3e4Jkt0q8ega/mLX/yiHZT+qeMS7aJ9+15sR7yzpOYT6X6ffHJ6RJZlZOktpkzKssRuTXVQ03R4 v2ySgvq3j3+zvi7yZ5x73/qDa05LEvcuSJQ+fXrJZOfX1biie6NtEkIIIYTkRWib3lL7lKB3x98o fdLmo8ZdEueITMj1TwmSUqc1LzY6wbUq7VRXE7XN2Aka17TYjP+PyNYV/2XeVfvL078k9I60EV3o 2rVCy0nsO2l14Z13Xt6y5bHlyx+4885b/+//vVSq4O2332yn2URrYwptU5d1IbZtfvnLX7Ij3slM 25RsmvdX2fqT1f8rPx+9/aTzGlsevQtcg3Hz9tubZWZ5+bnOk+YM76QlhBBCCMmv5FfbNBUwMbkx ZikkKbTNd9/asXvcje/XVn8wYZRGjkbYVdkkE3L9G1CkE2oJfGtLpCj+fY9ZlegEu9rCd9Jqh5TI tTjHbR5fFNk6ckTkZ/VI99bEkTaiC/qFGSL2U4Kcq5ojR34pVTDuLx6jtTFg24x9J+3gwYPsiHd8 vpPWbvUYjC2uzvzm7cjn0Gp+uibyltoQo3eBazBu9POBpkwZ7xq32bbtKd2b3LOnx7VSesTOJIQQ QgghmQ1t01sqbfPdd3+9cf0737xuT81IKZauyKBskglmalROt80PtkV64MqHzapEJ9hV/RCg/55r Vh+c7XeCRr/URCKtMm7h/ONbp9/K+19nfsKQZ6SN6MLy5XO1nKxc+YDdKpGRb3xjxBNP/Pd7772q v0b78MO3Fy36vlRB/ZNLV6K1MWDbvP76oXv2/FhW9+7dduONw2TkgQfkOXd6Px7RTwlad/ff9FOC jhz4XcM9cT4lSJdt4g7KTmTwf1497Bq3eezbJ/SCv3/vdLl1Rs+kcI0njc9LHT/+bnHxOTKzsfFl 1yYb+w0oK1bcf3pcK6VH7ExCCCGEEJLZ0Da9pdY2xa+feWr3TTf++j+Gvzd+hDRMiSzIamTwzKop crFtzr/XFDzNN6pPL+sEu9rCb0DZtOr0VhvnBMnd3zbj2ze6NyWOtBFdkAJTXn6urJ7xq7DoBK2C sZYu/U87zQzFcG71WNaFO++8VRfUV786QJqtzkyaRN+A8tejZ3wDip3vMbjzpcjH/9i4tkr0a1Rk 565xm0jJi3KNJ425WDzOaUuXfl9Gqqq83masv6yW+/SMt0ZrpfSInUkIIYQQQjIb2qa3lNtmxNtv NS6e/86UW3Z/87rdY294Z+qt7yx5WAbNVodcbJsfNTYveSDyzlXph9+eFKmIripoV/dtb558W+QN sRNqmt/44ek9JJ1g88yjzbeOP+OziFwTnl0ZGRx+XeQNva5NieOsMXPmTJXVkpJi558Cysivf/2j Bx6YeeONw/r2vfiLX/xiVdWlkyfXvPLKE3aOxBTEGM6tHsu6cOzY7rvumizXcsklfadNm3jw4C90 ms9IsfzRyqYV3zq5pOYT+fnKo01/+ZOpmpK41TFRn/zFs39aOdl0V9cmyetP/1nGf/p4wrfRyklT rvGkMReLxznty1/uLSPLl891Djoj92BpaYnMkfv0jE1aKT3inEwIIYQQQjIY2qa3QG3Tt1xsm0mT qBnaJJ3gP9+5PbKf/7zbPe4ZZ42RitKr1/+REefHnLp6TpqibdM1mLNZMy3yTtrf/zr+22hzIevX L5Y7Tu5N92cIaaX0iHMyIYQQQgjJYGib3mibMUlaJpNO8JkdW8x+ftTg3uQZV5lsbHy5rKy0f//T f5BJ23Tlf149LFWzfmrCt9HmQgYMuFTuxzh/1WlbZaK45hNCCCGEkEyFtumNthmTpGUy6QQ/sTsZ 842U3kYrSVomaZvO6HtrJb949k+uTfkR2yoTxTWfEEIIIYRkKrRNb7TNmAy/zsQ1bpN0gp/oHsb/ R/M7r7g3JUuOtM2+fS+O+30quZalt3yyrPaTH61sCvdrNjMX2yoTxTWfEEIIIYRkKrRNb7TN/IuW yWe6d5foiGvZtk2POSznzbJtlYkSnU8IIYQQQjIf2qY32mb+Rcqkdz/RCbHjLOfjsrtbxiY6kxBC CCGEZD60TW+0zfxL0jfKJp1A8im2VSaKaz4hhBBCCMlUaJveaJv5FymTSbkuQvI4H/86SVzzCSGE EEJIpkLb9JbJtgkAAAAArUe0beYNUwET8zMnJbRNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI 2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt01tbbJtHjn086YltnSavLKxZIj8nr/uZ jJhtUd4Tzhq3SLNj3+E+32uQOeff9fimnb8xm6PmvbTzy3XrO9Quk61d7lhVvWzrtj0HzTYAAAAA rQJt01uba5vHjp/odfc62xg1vWc9+dHf/u5zgh2suHOVXS64efHbv/1QJ0g7tePO6FYAAAAArQNt 01uba5szN76h3W/cqldPfvJJzWM/1lUZ9zlBVyVjV/5IJsg0XR21/GWdUHTLUh159de/l9UTJ0++ 8D/7Bz+8WbcCAAAAaB1om97aXNu0v7dsPBg5m/JTV8+/63GfE3RVsvv3f3JOqJxarxPs7zyHLtyy 9vX3Dvz5mI4DAAAAaE1om97aXNssrFmiVdCsn2qPRbcs1dWkE3TVY4I0zIKbF9tpEmmqi179H90K AAAAoHWgbXpr623z5Cef6Gqithk7QVc9Joi9h5tmPfuLoQu3lE78gZ0/45nXzWYAAAAA+Y+26Y13 0ob/TlqX5361TyeUTFhuhgAAAADkP9qmtzb9KUGyaj8EaNazv/A5QVcl+ilBdkL1sq06oeq+Dct/ +s6+I02yLBM27fyNTnD+8hMAAABAvqNteovfNp3MaCA52DY/+tvfL7qnQeufjYzYLzhJOsEOJvoG FDvoSu3qn+gEAAAAAK0AbdNbnLYZohxsm+LIsY8nr/tZlztWFdYskZ+yLCNmW5T3BNsedx040ud7 DTLnczOf2LTzN2Zzc7PUTrlI3znri6JfhdKhdlm/uc/Me2mn2QwAAACgVaBtemuLbbOFbNs06wAA AADaJNqmN9pmymibAAAAAARt0xttM2W0TQAAAACCtumNtpmyoluWasw6AAAAgDaJtumNtgkAAAAA QdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16 o20CAAAAQBC0TW953zbPWjROY9YBAAAAICNom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABA ELRNb5lum0ePfzT5Z+u6rLqjcElN+aO3j3t11cG/HjXbHNXx7Q9/2++ZuUVLbylZPqH2J6s/+vvf zIzm5k2/2dlr3d1y8T4N39t15IC9iNkMAAAAABlB2/SW0bZ57MTx3k/Osv1QU7HqzsMf/UUnOAft skQKqk7YcXhfweKb7bhzmk4AAAAAgMygbXrLaNuc+cZGbYZTtj8pq3Pf3qKrtkzqqmTiTx8/+ckn 9e9u19Uuq+7QCaNeXq4j415ddeLkSfmpqxKdAAAAAACZQdv0ltG22Wvd3doMm/72saxKn9TV7mum 6QRdlRz5+JhzQsHim3WC1E4dafzzQVmVn7oq0QkAAAAAkBm0TW8ZbZuFS2psOXRGxnWCHdFV4Rqx b6PVVeGaAAAAAACZQdv0lhNtU6ITXKvCNeJqm/aXn3YEAAAAADKDtuktO++kPXr8IzN0ptjq6Bqp rJ+qq7yTFgAAAEB20Ta9ZedTgoY9/9/7mo7IyPGTJ9Z/sGPAxgd0Qmx1dI04PyVIVsf+aKVrAgAA AABkBm3TW0bb5kd//1vf9XNsP3RGJ7hWhWvk7Q9/6/wGFPurTolOAAAAAIDMoG16y2jbFFI4Z7+5 6aKGezosq5Xe2PWxb496efm2g3t0a2x1jB3Z9Jud5z9+V+GSmj4N39v54e9iJwAAAABABtA2vWW6 bQIAAABA60Db9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAA AAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAE bdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfa JgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAA AAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt 0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9om AAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAA CIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3T G20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYA AAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAI grbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdMb bRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAA AAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiC tumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xtt EwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAA AARB2/RG2wQAAACAIGib3mibAAAAABAEbdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK2 6Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20T AAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAA BEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbp jbYJAAAAAEHQNr3RNgEAAAAgiNbdNkePHm2WTokd8UbbBAAAAIAgWn3bdNZL16oftE0AAAAACKIt tE3hWvaPtgkAAAAAQbT6v9s0FfMUM+obbRMAAAAAgmgLnxJkimbqVVPQNgEAAAAgiLbQNkWwqilo mwAAAAAQRBtpm4HRNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdNbpG1u zwi9hQAAAACAzDPFLFSmViaQubZprhAAAAAAkHGmmIXK7DoB2iYAAAAAtH6mmIXK7DoB2iYAAAAA tH6mmIXK7DoB2iYAAAAAtH6mmIXK7DqB7LfN0aeYdQAAAABAikytSlysTDELldl1Allum+Z8UDUB AAAAoGVMuUpQr0wxC5XZdQLZbJvmTFA1AQAAACAMpmLFK1mmmIXK7DqBrLVNcw6omgAAAAAQHlO0 YqqWKWahMrtOgN9tAgAAAEArYSpWG//dpjJngsIJAAAAAC1jylWCemWKWajMrhPIctsU5nxQOAEA AAAgKFOrEhcrU8xCZXadQPbbJgAAAAAg3UwxC5XZdQK0TQAAAABo/UwxC5XZdQK0TQAAAABo/Uwx C5XZdQK0TQAAAABo/UwxC5XZdQK0TQAAAABo/UwxC5XZdQKRtmkWAQAAAAAICW0TAAAAABA+2iYA AAAAIHy0TQAAAABA+GibAAAAAIDw0TYBAAAAAOGjbQIAAAAAwkfbBAAAAACEj7YJAAAAAAgfbRMA AAAAED7aJgAAAAAgfLRNAAAAAED4aJsAAAAAgPDRNgEAAAAA4aNtAgAAAADCR9sEAAAAAISPtgkA AIAsaMh/5pbkjHUNG0lexNxhp7i25njMQftD2wQAAEAWSFv7TT7LzbbZjJwXW9jy6I6jbQIAACAP 0DZDR9vMC7RNAAAAIL1om6GjbeYF2iYAAEDa9fHHzG5dzG1LxsxupWiboaNt5gXaJgAAQNpJmzKv XxILvXE9+eSTHTt2bN++vVnPkqzc9pY466zwXzGmu23KMZul9MhM20zpzNM28wJtEwAAIO0CNC55 5S2KioouvfTSN954w4ym4oILLnj++efNSgLer++9t/oUrG0ePnz405/+9D/8wz/IghmKEcrhxUq0 25ZcXUptU67ILEW5VuNKNMfPZf2I2za3b99+8cUXy0O0ffv2n//8581oC6R0hmmbecG7bR49erRL ly5mpbn5wIEDffv2LSwsrKqqOnjwYNwReShWVFTIpWQheqHmgQMHbtu2TZfDRdsEAAD5waNx7du3 79/+7d82b94c2zbl55EjRx566KF//dd/1cGUyEs0s5SY9+v7lF79JxLgtos1a9ZcffXVX//61x97 7DEzFCOUw4uVaLctubpW2TZ79uzpce8EkNIZpm1mi9xNHsykU7zbpusiY8aMmTVrlizIz5qamrgj ZWVl+6NKS0tldfv27QMGDJCFdKBtAgCA/JCocWndqq2t/etf/xq3bSrtjTKyd+/eyspKWd61a5fM l3H5KctxR6Iv5CJk2Vq8eHHnzp2LioqGDRsmq2bGqTkVFRWyh44dO86fP9+19b333rvyyivlgt26 dZN+GJ3uixyPubVn8rjtYuTIkffdd9+cOXOqq6t1RA9D6XL00CJkOfbmWzpB6bL8vPXWW+W2dO3a 9cc//rGMyK27/PLL5eIXXnihnR/i2Wh525SfN91006c+9Sl5ADz33HMy8uabb1522WXt2rXr1auX vcg//dM/ychnPvMZOXuyKuNKlmW+vC6XPcitTul4RNy2KTdfHpBmJSruaYk9jbEP46qqKt00derU T3/60zJ5xYoVkQufusti0TazKPKQisdsdvBum8J5qU6dOh07dkwWmpqa5BESd6SkpESqpvzXQxZk VR7SUjhlIR1omwAAID/EbVzOuiWrrsYlL8Lk55EjR6ZNmyZFSEeefPLJ6MY/f/WrX7333ntlQX7q 1tgR3YPLOeecIy/xZbdS5GQ17py33npLpsmCc+vw4cOfeOIJWdi6dWvPnj110I8At10O7x//8R/l RaRUQVmQVRl0HowuO0dib74V94Jr1qyRhYceeqhv376yILfuW9/6llyR9CXnfBHK2QilbS5dulQW 5AZ+6UtfkoUhQ4bU1NR88MEHUiNdF5HzJscsC85xmS8VThaeeeaZ8847Twd9its25SEkrXLChAlS 3Q8ePCgjHqfFeRrtw1geA/Lw1mUhmxYuXCj3wvPPP9+5c2c7qAsutM3skvvFxWw4U0pts6CgwCw1 NxcWFsrP2BF5FkjPLC0tlYXAv9j8+c9/bpYcYgdpmwAAID9Im9q8ebO8tpaWpa9jXHVLxLZNUVRU dM0110gF0hHdJGRcO5j8lOW4I8751oUXXvj1r399+fLlv/vd72TVOUeu5aabbvqXf/mX9u3b67jr GmVVyUtAM+pDgNu+adOmz3zmM7r8D//wDxs3Rl7zyfXqiNBl50jszbc8Lug8e/YPRHVruGcjlLap q1IvP/WpT8mC/NyzZ48O6lapnaNGjfrnf/5nPWY7rmS+rCo5ZjPqT9y2KaTWzpw5c8aMGSNHjpTV 2NOS9DTqvaacm5zLcdE2s07uI8sMxUipbWqfVLocO+Kkv9iUB6frLzm9HT16tLq62jVZVmVQNpn1 KNomAADID9KmpFlJv9LSFVu3RGzbNEunOEfsy3RnX3KNxO5BSMmUqjls2DD9WBfnHHmxdd99973/ /vuyBx2Pe42pCnDbb775ZrlqS1ZlUBZ0q9Bl50jszbc8LigNU3/h5rx1ujXcsyGvZU1v80FqoVRK XZYF6WmyINeuI9Iw9feWzmm69frrr581a9Zbb70l4zpiLyWc81Mlx29uSTxyKuQgZSH2tKR0Gp2b nMtx0TZzgdxNwqzEk1LblNLY1NQkC9L6ZDnuiCU988orr5QF119y+uEqnHGrpqBtAgCA/CBtSl67 2NIVW7dESm3zq1/96ve+9z1ZuOeee+w7aV0jsXsQ3/72t6VwvvPOO7Zl2b9y/PrXv/7GG2/Iq/8V K1boZZ1br7nmGqkNslWaw+jRo3XQjwC3vbKyUv/GTyxcuFBeZcpC586dn3/+eTmABQsWxB5e7M23 Yi8oP+UMyMiECROGDx8uI/369XvggQdkYe3atTon3LORUtscMGDAzJkzdXnGjBmXXXaZLMgxvP76 61IXx48fP2TIEBm59NJL5SbLwvLly2WrLAwaNOjll1+WOY888oiOSMP82c9+Jgviqquuki4qW6WO jhw5Ugd98m6bq1at0g+yij0tsadRfyo57XJLzcqZm+yyc9CJtpkXUmqbY8aMmT17tizIo2LcuHFx Ryx5mshDSxZcf8npky2cIm7VFLRNAACQH7RxCS1dsXVLpNQ2pfZ86UtfKiwslJ9agWJH4r5MHzFi hLSmjh07Ll68WFY3bdokPUGb59atW6XmydbJkyfrZZ1b33vvPekSslVIo5ARn1K97T/+8Y/l2u2X vkg1klU5NulUctif/vSnp0+fHnt4sTffir2g/LzwwgtlsrQdfZfy9u3be/bsKSP6a1UZCfdsyCta 09t8kFY5cODA0ihZkFUZlGPo1atXu3btpGS++eabMvLiiy+ed955MiKvyGWrjDzzzDPSzKVh3nrr rTry+OOPf+5zn5NjlmW5lBRO2SqkdsqIf3L85pY4yJG0b9++oKBATqacQBmJPS2xp1F/Krlz5ZTK aZddyapzk112DjrRNvOCd9uUO1fp6sGDB+WRoI8H/b6T2BG1bds2/cWmcP4lp474pIUzUdUUtE0A AJAfbOPy4GqbrUYO3nZ5dWuWMiWlthmXHLNZyoa4bTO7aJt5wbttZp30zERVU9A2AQBAfqBtesvw bS868w87M6DlbfNT0U8GyhbaJoLJ8bbpjbYJAADyg7QpP8zs1sXctmTM7Faq5W0zu2ibCIa2CQAA AKQXbTN0tM28QNsEAAAA0ou2GTraZl6gbQIAAADpRdsMHW0zL8Rtm3kUc9D+0DYBAACQBdLW8p25 JTnD1QpIzsbcYW0AbRMAAAAAED7aJgAAAAAgfLRNAAAAAED4aJsAAAAAgPDRNgEAAAAA4aNtAgAA AADCF2mb74bEfIMMAAAAACAPmZoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoakNbfNI0eOjBkzpri4 +KwoM5q6adOmVVVVmZV8069fv+nTp5sVAAAAAEjM1MSQtOa2WVNToz1TmdEUNTY2FhQUbNiwwazn GzlyOX65FWYdAAAAABIwNTEkrbltlpWVScncvn27WQ+kurpa9nPy5Emznm/kyMvLy0eMGGHWAQAA ACABUxND0prbZkt+pakOHDhQUFAwatQos56fRo8eLbdCbotZBwAAAIB4TE08kxQKs5SikNumFrym piY5oKKiog4dOgwfPnzfvn166JZOk4XZs2eXlZWVlpbOnz9fNwnpRWPHjpXBwsJC+SnLrqbkPUF3 HstsTsX9998vF1y9erVZP0V3mNabedFFF8llt2zZYtabm2VZRnr37m3Wm5tPnDghe+7Zs6fsobi4 eMSIEXv37jXbHOT45YLz5s0z6wAAAAAQj6mJDlJ5lFlPRVra5siRI3VBdenS5dChQ3r0SscXLVqk C0o3ycyKigozdIqM2D0knWCGYujWlAwbNkwuGPteXN1hWm/m3LlzZUTuVF0Vo0aNkpE5c+bo6smT JwcMGBC93GmdOnXav3+/TrBee+012SS3xawDAAAAQDymJp6iPdMyo76lpW327t179+7dstrY2Nin Tx8ZmTJlSvTgDZ0mm9avXy+t6ejRo5MnT9ZNsiCb7B7kp+5h0qRJPidYMijMSiDl5eWyh+PHj5v1 U3TPab2Z+/btk9Xi4uITJ07IqvzUD9e1v72U2imrffv23blzp6xKTa2urpaR2tpanWDJ8cu43Baz DgAAAADxmJoYZSpmtGSapRQLZ1rapvOXgbIsIz169DDrUTpt4cKFZt2hZ8+essljD0knWDIozEog BQUFcfege056DDot2M0UVVVVMtLQ0CDL0ldl2flFLNJUZcT51llpszJSWVlp1h1kvLCw0KwAAAAA QDymJka56qVr1Y+0tE3nJ7jKsowUFRWZ9SidJu3IrDtIKZJNHntIOsGSQWFWAtHrMisOuuekx6DT gt1MMX/+fBkZPny4LOt7ehcsWKCbhO4hloybGQ6JxgEAAADAMjUxKrZb5mjbdFUdnWZWzpS0hiWd YMmgMCuBeL+TNvYYQryZ4tChQwUFBTLz8OHD8lOWnX8XqnuIy8w4Rd9J26VLF7MOAAAAAPGYmhiS DL2Ttnv37mY9SqeZlTPl1Dtp9TeK27ZtM+un6J5jjyHEm6kGDhwog1deeaX8lGUzGnXRRRdJNf3o o4/MemK6Zz4lCAAAAIA3UxNDkpa22atXr127dslqY2OjfpOH/XQcpdPMypn043NkD/rxObIf3YPr U4I8JlgyKMxKIPpe1kTfgJLWm6mWL18e3UeELJvRKP12lv79+0sZ1t+RHjx4cMWKFc6/7VT19fUy k29AAQAAAODN1MSQpKVtDh8+XBdUly5dpAjp0SsdNytnSvTVIHYPSSdYusmsBHLgwIGCgoJRo0aZ 9VN0z2m9maqpqUnfMSs/ZdmMnjJo0CC9oIvZfMqIESPkVji/zBMAAAAAYpmaGJK0tE3pRaNHjy4q KurQocPIkSP37dunh27pNLMSQxrX2LFjy8rKpGLJzzFjxri+QzLpBOV9LT5VV1fLVTj/wFLontN9 M9WQIUNkJ/LTrJ9p4cKF/fr1kwOQPtmtW7dx48a99tprZluUHLnsXAqnWQcAAACABExNDEla2qYe aOuwZ88eKXL6NSRWHt3M9evXy/E3NjaadQAAAABIwNTEkNA2k5s5c2b//v3NSlQe3cwBAwbMmDHD rAAAAABAYqYmhoS2GUQbuZkAAAAA2hRTE0MSctssitIDbcXayM0EAAAA0KaYmhiSkNsmAAAAACBP mZoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoaEtgkAAAAAiDA1MSS0TQAAAABAhKmJIaFtAgAAAAAi TE0MCW0TAAAAABBhamJI8q9tnjVukTNmtAWmTZtWVVVlVnLGWVFmJUv0GCwzGqNfv37Tp083KwAA AADylqmJIWnrbbOxsbGgoGDDhg1m/RQZnzNnTt++fb2LVvpk63qd9BgsMxpDzp6cQzljZh0AAABA fjI1MSR5/E7aUNpmdXV1WVnZyZMnzfoppmCdYkYzKFvXG5f3wcjZKy8vHzFihFkHAAAAkJ9MTQxJ m26bBw4cKCgoGDVqlFl36N279+zZsxsbG72LVvpk63rjSnowo0ePljMp59OsAwAAAMhDpiaGJPy2 uf9Pfxm59KUOtcuKblk6avnLTR//zVULD/z52NiVPyqd+IPCmiXyU5ZlxGyLeu2DQzJYcecqmVAy YfnQhVt27Dtstjm0vG3ef//9UqJWr15t1uNJWrQSWbt27bBhw0pLSwsLC4uKinr06DF27NjXXntN t8bdrXNQl5uamqTIycU7dOgwfPjwvXv36la1f//+kSNHyiaZIJ1ZJuulzOZonZYr1WOQn7LsKoRy PDJYUVEhE0pKSoYOHbpjxw6zzcG121hyDmXCvHnzzDoAAACAPGRqYkhCbptHjn3c9duPaQ/USPPU BT36Q//7kdRIu1UjIzKuE4Rrq0Rq5yuN7t+b6SazEoi0QelI27dvN+vxRHtWym1z2rRpesFYOsG5 bDkHdXnEiBG6oDp16nTw4EGdcOTIka5du5oNUdI8dUEnHDp0SGqkjlgyIuM6QZhRB6mdr7zyitl8 im4yK/FIa5UJcj7NeoykewAAAACQdaYmhiTktjm14efSAHvdvW7XgSOyuvv3f+rzvQZnLZy87mey 3HvWk7LJOWHSE9t0ghj44LMNb75//ETkbymPfnS85rEfy4T+/7lRt1rO3QZTXl4uFej48eNmPZ5g NamoqEguNXfu3MOHzW9l9+/fv3Llyn79+ulq3N06B3W5d+/eu3fvltXGxsY+ffrIyKRJk3TC1KlT ZbVXr167du2SVZmmE4ROmDx5sizbPdgJdg9i4MCBDQ0NegaOHj1aU1MjE/r3769brchOPU+C7EEm yPk06zGS7gEAAABA1pmaGJKQ2+b5dz0uDXDbHvP7N7H9/T84a2HP/xeZIIO6KnRCj+lrzXqMEydP yoTi25aZ9VOcuw2moKAgaQUKVpO6d+8ulxoyZEh1dXVtba30TNcvDOPu1jmoy87fu8qyjPTo0UNX zz//fFndtu10S9cJQld79uwpyx57iHXixAmZUFxcbNZPiezUx4kqLCw0KzH87AEAAABAdpmaGJKQ 22ZhzRJpgCc/+USPVciysxYmmlB0y1Kz3ty8+rV3r5r/XMmE5QU3L9bLSmTZbD5Fx81KINKOklag YDVJSqCWPSfph/bPJnVEly3noC47PyxXlmXENjo9+NgJQlcTTSgqKjLr0b+3vOqqq0pKSrR4K1k2 m0/RcbOSgEzwaJsAAAAAcp+piSHJubZZ98MdOj82OsGKO5iS9L2TVu3YsWPt2rV1dXXDhw8vLi6W /QwZMkQ3xe7W1RV12aMrtrxtyoFFp8ehE6y4g076TtouXbqYdQAAAAB5yNTEkITcNvWNsi15J23p xB/I6qJX/0f/blMcO37CuQcrtrimSj8lyPlm1FjRnuVVtHw6dOiQ7Mc2vQ4dOsiq/atO4XofrC57 vA9Wf3faknfSlpaWyuqiRYts3z527Fjk8jG3N7a4uuiePT4lCAAAAEDuMzUxJGn5lKDz73pcPyVo zx+Pxv2UoF53r9NPCZJpF91zxqcEFd2yVFY3vLVXa6RMGPzwZuceLNmJDEovNeupmz9/vnSkdHwD St++fRcsWLBz505taAcPHpw5c6bsR0qmTujfv7+sVldXHzkSOVHS1vTvMIVO0GX7IUCNjY0XXXSR jEyZMkUn6KcEyaV0wp49e+J+SpDsQT8lSKbpHuynBOlHGW3YsEEPUiYMHjw4cvmY2ys7kUHppWY9 Rn19vUzw+AaU6F5TPo0AAAAAMsnUxJCE3DaPHPu4cmq9lkPNmEdf0QU9+kTfgHLw6F91gn4CrTNa UCU6wZr30k47J3arHwcOHCgoKBg1apRZd9B2FMtsTsbMjjF79mydsGLFCjN0yqxZs3RBJ+iy/VIT 5fz+EqmplZWVZkPUmDFjdEEnJPoGFPsdKvoJtE5aUIVOsKRG6rgyow4jRoyQM+n6Mk+nRBcEAAAA kDtMTQxJyG1T7P/TX0YufalD7bKiW5aOXvFy08d/kyro/BAgKZZjV/6o7FsrCmuWyE+po3IRsy36 CbRTG34u/bPg5sVSXOt+uEMGE/XJWc/+otPklYHbpqiuri4rK4t9j6i2o1hmczJvv/22NLeLLrqo qKhIalhJScnQoUM3bNhgNkdJhevWrZts7d69u/5W0HkVutzU1DR69GjZSYcOHaR57tu3T7eq/fv3 y6BskgkyTSbLReybdYUUy7Fjx8oNLCwslJ9SR+UiZlv0E2inTp0q/VOOQYprXV2dDOr16gQnKcOd OnWKu1XOnuxcCqdZjyfuBQEAAADkFFMTQxJ+23RpPPhnqYIeX3CSXXv27JGu1dDQYNbzWWNjozQ6 jy84SZP169fLOZRrN+sAAAAA8pOpiSEJv232m/tMw5vv62f87Pzdh1X3bZC2ObXh57o1B82cObN/ //5mJa/069dPerJ+xs/OnTurqqqkbU6dOlW3ZsyAAQNmzJhhVgAAAADkLVMTQxJ+29T3tTrT7Tur D//lI92KEEXfnXqGbt26OT/nFgAAAAD8MzUxJOG3zW17DlYv21o68QdFtyzt+u3HJj2x7dD/UjXT Ytu2bdXV1aWlpUVFRV27dp00aZL9DCEAAAAASJWpiSFJ+99tAgAAAADygqmJIaFtAgAAAAAiTE0M CW0TAAAAABBhamJIaJsAAAAAgAhTE0NC2wQAAAAARJiaGBLaJgAAAAAgwtTEkNA2kXYrV648cuSI WUFQGzdu5FmGpFrB062NP9RbeA/yHwoAQAuZmhiS1t82p02bVlVVZVYyq1+/ftOnTzcrbdioUaNe ffVVs4KgamtrN23aZFayhGeTyuJ5SKoVPN1y4aGeRS28BxOdPf49AgD4ZGpiSLLQNhsbG+fMmdO3 b9+zosxoesh1FRQUbNiwwayHx8+tkOuVa5eZZj2Qn/zkJ4VRsmCGMs7jNvoR98XT4MGy2+YpU8yq mjw5MjhokFlN1RtvvCHH6b8G7NixY+LEib169erQoYOc4a5du9bU1Ph/JLsEO0X+jyHrL8F5Nqn0 nQflcRL8aAVPtxY+1Fty9kIRvQNDvgdbfvZCeQYBANoCUxNDkoW2qf8SW2Y0Paqrq8vKyk6ePGnW w2OO/hQzeia53vLy8hEjRpj11O3du7dTp049evTo2bOnLOzbt89syCyP2+hH3BdP8pqnoKC5sLB5 zx4zIgsyItm924ykasiQIXKcL7zwgllPRm+XS3Fx8datW80MH+QxtmvXLlmQy8pPWZbbG93ii16p S9xjyHrb5Nmk0ncelMdJ8KMVPN2CPdRb+EwMkd40s5K6uPeg7tMlpbPX8mcQAKCNMDUxJFlom717 9549e3ZjY6P+e2lG0+DAgQMFBQVpesHh81aMHj1ajkGOxKynoqmp6XOf+1zXrl3l4qKyslJWZdBs ziDv25hU3BdP4rbbZM/Nw4ebVVmQ1dpas5oqvS/kfjHrPvTt23fevHk7d+7U5iALAwYMkJ306tVL J/ixevXqioqKjRs3ygXlpyzLiNnmg/9jyG7blEcgzyYhl03feVDeJyGpVvB0C/ZQb+EzMUSR+y/s ezCUs9eSZxAAoO0wNTEk2fy7zRb+k5zU/fffL/tP9wsO71sh1y5b5VWCWU/FoEGDunTpYn8Do7+Z kUFdTcoemJyHbt26FRYWdu/eff78+bpVvfbaa2PHjpWXZbK1pKRk6NChO3bsMNtO7SEuM8OfRC9/ Dx9uLimRa5HDaN6+PbJQXBwZDGbcuHFyYPX19WY9kMOHD8tO5AXZiRMnzJAPe/bs6dOnj1xQXhEG eCK4JDqG7LbNNv5sshKdh+iB83RLTegP9ZY8EyMnOrfvQZcAZ68lzyAAQNthamJIWnPbHDZsmOx/ u7ywSifvWyGvTmSrHIlZ923SpEnyaljfGGbJqgxOnDjRrHvSA5s9e7YuWM4XiGbIQV5FvfLKK4m2 WjrBJ48XT3V1ci3NfftGIguyGsz+/fvlVZe8OjTrQTU1NekNPHr0qBnyQaqLvsaVn7JsRoNKdAwB XoLrfuIyM3xr488mK9F5iB44T7fUhPhQVy15JuqR5Pg96BTg7AV+BgEA2hRTE0PSmttmeXm57P/4 8eNmPT28b4Vcu2yVIzHrGaQHdv7558srDFmVVyQjR46UkX79+ukEMXDgwIaGBj1FMqGmpkYm9O/f X7da0T0Fv6c8XjzJNXftKvuPRBYC31dTpkyRI3T9IiIAqSWyn4qKCrPuw+rVqysrKzds2CAXlJ8t f/9eomPIbtts488mK9F5iB44T7fUhPhQFy18JkZOes7fg04Bzl4uPIMAALnP1MSQtOa2WVBQkNb9 q6S3QrYWFhaalQzSA9u2bZtZP/XOqw4dOpj1GCdOnJAJxcXFZv2U6J7S9eKpvl72H0ngN+XJyz45 5k6dOsV2gJTU1dXpLV27dq0Z8qG6unp39INW9BTJsoxEtwThcQyBf+ETijb+bLISnYfogfN0S0Ho D/UWPhP1YHL/HlSBz55cJLvPIABA7jM1MSStuW3Kv6ke+9drt8xo6pJeXLZmsW2alVNcg6tXr77q qqtKSkr0NbSSZbP5FB03K6lL+uJJ9t2C3Tfrm99mzZpl1lMnrxrHjh2rN/PBBx80oymSy5qlQJIe Q3bbZht/NlmJzkP0wN3jrkGebirdD3XZrVlKhR6PWTnFNZgL92ALz55cKrvPIABA7jM1MSRt9520 eu2WGU2d98X1nUtdunQx6xkU98Ccg/b/jsfSCVbcQf/S+vJXznCnTp2Ki4uPpvKXlk6HDh3q16+f 3EB5wGzcuNGMZpafYwjwEjx6v8VnZvjWxp9NVqLzED1w95E7B3m6qTQ91Fsu7ml3DubCPdjCs5cL zyAAQO4zNTEkrf9TgpzvjEoH71uxfft22ZqVT2WIe2DOwdLSUlletGiRfel87Ngx5wQr7qB/aX35 u2DBAjm2yZMnm/UUvfHGG5WVlbIHOUh5JWdGM8vnMWS3bbbxZ5OV6DxED9zricPTTaTvod5y0bOe 0/dgy89eLjyDAAC5z9TEkORu2/Te6sf8+fNlDyl9UEQA3sdZX18vW7PyifNxD8w5WFRUJMsbNmzQ L3DbtWvX4MGDnROsTp06yeDSpUt1ZqrS9/JXjke/q2D//v1mKBUrV66Uk9CnTx95GWeGMs7/MWTl JbjVxp9NVqLzED1wnm5ecvyhHve+cA5m9x4M5ezlwjMIAJD7TE0MSRbaZvRf5zjM5lPiDqYkrd/D rocXy2w+ZcSIEXIMWfk27bjH4xzUD1R0mjx5si7oBOu2227Tccts8Cd9L3/1xdO4cePMeor0tsRl f32Rbub64nEdQ3bbZht/NlmJzkPcA3YO8nTT2xJXLjzU9UjMyinOwezeg2ZH8fg/e7nwDAIA5D5T E0PSmtumqK6uLisrC/Y/mL3p4cUym6PkeuXa5R94s55ZsccjnIMnTpyYOnVqRUWFvP6orKysi377 nnOC1dTUJK+runbtKjPjTvCWvpe/vXv3loPRD6IMQG9LXLTNWG352eQU9zzEHrBwDvJ009sSV160 zezeg7qfuHyevdx5BgEAcpypiSHJ5jtpM2DPnj3y731DQ4NZz6z169fLtTc2Npr1tirpy99gnnvu OXml1Xb+BinrbZNnk8rueUiqFTzdsv5Qz64W3oOJzh7/HgEAfDI1MSStvG2KmTNnxn77dmYMGDBg xowZZqUNS9PLXzm9RUVFWfyTywzLhZfgPJtUFs9DUq3g6UbbTEfb5N8jAIBPpiaGpPW3TWRdml7+ tjVt/CU4fGoFTzfaZjraJgAAPpmaGBLaJtKOthkKXkTCD9pmvqNtAgCyy9TEkNA2kXYzZ86srKzs FtW9e/d9+/aZDUhm/vz5et5ERUXFjh07zAYggTx9uvFQtwLcg5w9AECITE0MCW0TAAAAABBhamJI aJsAAAAAgAhTE0NC2wQAAAAARJiaGJJQ2+aPfkQIIYQQQgghJC9D2ySEEEIIIYQQEn5om4QQQggh hBBCwk+baptnRcUdtFxbAyfcveVF9CZbrq2tL0eefXbM175W3L59Dt7eNB1SmnZLCCGEEEJaZ3K8 beqr27jOuBn+EveCOmi5tgZOsL0Fu1SORA/ecm1tfakZMsTc1CjX1swk0VUnGm9h0rRbQgghhBDS OtOm2qZ3wt1tsL0Fu1SupXXciqQpKymRm7l94ULXeCaT6FQnGm9h0rRbQgghhBDSOpMXbfOMI05b wr2uYHsLdqlcS+u4FUmTCzcz0TEkGm9hEu120R13uEYIIYQQQghpDW3ztUWLxl59dUV5eWG7diXn nDP0K1/ZsWyZc4LuxHJucsZj64mtW2ePHduza1e5iuL27UdcfvneJ55wTti3bp0MyqaiwsLRgwY1 bd7ssbfY6OS47JwDTz0lN7O0uFiOQX7KsozYrX7ifaL06uTI5fjlVnQoKhrev7/cLv8TbHSma1By 6ec/L+P106fbkefmzpWRPj172hHvRHec/Bh0mizIvVZWUiKna/7EiXZr0jPpPUF3HstOSBqd33DP PXIvXNSjx8Gnn541ZozclvM/+9k9a9boHO+HnO4hLucEWbi/trZbly6yk+4VFc6TIEl6Hnw+qide d50MLr3zTtc4IYQQQghp62kFbVPnOMmr51fmzUs0wY67kmjryZdfHvCFL+hWq1NZ2f6GBp1waMOG LueeazZEDbvsMl2wO/GOTo5LJ8hVSEs0Q6fIiIzbnSSNuZiD80TpyMiBA3VBye2yV6EjHhNsdJNr ULL829+W8apeveyIdEUZmTdhgh3xTnTHyY9BxxfdcYcuKN2U9EwmnWCGYuhWP9H5+kZc4Xx0VV9x hUxI+pAzQ/E4J0hf1QXLVn0/58HPo3rFd74jB/bE3XdLI/3Jww87N9nEXooQQgghhLSJ5OnfbTpv w8A+fRruuef4iy/K8tEf/lA/u6X/hRc652hiL+tMoq1zxo+X8b4XXLBzxQpZlVfhUglkpHboUJ0w +YYbZLVPz57vrl4tq7tXrep93nmRfaX+CjvRpfQqZLeyc1mVn3J1MjLp+uud07zjfaIiV+y4isb6 er2KKTfe6HOCjc50DUpObN1aXloqm3Y9+qisHnn2Wam7ksMbNzqneUT3nPQYdJpsWj97tjQ3ubFy AnVT0jPp/1TLoHAN+olecOtDD0k90+UXHnhg+8KFstC1c2eZkPQhZxO5cLxj0PHzP/vZ1xYtklU5 A1rR+/XurRN8ngcZ9HhUy/Hbkqm1M6XfdRNCCCGEkFaeVtA2XZFKIxOK27d3jUu8L5toq77Idr6P UV67y0hlx4662qOyUladnxajzUHYEZ9JdKmeXbvKeOxVyFXbkVTjOlGRK/a8iqQTbHSma1AjtVA2 SdGV5fkTJ8rykKoq5wTvRHec/Bh02sLbb3cOapKeSf+nWgaFa9BP9IJSgyWu5Q5FRTIh6UPOJnLh eMeg49seecSOSKWXEd2/JOnNlIW4E4Su7m9okHrpfAOtlOFe3bs3bd5sRzTOSxFCCCGEkDaUVvBO 2tUzZlx1ySUl55xTcPbZOl/IsmuaRDe5Bm0SbS1s1043uci4c4K0BXsR2yLsiM8kulSiqygqLLQj SeN9onTV4yqSTrDRma5BjTQo2SSdRzrJl88/X5Y31NW55ngkuuPkx6DTpKE5BzVJz6T/Uy2DwjXo J84Lupb17tBjiCXjOtNGx12DkrjjzsHA50Ho6siBA8cNHmy3ai79/OenjxrlGiSEEEIIIW00+d42 6266SefEcs2UJBrXJNqa6KW/0Ala3jxel/tPoksl7QZJk/RE6XLsVdiGk3SCjc50Ddpc+eUvy9ba oUPlZ3lpqXOHSRPdcfJj0GnOEZukZ9L/qZZB4Rr0E+cF4y7rMcSlM23iDkrijjsHk97MpI/qoV/5 ytq77rJbNXK3xr7dlxBCCCGEtNHke9ssLS6WCYvuuEP/HFFybMuWRJdKNK6Jff2tuahHD3kJ/tEL L7jGbRK9KVHYEZ9JdKmWv5M26YnS5dir6F5R4XOCTaIzqdl4773RPUXcdu21rq3e0UslPQad5hyx yZ130nosJ33I2diLuBJ33DkY+DwIXaVtEkIIIYSQJMn3tikvymXChro67Ta7Hn108KWXJrpUonFN r+7dZWvsNwfeX1sr4/0vvHDbI4/otRx8+ukV3/mO/WxV+3kqjfX1sirHoLsSOsF/OpWVyaWW3nmn q6rpVchu9TNd5CqkkMiI/08JSnqidFmuQj/CR26LXoVctc8JNonOpE3Xzp2jOzsr0aeYJopeKukx 6DTniE3SM+n/VMugcA36ifOCcZeTPuRsEj1gontyH5tz0Od58HhU+2+bzksRQgghhJA2lHxvm/rB qk76KlnYOboay07QzJswwWyIcm4adPHFZvRMuvXwxo2uL5MYcfnlumD34DO3XXutXtDS8UTfVyEl xF7WO0lPlC7rV5JYXc49116FjnhMsPE4kxr9Zg45ftd40ugOkx6DjjtHbJKeSf+nWje5Bv3EecFE y94POZtEDxjnso1zMOnNTPqolrZZP3368RdfdEYeZrRNQgghhBBiku9t88TWrVNHjpSXxQVnn13Z sWPdTTfJoOtSuhrLTrCZNWaM/rIoduvC22/v17t3h6IiuaJuXbqMGzxYv1tCs2/duuorrpCtRZ7f g580ckEpgV07d9a/mnPuQWrA2KuvLispKWzXTn6O+drX7Lcv+knSE6XLcgBy/HIr5LaMHDjQ+YUW SSc443EmJdNHjZLxiddd5xpPGt1h0mPQaa5Bm6Rn0uep9r4WjzgvmGhZ4v2Q0yR6wDiXbVyDSW+m 96Na2qauutA2CSGEEEKISY63TZKxJK0ESSf4T/eKCtnVq/Pnu8aTJsRjIIQQQgghhKQ3tE2iSVrk kk7wmUV33CH7if3qSD8J6xgIIYQQQgghaQ9tk2iSFrmkE/xEdyJmjRnj2uQnelnXICGEEEIIISQX Q9skmqLCQolr0JmkE/xE9tChqGjs1Ve7PkPVZ0I5BkIIIYQQQkgmQtskhBBCCCGEEBJ+aJuEEEII IYQQQsIPbZMQQgghhBBCSPihbRJCCCGEEEIICT+0TUIIIYQQQggh4Ye2SQghhBBCCCEk/NA2CSGE EEIIIYSEH9rmWeMWOePaGiDTqqurevVyDWY9Z0W5BjMcPQbLtdWmX+/e00eNcg0SQgghhBBC8iy0 zXDbZmN9fcHZZ2+oq4sdnzN+fN8LLvAuWulLtq7XGT0Gy7XVRs6enEM5Y65xQgghhBBCSD6FtmkT StusvuKKspKSky+/7Bo3BesU19YMJFvXGzfeByNnr7y0dMTll7vGCSGEEEIIIfkU2qZNy9vmgaee Kjj77FFXXukal/Q+77zZY8c21td7F630JVvXGzdJD2b0oEFyJuV8usYJIYQQQggheZPcb5v7N780 sm5Nh5olRTcvHnXv2qaXXnbVwgObXxp73+OltUsKb14sP2VZRuxWyWtPbZHBim8tkwkltUuG3vPY jqefd07QtLxt3l9bKyVq9YwZrnFnkhatRFl7113DLrustLi4sF27osLCHpWVY6+++rVF5oDj7tY5 qMtNmzdLkZOLdygqGt6//94nnrCTJfsbGkYOHCibZIJ0Zpmsl7ITpP7JleoxyE9ZdhVCOR4ZrCgv lwkl55wz9Ctf2bFsmXOCxrXb2Mg5lAnzJkxwjRNCCCGEEELyJjneNo+8sLXrpOXaAzXSPHVBb8Ch LVulRtqtGhmRcXMLpducuVUitfOVJ56zE5zTXIMpRdqgdKTtCxe6xp2J9qyU2+a06mq9YCyd4Fy2 cQ7q8ojLL9cF1ams7ODTT+uEI88+27VzZ7MhSpqnLuiEQxs2SI3UEUtGZFwnSMyog9TOV+bNsxOc 01yDzkhrlQlyPl3jNkn3QAghhBBCCMlycrxtTn3oSWmAve5cseuZyG8jd298oc93HnXWwskPrpPl 3lMflU3OCZMeXKcTJANnrGqof/b41ldk+eiLW2vmPi4T+k9fZSdonLsNlvLSUqlAx1980TXuTLCa VFRYKJeaW1NzeONGHdnf0LDyu9/t17u3rsbdrXNQl3ufd97uVZEb3lhf36dnTxmZdP31OmHqyJGy 2qt7912PPiqrMk0nCJ0w+YYbZNnuwU6we5AM7NOn4Z579Awc/eEPa4YMkQn9L7zQTtBEdup5EmQP MkHOp2vcJukeCCGEEEIIIVlOjrfN86f8QBrgtobN9oi3N2x21sKed6yQZRl0Tegx+Qd2xJUTr7wi E4pvWewad+42WArOPjtpBQpWk7pXVMilhlRVVV9xRe3QodIzXb8wjLtb56AuO3/vKssy0qOyUlfP /+xnZXXbI4+4Jghd7dm1qyx77CE2J7ZulQnF7du7xiM79XGiCtu1cw3a+NkDIYQQQgghJJvJ8bZZ ePNiaYAnX4n8WlIjy85amGhC0c2ny+TqlRuvuvuxktolBeMjF9TIsp2g0XHXYEqRdpS0AgWrSVIC tew5ST+0fzapI3Z+7KAuOz8sV5ZlxDY6PfjYCcJ7QlFhoR1ZPWPGVZdcUnLOOVq8lSzbCRoddw26 IhM82iYhhBBCCCEk19Pq22bdgqd0fmzsRTRxB1NK+t5Jq9mxbNnau+6qu+mm4f37F7dvL/sZUlWl m2J36+qKuuzRFVveNuXAotPjsBfRxB10Rt9J2+Xcc13jhBBCCCGEkLxJjrdNfaNsS95JW1q7RFYX Ldugf7cpORbzqbaa2OKaavRTgpxvRo1NtGd5FS2fObRhg+zHNr0ORUWyav+qU+J6H6wue7wPVn93 2pJ30pYWF8vqojvusH372JYtkcvH3N7Y4uqK7tnjU4IIIYQQQgghuZ68+JSg86f8QD8laM+m+J8S 1OvOFfopQTLtoqlnfEpQUbRDbnhsk9ZImTD47sece7CRncig9FLXuP/MnzhROlI6vgGl7wUXLJg0 aeeKFdrQDj799MxvflP2IyVTJ/S/8EJZrb7iiiPPPiur0tb07zCFTtBl+yFAjfX1F/XoISNTbrxR J+inBMmldMKeNWvifkqQ7EE/JUim6R7spwTpRxltqKvTg5QJgy+9NHL5mNsrO5FB6aWucZv66dNl gsc3oET3mvJpJIQQQgghhGQuOd42j7ywtfLMLzgZ8/21uqA3INE3oBw89Q0o+gm0zmhBlegEm3mL n7ZzYrf6yYGnnio4++xRV17pGpdoO4rlmpYoZnaM2WPH6oQV3/mOGTpl1pgxuuDcg/1SE+X8/hKp qZUdO5oNUWO+9jVd0AmJvgHFfoeKfgKtkxZUoRNspEbquHJtlYy4/HI5k64v83Qm0QUJIYQQQggh uZIcb5uS/ZtfGlm3pkPNkqKbF4/+/tqm6PtgnR8CJMVy7H2Pl926tPDmxfJT6qhcxG498corUx96 UvpnwfhFUlzrFkQKTKI+Oevhhk4TTHd1bfKZ6iuuKCspiX2PqLajWK5pifL28uXS3C7q0aOosFBq WMk55wz9ylc21NU550iF69ali2ztXlGhvxV0XoUuN23ePHrQINlJh6IiaZ771p3+nhjJ/oYGGZRN MkGmyWS5iH2zrkSK5dirr5YbWNiunfyUOioXsVtPbN06deRI6Z9yDFJc6266SQb1eu0cGynDncrK 4m6Vsyc7l8LpGncm7gUJIYQQQgghOZTcb5uuNG58QaqgxxecZDd71qyRrtVwzz2u8XxMY329NDqP LzhJU9bPni3nUK7dNU4IIYQQQgjJp+R+2+w3fVVD/bP6GT87n3m+6rsrpW1OfehJcwNyLzO/+c3+ F17oGsyL9OvdW3qyfsbPzhUrqnr1krY5deRI55wMZMAXvjDjG99wDRJCCCGEEELyLLnfNvV9rc50 m7T88AvmzzJJiIm+O/UM3bp0cX7OLSGEEEIIIYT4Te63zW0Nm6vvXVtaG/m7za6Tlk96cN2hU58A RMLNtkceqb7iitLi4qLCwq6dO0+6/nr7GUKEEEIIIYQQklry7u82CSGEEEIIIYTkQWibhBBCCCGE EELCD22TEEIIIYQQQkj4oW0SQgghhBBCCAk/tE1CCCGEEEIIIeGHtkkIIYQQQgghJPzQNkneZeV3 v3vk2WddgyTVbLz33ndXr3YNEuJKK3i6tfGHegvvQf5DQQghpEWhbaaaadXVVb16uQYzk369e08f Nco12AYz6sorX50/3zVIUk3t0KGbvv9912CGw7NJk8XzkDSt4OmWCw/1LKaF92Cis8e/R4QQQnyl FbTNxvr6OePH973ggrOiXFvDjVxXwdlnb6irc423PH5uhVyvXLvMdI2nlJ88/HBhu3YSWXBtylg8 bqOfxH3xNPjSw7LLKTf+1jk4+YbfyuCgiz90DvrPG4sXy3H6rwE7li2beN11vbp371BUJGe4a+fO NUOGBP61QLBT5P8Ysv4SnGeTJn3nQeNxEvykFTzdWvhQb8nZCyXROzDke7DlZy+UZxAhhJDWn1bQ NvVfYsu1NdxUX3FFWUnJyZdfdo23POboT3Ft1cj1lpeWjrj8cte4/+x94olOZWU9Kit7du0qC/vW rXNNyEw8bqOfxH3x1Fj/WsHZnxS2+2TPmp/riCzIiGT3qtfttJQypKpKjvOFBx5wjSeK3i6X4vbt tz70kGumR+QxtuvRR2VBLis/ZVlur92aNHqlLnGPIettk2eTJn3nQeNxEvykFTzdgj3UW/hMDDF6 01yD/hP3HtR9uqR09lr+DCKEENIm0graZu/zzps9dmxjfb3+e+naGmIOPPVUwdlnp+kFh89bMXrQ IDkGORLXuJ80bd78uX/+566dO8vFJZUdO8qqDLqmZSDetzFp4r54ktx27X7Z6/D+h3RVFmS1dujv 7ISUoveF3C+ucY/0veCCeRMm7FyxQpuDLAz4whdkJ726d3dO887qGTMqyss33nuvXFB+yrKMuOZ4 xP8xZLdt8mzSpPU8aLxPQtK0gqdbsId6C5+JISZy/4V9D4Zy9lryDCKEENJW0pr+brOF/yQnzf21 tbL/dL/g8L4Vcu2yVV4luMb9ZNDFF3c591z7Gxj9zYwM2gnesQcm56Fbly6F7dp1r6iYP3Gic85r ixaNvfpqeVkmW0vOOWfoV76yY9kyu1X3EJed4yeJXv4e3rit5Jy/y85eW/Tm9oVvykJx+7/LoGua z4wbPFgOrH76dNd4Sjm8caPsRF6Qndi61bXJI3vWrOnTs6dcUF4RtvzzORIdQ3bbZht/NtkkOg/R A+fpllpCf6i35JkYOdG5fQ+6EuDsteQZRAghpK2Etuk/wy67TPa/feFC13i48b4V8upEtsqRuMaT ZtL118urYX1jmI2syuDE665zDiaKHtjssWN1wXK+QDRDDvIq6pV58xJttewe/MTjxVPdTe/Lzvpe cFQiC7LqmuAz+xsa5FWXvDp0jaeaps2b9QYe/eEPXZs8ItVFX+PKT1l2bU01iY4hwEtw3U9crplJ 08afTTaJzkP0wHm6pZYQH+qaljwT9Uhy/B50JsDZC/wMIoQQ0oZC2/Sf8tJS2f/xF190jYcb71sh 1y5b5Uhc4xmIHtj5n/2svMKQVXlFMnLgQBnp17u3nTOwT5+Ge+7RUyQTaoYMkQn9L7zQTtBE9xT8 nvJ48XT8xVe7dv5Y9i2RBVl1TfCZKTfeKEfo+kVEgEgtkf1UlJe7xj2yesaMyo4dN9TVyQXlZ8vf v5foGLLbNtv4s8km0XmIHjhPt9QS4kNd0sJnYuSk5/w96EyAs5cLzyBCCCG5Htqm/xScfXZa969J eitka2G7dq7BDEQPbNsjj9gRfedVh6IiO+LKia1bZUJx+/au8eie0vXiqX76btm3RBZcm3xGXvbJ MXcqK4vtACml7qab9Jauvesu1yaPVF9xxe5Vq2RBT5Esy4jdmmo8jiHwL3xCSRt/NtkkOg/RA+fp lkJCf6i38JmoB5P796Am8NmTi2T3GUQIISTXQ9v0H/k31WP/eu2Wa6v/JMLGg20AAAV/SURBVL24 bM1i2/QeXD1jxlWXXFJyzjn6GlrJsp2g0XHXoP8kffEk+5a4Bv1H3/w2a8wY17j/yKvGsVdfrTfz wVtvdW31GbmsaySlJD2G7LbNNv5sskl0HqIH7h53DfJ006T7oS67dY34iR6P92Au3IMtPHtyqew+ gwghhOR6aJv+4/3eP712y7XVf7wvru9c6nLuua7xDCTugTkH7f8dj2Xna+IO+k9aX/7KGe5UVlbc vv3RVP7S0plDGzb0691bbqA8YDbee69ra2bi5xgCvASP3m/xuWYmTRt/NtkkOg/RA/d64vB006Tp od7yxD3tzsFcuAdbePZy4RlECCEk10Pb9B/9PA/nO6PSEe9bsX3hQtmalU9liHtgzsHS4mJZXnTH Hfal87EtW5wTbOIO+k9aX/4umDRJjm3yDTe4xn3mjcWLKzt2lD3IQcorOdfWzMTnMWS3bbbxZ5NN ovMQPXCvJw5PN0n6HuotT/Ss5/Q92PKzlwvPIEIIIbmettM2vbf6yfyJE2UPKX1QRIB4H2f99Omy NSufOB/3wJyDRYWFsryhrk6/wG3Xo48OvvRS5wSbTmVlMrj0zjt1ZqpJ38tfOR79roL9DQ2uTX6y 8rvflZPQp2dPeRnn2pSx+D+GrLwEt2njzyabROcheuA83byS4w/1uPeFczC792AoZy8XnkGEEEJy Pa2gbUb/dY4j7jTXYEpJ6/ew6+HFck0bcfnlcgxZ+TbtuMfjHNQPVHSafMMNumDna2679lodt1wT vJO+l7/64mnc4MGucZ/R2xKX/fVFumOuLx7XMWS3bbbxZ5NNovMQ94Cdgzzd9LbElQsPdT0Sj8Hs 3oNmR/H4P3u58AwihBCS66FtppTqK64oKykJ9j+YvaOHF8s5R65Xrl3+gXcOZiyxx+MaPLF169SR IyvKy+X1R2XHjnU33eSaYNO0ebO8ruraubPMjDvBO+l7+dv7vPPkYPSDKANEb0tctM3YtOVnkzNx z0PsAbsGebrpbYkrL9pmdu9B3U9cPs9e7jyDCCGE5HRa0ztpM5A9a9bIv/cN99zjGs9M1s+eLdfe WF/vGm9rSfryN1iemztXXmm1nb9Bynrb5Nmkye55SJpW8HTL+kM9u2nhPZjo7PHvESGEEF+hbaaa md/8Zuy3b2cmA77whRnf+IZrsA0mTS9/5fQWFRZm8U8uM5xceAnOs0mTxfOQNK3g6UbbTEfb5N8j QgghvkLbJHmXNL38bWtp4y/Bic+0gqcbbTMdbZMQQgjxFdomybvQNkMJLyKJn9A28z20TUIIIdkM bZPkXWZ+85uVHTt269JF0r2iYt+6da4JJFHmT5yo501SUV6+Y9ky1wRCXMnTpxsPdZsA9yBnjxBC SGihbRJCCCGEEEIICT+0TUIIIYQQQggh4Ye2SQghhBBCCCEk/OR02wQAAAAA5C1TE0NC2wQAAAAA RJiaGBLaJgAAAAAgwtTEkNA2AQAAAAARpiaGhLYJAAAAAIgwNTEktE0AAAAAQISpiSGhbQIAAAAA IkxNDAltEwAAAAAQYWpiSGibAAAAAIAIUxNDQtsEAAAAAESYmhgS2iYAAAAAIMLUxJDQNgEAAAAA EaYmhoS2CQAAAACIMDUxJLRNAAAAAECEqYkhoW0CAAAAACJMTQwJbRMAAAAAEGFqYkhomwAAAACA CFMTQ0LbBAAAAABEmJoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoaEtgkAAAAAiDA1MSS0TQAAAABA hKmJIaFtAgAAAAAiTE0MCW0TAAAAABBhamJIaJsAAAAAgAhTE0NC2wQAAAAARJiaGBLaJgAAAAAg wtTEkNA2AQAAAAARpiaGhLYJAAAAAIgwNTEks+596P8DFzZMN+MZTiEAAAAASUVORK5CYII= --000000000000b16d750581fa2876 Content-Type: image/png; name="query_19_02_16b.png" Content-Disposition: inline; filename="query_19_02_16b.png" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: ii_js6vm9qt1 iVBORw0KGgoAAAANSUhEUgAABM0AAANSCAIAAAD53663AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAOvwSURBVHhe7N0LlFTlveb/XqtDCMNBhoGQDgsZ wuiwGIdBJNE+Douow9EoMUr4d0SDxgsSLlFUBInHGMQb6iGGYJSbBAFREewoeggiXhARFUFAFIxE AUVUxCAQRIT+P1W/t3c2b9Xetbuqr/T3s95Va7+/9619qdpF74eqri7aunXrpk2b1q9ff9VVVz06 f8FmAAAAAAASU5D8++HImQAAAACA/JEzAQAAAADViZwJAAAAAKhO5MzqUVRU5JZyST7TjBo1qqys zHXqpdatW7/77ruuk69qWUkNyXvfop7ral9hmM1JsmmdV9OnT7dlAAAAoBpVIWcuefaZcXfemtme XrzIzahd2sNvf/vbrrN588svv9y9e/dvfOMbpaWlq1atctXDvfbaazbnBz/4weuvv67K7bffftxx x33zm9/s0qXL/PnzbVomb1ty44036pJdq7JufAAIjyaJCoG1a9e2b9/+rbfe0vLkyZO/853vaDe0 YKM9e/YsLy+3ZfHWHHTvvPPO733ve9pV3d51111W1Ojpp59uy9K3b1+br9swVXJu94wzznjggQds 2e6lx/Okk0567rnnrBjPthJeiccmJJF8pkk4P2bf4kWtP/MRE+vGSzLN5kTNDG9a51WnTp3s7AIA AACqURVypiKlhjKp7mbUrtS1eehiWvFy/PjxWrjiiit+9rOfWdGj+ogRI7Sg2wsvvFALffr0sTik ENWuXbvUpGy8bd17773Kq5ZUTXg0U3g0fqZn7Nixv/rVr2y5ZcuWr6S1aNFC3T//+c8nn3yyDRlv zdbVripLPPPMM1rW7THHHKOKjXbt2vXZZ5/VsiK6lm1+5u7l3O4vf/lLxXVbtru/9957FuCtmER4 JZ7MXYqSfGaVxOxbvKj98VZYvQdocxJuWmfXhAkTXAcAAACoJvnkzA8//HDbR9vkgw8+VNfLmatW rVIO+cY3vqHoUlxcrEr4kteWNee000775je/2aFDB3sXUfW1a9cq6Wm7zZs337Bhg4rvvPOOso0q qXtmE16zbUu081qDLXtat25ta37rrbe++93vWtEoGv2X//JfXCeb8LZ0gIpbrpOm0SFDhtgRLVy4 0FUradTY8vDhw7WH2hlFvvjjPfPMMx999FFb1jSFPWVCO7qs++CW0qx7/PHHh9+n1dqUkLWgUUXr vn37alnZQ8vB7qXmheTcro6iX79+thy+u73Zq4o9s1rWSrQ/qutWyzZqdwmvRMnn29/+th7Mn/zk J+raHLHlYG2iJ1Fr0yN555132qjRcuY5psopp5ySeWZmzvR2ILxvwSGUlpaGu8ERaW0//OEPbStR 6w+vUGyaeNuVzAP0TrPMldvaEm5a54OdAwAAAEA1qlrO/OCDDz7evv3THZ9+9tmOHZ/t+OTTTz/6 aJuXM3XZesUVVyi26bI7fMlrbPmcc86ZMWOGFp544oljjjnG6sHH+fr3729vueja+tJLL7ViVuE1 f+9735syZYoWnn32WV2aW9ETZFHx5owdOzb4XGhW4W1961vfssv39u3bBxf32rqOevz48T/4wQ9s WiB8Xy1rjmaWl5crVKgSc7zf+c53NNOWNaqkpyCqhcw3FUVr9qiowwzWIFrWzmvBRjt16vT000/b G49WSd/PUVdyblcPuGVXsXtpKyNGjFDcskrwzCrm3XjjjVrQrY2K3SW8EgV+nTxayZgxY9QN9kTC awu8+OKL9n8E4ZmZ55jylUKaVvv666/bTLvNnOntQHjfevfubW+Jm8wj0tpsK8p4UesPr1CC3fa2 GwgfoHeaZX0pBbc5N61XepcuXVwHAAAAyGXBgizf4JNZrFrO3L59+2effbbri1270zR7x6c7vJyp 9KXrYFsOX/IaW9YcLZjM9zwVZo4//ngt6Eo6/nf8wvdS3uvQoYNilS797aI8UzhbhpenTZs2a9Ys 14kQ3paWdb2uBd1RG7VKeiQVsXR0thzw7uuWKpdjjtcLwwF7U1HBOPybk+E1i3Xjc+bNN9+sNeg2 qHgr8WTdrtYZPOC6u+gR6NOnj4KWVWxIgnMj/CjZhPBKunbteuaZZ95zzz32q4PhNYSXtf6LLrro e9/7no7I6t621DV2jqkSfAWOisFt5kxvB8L7FhyCCbrBEelWL5/0YOT6wysU1W3B227MAYY3l1pv WvilZLc5Ny12PgAAAAA5KST+7Gc/mzp1quunqati+FOZUrWc+cnHH3/++ed79uz5x759//jHvt1f fKHY6eXMcLDR1W1wa2xZl7/BHBOeI126dJkyZUrwllcU717mySef7Nmzp+scTunIruB1dFq2osKS 4qItxwhvq0WLFkFisSgYjOqhy7xwD98363LU8WonvQdKlPRspvebk+E1i3WVYINP3oqWLdPaqPZW wcY2YRVvJWFR2xWt034FNPPu4UrwvOvWYpIEE4KV6DlS1vrJT35ib7WF1xBe1tk8duzYN954Q2uz etZtBaLOzMyZ3g5IsG/e5MwjCk+IWr8EK5Rgt73txhxgcJplrjw8M+emtZ7gGAEAAICcvKiZNWRK 1XLmp59++sWuL7788suDB7/++sCBf+z9x+d//9zLmaWlpbfemqo88MADdrH77W9/u7y8XNe7d911 l1X69OmjC2hVdA19wQUXqBJcQJubb75ZYeaRRx5x/QjevWTVqlXagXvTX3WTSQ/Btddeq4Wrr77a tvvggw/a2245hbel9djX8/zhD3+wjy9q1PLAFVdccc4556Rn/fMuuty3X96T8HqC5ajjVQi0z+WG nXzyycrSWvB+czK8ZrGucsv3vve9p59+Wsu61bL2ORgNs0pmPRC1XenXr5895lGrNaeccsoNN9yg hX//938PQnUwIViJnh0lrtdee83eeYt69PTgPPfcc3rMdS+rh2dmnmN6pu5M/5ajzkabb7eZM70d kGDf9CCMHj3aipJ5RJpg5//06dOj1i/BCiU4KG+7mQeoW+80i3opJdw0v58JAACAqgqiZlTIlCw5 8+23316zZs2rr76qKOXnzE8+2bVr175//OPAVwf2f7V/z969n3/u58xnn322U6dOuuL/yU9+Yhe7 ijqtW7dWJlHGs4qina6ANUd0HayK1QNr1679n//zf7pOBN3FuH46ZrRr184+zJnV66+/3qNHj298 4xu6tW+LdauoZNMyueHKCdp/xQmtp3v37hZsiouLbc2qB8E1mK8Aedxxx1l4CIoSLEcd75gxY4Lv mzXKSEFCC//mpLrhNUvQVbzv0KGDugqZ4b9rYgsBq+g2zIYkZruiZPXLX/5SC+G7mHBFj5UesfDj JsGEYCUKQnoqdc7YV6FGPXpPPPGEnm7N1ENk9fDMzHPsmWee0ZmpZ0rr1z6oYvfKnOntgAT79uKL L2oTuvtJJ52kbuYRaSvHHHOMKpdeemnU+iX8iBkte9vNPMDM0yxz5TbTbuM3LVpzcIwAAABAQhY1 o0KmZMmZb7311htvvLFixYphw4aFc2bU389U3c3IYBe7ebj55pt1New6jUDU8Qbfwev69dUDDzxw xhlnuE5VKO0HXx6b90qq6tFHH63qh0Wrfd9q7WAzBZvWK12RWLdWBwAAAJJTSInJKVly5rhx4265 5ZYxY8acffbZ4ZyZh29W/g5eVZ100knBL0CKvSET5gZiuakhbiCWmxriBmqSd7xho0aN+lnEnwOt P7Tz9t25VaWHN3iLNe+VJPfd735XW1S4Ki8vd6Vkqn3fauFgowSb7t+/v30bLQAAAFC9suTMqN/P BAAAAAAgJ3ImAAAAAKA6kTMBAAAAANUpd86k0Wg0Go1Go9FoNBqtSs3ly0qH5cy/1pjJRZPVKgAA AADgiDNmjFtoEFwWjJZkTjxyJgAAAAAUhJzpIWcCAAAAQEHImZ56mjOLBk225vpAXStKcx0AAAAg hJzpqcucGRMmY4ZQ+zZu3Dhu3LjS0tKorPXqq6/26dOnefPmTZs27dChw3XXXbd79243lsy+ffuu v/76kpKSJk2atGvXTsv79+93YxUVq1evHj58eNeuXZs1a6YJ2sSQIUN0XrnhZHIehSxatOiMM87Q VnQgJ5988uOPP+4GyJkAAACIRs70kDORm0WsgKtWWrZsmbKfG6vUs2dPN5yMYqq7ZyVV3FjGDhjF 2meffdbNSMDdrZKrhowfP96Nhbixyru7DgAAABBCzvToynlrUdGmoqL13/0uORPZdevW7ZZbbtm4 cWPWrNWrVy8VBwwYsH37dnXff//9vn37qjJ79mybkNPChQs1v23btitWrFBXt1pWRXWbUFpaOmHC hHXr1h08eFBdLZx22mma0LVrV5uQRPxRvP3221a/4IILdAiq6Ly9+OKLbVRs1HUAAACAkEaSM3V5 7JZyqYP3M4MMmdlsggSV9dt29rrriaZDp7W4cvqwOcv2ffW1m1FRsWvf/hGPvlxy7awmQ6a2ueaB QbOWbt/1DzeWtnPvl1fPXd52xExN0K0mq+LGKgUb2vb3vf0mPd1s2P1a4X0vrNfQibeVq97x13Ns pnS/eb4q3cbOc/0EtmzZ0r9/f/tAqZ6V3bt3h+NKeDngFQ8cOKB01Llz5yZNmmg9WpuloLDgLprZ qlWrli1bTpw40YZOPvlkDYUjn4W6Hj16uH5VpLfj77AOTcV9+/a5vp6aXbtUKSsrc/1cdFCaryTp +hUV2n9VFPlcP8OOHTs0obi4WI+PKyWmO4rrVLriiitUPPHEE10/g91Lz6CeRx1ys2bNdICZzwUA AAAaocaQM3UZbFw/lp8zb45miTE/eefM9tfNDpbVlBVtwt79B5T3wkNq7UbN2rHHpR1N6HrTo94E 3SWcVCUYOm7M3GBZTUOTl75ly6++94m6+w8cLB48Rd0b/vxa+q65ffLJJyUlJZZPjAUqsQnh5UC4 ePDgQXvjLqxt27YffPCBTTBWn6zHOMSGpk+fruXwp1iVjlQJh7rk0iv2d9g+NJuZM9u3b+/6uXTs 2FHzdZ64fvq9RFU6derk+hmCxK5tuVJidkfXqdStWzcVH374YdfPYPcKnkGj58LexQUAAEBjdsTn TBcxK7lqtCw5M5ULM1RjzgxYilNz/ZBgaPgjLx08dGj2ir9at+2ImTZhzIKVVhk5L/VJy7sWrbFu EESDCYNmLdUahjz4onVVtwnGimqdrn9oxd8+VmXn3i9tnbu//KrJkKkaum7+K+ouWLPZZlrsTGLE iBGKIj169NAjoO7bb7+tZcsnNiG8HAgXx40bp+XS0tJ169apq+A6YMAAVYYNG2YTTPoeqQ2Vl5cr mip6adM2dODAgTZt2mhUT7G6O3fuVCyUHTt22IQqsQ25TiWFWBWDz83qdLIo26xZM5uQk2Zqvn0m 9uQ0Lcev4eqrr9aEdu3auX5V6I7iOpVsHxTgtebmzZurq+NavHixG668l+Konkd1N27caM+m5tsE AAAANFpHds504TIdL91SrqhZ33OmfdJVQdG6xYOn2ITgvUqlwfAExUVvwsbtqYdJt9bt8ttHbIKx otryTVnelbp4xnMaso/OXl/+qpY7jH7QhpLo3Lmzcoj9zqHRcjqtJM2Z9iZb+MOZWd8qTN+j6L77 7nP9w40cOVKjQ4YM0bJ9HvWcc86xoapKb8ff4UWLFlk9YJ9BVZp1M3Kxe9myQrVyphWj1nDbbbfZ XWLefoxh93WdSlYcPny4LQSC3xG1buazeeyxx7o+AAAAGqvGkDNdJ6ObVX3Pma6fUbF3GjOb6t4E 64p1mw6d5vppVlRTUnWlkOc3brPRV9/7pPfdT2ph+CMvubEEiouLlUPsbTpjb9OJdcPLgXBRQcu6 Hi+AWTHqE6SKqRpt1qzZ7t27TzzxRC2H/1xHlaS34++wLF68uFevXvZbi4pqW7Zs0bSYdyM99l5i 5gOVuYYDBw4MHDgwtRNFRXfffberVpHd3XUq2W+Z9u3b11L99u3b7a3j4CPH6Ttl2cnkcRoAAABH qiM+Z7qlSnnmTN2GBfW81VrOVPMmWDd4wzMqZ7p+hk7XP6TRkfNW2Aqf3fChG0ggj5zpTYjKmWIT TGbFc8YZZ2jCsGHDdNumTZvwLlVJejtxGzJz5szRtORfBpvw9zM/+eQT+25bHcKCBQtcteq0BnGd Su3bt1cx/Gc/9+/fr0qQddN3yvJsKqC6PgAAABqrxvA9QFXSUN/PDD4Wu2vfP/+af1hVPzfr+hnG Pvm6RlsO/5NuW101w1WTOfbYY5VDYj43a+/jhX9V0pvQvXt3xZjwV+xkFb5LVkplNkeuuOIKV606 W4PrRLN3TYcPH+76uST5vtmVK1daFLzooosUOF01L1qJuE6lfv36qRjOmfZVQ17O5HOzAAAAyETO 9NRlzmw27H7LeKu3+N9JY3U118+oBF/z02/S01t2prLB/gMHy1e/d9rv3Ntc4e8BUjf4HiDlRptg rKjm+hm0cvuaWbWLZzznqskE3wO0ceNGdfUgKzem04oLOaeccoqWBwwYsHPnTnWVW7p06RKeMH78 eC1r2vLly+2dtO3bt8+YMSP8/bESvkuUDh062LRly5a5UtXZGlwn5OKLL7Zj1LmkcKg5xcXF9n05 SeT8+5kzZ85U3tYjqbRplUKkjiHjKGbPnq1i3759dQjq6nG2A/E+N9u1a1c9j+rqeO3ZHDlypE0A AABAo0XO9NRlzrxg2pIg5llzA9nin1fZ99XXpeNSf98yswUT7M9dhpsqUX/XxPWzOWPCUzZHOdaV klFW8f6uiUUXsQlKjNYNjB071hZsgpx55plW8bjhtMxKpltuuUVzCvmC1kxuONsEJWQ3lkyfPn3c PSup4said0D278/+hnYmd4cMbrjyi3PDmjRpsnRp6v8pxCrBM2j0eBb45ioAAACOAORMT5acGcUS Y36y5sxPvtg3aNbS9tfNjvrOnviKEuMtT61SdGw27P7iwVM6jH7wounPhb82dufeL0c8+nLJtbO0 ft1q2b69NixztZkmLFmnCU2HTjtQ9V9r3LJlS//+/Zs1a9a0adOLL7547969lk/csFY+YULHjh2L i4s7depkHxz1Jsh9993Xq1cvrUTTNHnQoEGvvvqqG0vLvEumG264QXOSf5Y1zNafyQ1XVDz++OMK ado97aSCcfA+ZHL79u277rrrFNsU7XR7/fXXhwOk21421Zgzd+/erX3o0KGDDkTPl4Lu8uXL3Vjl 3TVHz6NGdaTKnHp+3TAAAAAaMXKmp6jo54flzLACs2VY1pzZUPS883HlzP5Tn3H9wlhccZ1apByr 7QbvzgEAAACoLkdezny9KtzdQorGvEjOjLNo/VZ7w3P2in9+G2oh6iRnTtbDn/FXNwEAAABUC3Km x//cbBg50xKmWrtRs/L40GxWtZ8zbYsyduxYV6rkBrJxMwrmVpeNm1Ewt7ps3AwAAACgJpEzPeTM OE2HTlPrdP1D4V/7LFDTNNepFfbLhAMHDsz8s5m2M1m5GQVzq8vGzSiYW102bgYAAABQk8iZHnIm AAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABA QciZnjrOmUWTB1lzfQAAAABoaMiZHnJmY1d0OFdtyI6YAwEAAEBDQc70kDNzqIU9fP/994cNG9ah Q4cmTZo0a9asT58+ixcvdmM1z1JZwFVrl236lFNOcf2KCi1b0fWrIu87AgAAAPkhZ3r4/cwcajpn Pvvssy1atLBoFOaGa1FdbVds08XFxXv37lV39+7dWraiTQAAAADqM3Kmh5yZQ43mzB07drRq1Upp 6tJLL924caMqBw4cWLx48dlnn20TalMd5jrbdPfu3efOnavuww8/3K1bNyvaBAAAAKA+I2d66iZn BuEtaG4gzSp/XP9cs/uHHfvwDc9v23jmf/6hydQhnR/5zZrPtobnqK3esaXH/Fs12uWR3z61eZ2N mp1f7r16+dy2M0doVLcjXn5UFTdWKVjPtr1/7/f0JG2xZNa1961/IahnNnfPtAnrlpxYfpvupU3o jgOevX/59k1uLIGxY8cqSvXr18/1s9m2bdvAgQNbtmzZpEkT3WpZFTdWmdDmz5/fokUL5bTt27dr nc2aNevSpYue1mDC7t27L7744qZNm2qorKxsy5Ytdvcwm+k6h1P6veWWWzp37qx9aN68ef/+/d9/ /303VlGhXdIdjzvuuH379qmrW0uJqtuEnNJbLrrxxhsvuOACdbX+66+/3oo2QV599VWtsF27dtoH HWzfvn1Xr17txtJsfsBVKwXF8ePHd+zYUSvp1KnTxIkTbRQAAAAoBDnTU39zZvGUwbagCGcLaoqC 4Tlq7WaNCpZ1lyCI7j2wv+ujNwVD1rrNG7vv669sggmGjps7JliOb+6eFRUKrt6QNTecQK9evRR+ nn32WdfP8MknnyhZWUYKqKK6TbCKvSkqp512mi3IgAEDggnKb7ZgSkpKgjUEbMh1Qg4ePBherWnb tu0HH3xgE7xg6cXOJNKrLFKSVJDW5nS7bNkyK7oZlXPClBWff/55N5wxwVUrWVFp2RYCs2fPdjMA AACAfJEzPfXxe4Cssu6zD1fv2GLLKz99/+3PP9JC25kjwnPUBr4w8+ChQ4OWzrLuRc9NtwljVi6w ioY0YciLD1pXdZtgrKjW6aHrV3z8N1V2frl35Ip5NirBBNcPaTptqA0t/egddQ8cPLj4g7fO/ss9 NppEs2bNFHWUrFw/w4gRIzRBKe7tt99WV7c9evRQ5eqrr7YJqaiUTqpBMFu8ePGKFSu00KFDh2BC sIaNGzfaGkaOHJlewT/ZTNcJGTdunOqlpaXr1qXeLlZAVYJVZdiwYTZB9BTbb5leeumlutWyfQw4 Id1FtKAAPHbsWOXMcNH07t17/vz5+/fv1/KuXbuGDBmi0fBXBwW8OxordunSRWlWXa3Bsreivk0A AAAA8kbO9NTfnJl1WdEuWLam/Knuxr9vt2772dfZhODNTA2FJ3R55Lc2wVhRLerzrsEE1w8J3krt u+i+h999bdve1PNRJRZ+XCebzp07a4Jyo+tXVFiGPPbYY62bXkEqqYq3rBAbTIhZQ8Bmuk6IvVcZ /qCsQpoq7du3d/20OXPmpFeQomVXTcbupQXF1DZt2vTv3z9czOrAgQMabd68ueuHZL2jFZcvX+76 6V+OVcUeJQAAAKAQ5ExPA8uZxVMGB8vhIbFuEESDT9taV7wJxopqBw8dcqXDBRNcP0TZMvhwrzWF 2MlvLXXDCdj7mYpMrp+hSZMmmqDc6PrpT7Gq0rRpU+tqWbIuFxcXB8WYNQRspuuE2D5kUt3NqHTR RRepfvHFF7t+YrZCLZSXl2vBYmpQNCr26dOnRYsWwVfRih2jx4Zcp1LyIgAAAFBV5ExPA8uZ3nLQ VUq0blTOzJxgrBhMyxQ/4f3dO8a+/mTfRfe1/NPwYOaNrz3hhnMpLS1Vzon5/cxCcqYt20LmGjJT os10nZConCluRtq+ffvs3ddjjz02+W9mmsy1Sbh42223WTeTTQjLWk9eBAAAAKqKnOnRZfbWoqJN RUXrv/vdBpkzq+tzs66fIeeEwMItb9rMFtOvdKVcbrzxRj0Bffv2df0MCT83G7NsC5lr6NSpk+tX ysy0pnv37oq1OaPj8OHD05tKueKKK1w1GbuX61QKF1u2bKnlyZMn2+9nyt69e8MTwrLWkxcBAACA qiJnehr8+5n2PUDB1/wMePZ+mxD+HiB1gwljX3/SJhgrqrl+hmb3D7MJq3f4fwuk5+N3Tt/w0pbd O7WsfXhq8zqb6b1lGiP89zPte3oU8xYvXnzOOefYBPseoK5du9qonialPlW87wGKWbYFrUH3VXfj xo22Bq05PfGfNEd1ZTnXrzR+/HjVTznllOXLl1sK3b59+4wZM3r27GkTRPusOYqjCxYs0K2WY96k zaT54jqVwkVb5+OPP247oGM5++yzwxPCstaTFwEAAICqImd6cuTMMFfNi5czLY9lbcFoeGbUslrU 3zXZ9/VX3effHAxZUyXq75q4foYLlkwL5ngzvXrQhi2rwrfgLFq0yL6p1WOjUX/XREnPJlglZtkW ysrKbMGUlJQEawhMmDDBDae5atqZZ57pqoez0Z07d7Zv315drUFdW48qqtuEnNIrO2yLEi7at8uG WQIXmyDWzRQeteVA1iIAAABQVeRMT1zOrEY1lzPX79zWY/6tTaYOOW7umKc2p/7wRmDnl3tHvPxo yaxrNapbLavixioF63H9DJ/s+2LQ0lntZ1+X+cVCyrRaZ2n5uKbpP3DS7P5hvZ64a8K6JW44MT3+ w4YN69ChQ3FxcdOmTRXqFD7dWPrNw4EDB7Zq1apJkya6vfTSS4M/XCnhpJR12RZ279598cUXa+XN mjW74IILtmzx35s1Y8eObdu2rd3FlSrdd999vXr10t21kx07dhw0aJD9gRCxr/857bTTrCunnHKK KvYHPJNIb9DfYrh44MCB6667TgFbW1eCve2227wJYt1M4VFbDmQtAgAAAFVFzvTUTc4snEW+cOpD VkQpAAAAoKaRMz3kzCMcORMAAACoaeRMDznzCFfnOdN2ICs3AwAAAGjgyJkeXe1vPeGETZMaWs5s Om2oNddHhKZprlMXbAeycjMAAACABo6c6Um/n7lkU9nx6wc2qJwJAAAAAPUEOdPjPjc7qWz9WQPJ mQAAAABQZeRMDzkTAAAAAApCzvTwuVkAAAAAKAg509NQvwcIAAAAAOoJcqanof5dEwAAAACoJ8iZ niM/Z/KXNgEAAADUKHKmp25yZm1mv9rcFgAAAIBGiJzpIWcCAAAAQEHImZ4jP2cCAAAAQI0iZ3rI mQAAAABQEHKmp45z5vqd23rMv7XJ1CFdH73pqc3r3HDarv37Rrz8aMmsazXa5oFrBi2dtf0fu9xY 2vLtm7rPv9nu++yHG4J12mjQDZrVA0F9zWdbez1xV9NpQ1tMv3LYsjn7vv7KzQAAAACABMiZHj9n 3hzNEmN+onJmu1mjguXiKYMV+WzC3gP7u80bGwxZ0+Qd+/bYhE27PlUsDIaa339FsGwTgm7QrB4I 6uF9UFO4dTMAAAAAIAFypidLzrRk6KmhnDnwhZkHDx0atHSWdQc8e79NGLNygVVGrpin7l1rFlk3 CIHDls2xykXPTT9w8KDuaF01mxDIWR/+0iPah9l/XWHdklnXuhkAAAAAkAA501PHOfPtzz9Sd+Pf t1u3/ezrbELXR2+yyu6vvlRXOdC6nR663iYc+/ANVrE16Na6ajYhkLO+88u96gabKJ4y2CYAAAAA QBLkTE9RUdHWE/pvOv74usmZrl9ZaTptqHWbTB0SzAk31b0J1g1SYlAJJK9nVgAAAAAgJ3KmJ/V+ 5pL7NxUdnjN1GxbU8xafM4OUmDNnqtmE4imDw11yJgAAAIC6Qs70pN/PPGHTpIX14nOz7WaNsgnB 52Z37d9nFU+HB0fbBG8NajYhkLyeWQEAAACAnMiZnqKtL25d8hv//cxMNZQz7XuAhrz4oHUzvweo 39OTtuzeqcr+gwfK31t92oLf2QTdMbiL1lDI9wC5PjkTAAAAQF7ImR73udnjy+omZ0b9XZN9X39V Wj4uGAo3m7Dx79ub3T8sKCb5uyZB8yZYVzIrAAAAAJATOdOT+txs0eGfm41iiTE/UTlz9Y4tPebf 2mTqkM6P/OapzevccJqi5i2rnuo+/2blSUXQDg+Ovui56cu3b3LDFRXPb9uoUd332IdvWLjlTVth 8G2xwSYymzfBupJZAQAAAICcyJke/++ahBWYLcO8nFntdu3fZxGxxfQrXQkAAAAAagU509OAc2bf Rfct377p4KFD+77+Kvh1zX5PT3LDAAAAAFAryJmeBpwzLViGW5OpQ1Z++r4bBgAAAIBaQc70NOCc ueyjd/s/M7XF9CubThuq27LFk1fv2OLGAAAAAKC2kDM9R8jvZwIAAABAXSFnesiZAAAAAFAQcqaH nAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAA AFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFn esiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkA AAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQ cqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZ AAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqanoJz5+psbbvvzigvue+bfxv9F7eeTltzx+AoV 3XBIOGcWDZrsNasDAAAAQENEzvTknzPnPL/6x79fNOTBl+98+q0pL/1VTQvq9rn7LxpykyqRMwEA AAAcqciZnjxz5oPPr+5z96I7Fr05+cW/ek1FDWmCm5oWzpkBciYAAACAIwA505NPznz9zQ1n/W7h zf+57g/PbbRmuxt0NaQJK0MfoCVnAgAAADhSkTM9+eTM28tX/OJPy+5c/FbQ3v9sj1q4ogm3PLbc 3SGvnLlr3/4Rj75ccu2sJkOmtrnmgUGzlm7f9Q8bsnv98bn1zYbdf+wNDz+/cduZf/hPTev8m0fW bP0syQSz9J2PyiYvbnHldA3ptvfdTy5Ys9mNAQAAAEAy5EyPnzOVLaNYYpT+9y4eMX/VTf+5LqZp wnn3LnZ3qHrO3Lv/QLex84IJ1tqNmrVjzz6NWrd48BRbUEq0BbV+k55OMsEExXBb/NYHbhgAAAAA EiBnerLkTEuGnnD9/9351HXlq0f/+Z/Ndjdcua581Wl3POnuUPWcOWbBShsaOW+FunctWmPdEY++ rK4tr/vws9Vbdtjyyvc/ffujz7XQdsTMJBPMKf+xYP6qv+0/cFDLj7/xvs0MB1EAAAAAyImc6ckr Z97x5JVzVw5/9J/NdjdcuWLua6ff9ZS7Q9VzZtebHrWh3V9+pe7BQ4es2+n6h9S15fREf7np0GmZ xcwJWdnMFldOd30AAAAASICc6cknZ/5s4qKLZiwb9OCKoNnuhiuacN49i9wdqp4zw590DTfVNWrL NtNbLh48JbOYOUGUXe9atObE28qbDbs/+IStmm0CAAAAABIiZ3qy50zdhgV1c8v85T/+wzMXzXgp aLa74YomjJ2X//cAReVMNY0GC1HLWYve8vBHXrJuZrMJAAAAAJAEOdOTz/uZK9dt6H3Hgn6Tnz9v 2lJrtrtBV0OaoGnuDhE5MwiTBw8dcqVKwedmd+3b70ohNhSznLXoLTcdOs26i9/6QDtw4OBB6wYT AAAAACAJcqYnn5wpM59ddcrtC35y77N9Jz3vNRU1pAlualrWnNn95vmW68Y++boXNYPvAeo36ekt O3ersv/AwfLV7532uwVatqH0xOzLWYvecpAz12z9TFu/bv4r1g0mAAAAAEAS5ExPnjlTHliyqvcd C/5t/F/Omrjkx398Vk0L6qrohUzJmjMnPvtmEO2CZkP7vvq6dFy5N2RNo8FC1HLWord86QPPW9da 2xEzg2WbAAAAAABJkDM9WXJmFEuMYa+/ueG3c5f1+/3CXrc+/v9uX/CziX8ZO+8lFd1wSNacKXc/ s7bLbx8Jfw2PG0hHzVueWtX95vn2PT0dRj940fTnlm/arqHwzKzLWYve8u4vv7rioZdaXTVDKz/5 jj+v2fqZjQYTAAAAACAJcqbHz5lhWbNlfqJyJgAAAAA0dORMDzkTAAAAAApCzvSQMwEAAACgIORM DzkTAAAAAApCzvTUQc584b2davV/GQAAAACSIGd66uz9zKh0V9+WAQAAACAeOdPD52YBAAAAoCDk TA85EwAAAAAKQs70kDMBAAAAoCDkTA85EwAAAAAKQs70kDNzK5o8yJrrAwAAAEAIOdNDzqz4ZN8X Fz83o9WMq5pMHZI1T5Iz67+iw7kqAAAAUCvImR5yZkX/Z6YGSTJrnoyq1wdnn62IVTFypOuaESNS xTPPdN3GwOXLSq4KAAAA1ApypoecWdF02lCLkR/s+dyVGo6NGyuKiyuaNKnYtMlVtKCK2ttvu0qj Qs4EAABA7SNnesiZDf5jsVdckXr3sqzMdbWg7rBhrtvYkDMBAABQ+8iZnkadM4OE6bWoUasHLnpu utWXb0+9mahb616wZJpNkF379414+dGSWdc2mTqkzQPXDFo6a/s/drmxtAnrlpxYfluz+4dpgqYN ePZ+W1tyO3ZUtGiRypavvlqxYkVqoXnzVLG+CRLgLbfc0qpVq5YtW06cONGG5MCBA6p37ty5SZMm zZs379+///vvv+/G0l599dWBAwe2a9dOE1q0aNG3b9/Vq1e7sZBgKwAAAECtIWd6yJlZWtSo1QM7 v9zbbtYo1Xs9cZe6utWysuKOfXtswt4D+7vNGxvc3ZruEkxQBPVGrdlocrfdloqXpaWppgV182AJ TVw/gxvON8XZfSfrRAixoYMHD5522mmuVKlt27YffPCBTRBXDVHgfP75591wJRtyHQAAAKBWkDM9 fG429+dmYyYs2rrehm587QlbePz9N9yYzraVC6w4csU8de9as8i6ipc2IfjV0KUfvaPugYMHF3/w 1tl/ucdGk9u/v6JDB0WsVNOCunmwhCaun8EN55vi7L49evQoLy9XsNy1a9eIESNsaNy4cRoqLS1d t26dup988smAAQNUGRb6+G/v3r3nz5+/P31suu+QIUM04ZRTTrHRQGob5EwAAADULnKmh5xZUM6U IS8+GEy4+LkZrprW9dGbrL77qy/VPXjokHU7PXS9TbC3Q9X6Lrrv4Xdf27Y39YzmZ/bsVMhU00J+ LKGJ62dww4XlzPvuu8/1Q7p166ah8AdllSRVad++vetnOHDggCY0b97c9SultkHOBAAAQO0iZ3rI mYXmTGXI9rOv02irGVft/HKvq6YFf5DTa6rbBGXL4imDw0NdHvnt5LeW2mhVWc6stywBKkC6fkiT Jk1s1KO6m1FRMWfOnD59+rRo0aK4uNgNFxVp2Q1XsrrrAAAAALWCnOkhZxaaM9d8tjWY8Oon77lq WlTOVHMzKire371j7OtP9l10X8s/DQ9Gb3ztCTdcFQ0iZ7rO4aJyptiE2267zfUz2IRA1iIAAABQ o8iZHnJmoTmz+/ybNdR25gjddps31lXTgs/N7tq/z5ViLdzyps1vMf1KV6oKxav6nLBiEmD37t2b Nm26b1/ko9SyZUvdd/Lkyfb7mbJ3796sK7TIevDgQdcHAAAAah4500POLChnTnzzWdWLpwx+fttG +wTsXWsWuTGdbZXfA9Tv6Ulbdu9UZf/BA+XvrT5twe9sQs/H75y+4SUbOnjo0FOb19n8ptOG2oQq KTBnWmwT18/ghvPdRsx9x48fr6FTTjll+fLlFhG3b98+Y8aMnj172gSlUE14/PHHbVSn69lnn51e n7/Crl27qqhE6voAAABAzSNnesiZkTEyqGc2m7Bt799bTL9S3bLFqUPTrZab33/FB3s+twn7vv6q tHxccK9wswleMWjDls2xCVWizJVvBkyx2Caun8EN57uN+PueeeaZNsFjo/btsmEjRoywBZsQmDBh gtWNqwIAAAA1iZzpIWfmnzMtWKqt/DT1RakrPv6bdS12GkXNW1Y91X3+zc3uH1Y8ZXCHB0df9Nz0 5ds32eiaz7aOePlRZVH7Ayea0+uJuyasW2KjVaVUVUiwcsksehVuON9t5Lzvfffd16tXr2bNmhUX F3fs2HHQoEGvvvqqDR04cOC6665r166dhtq3b39b+i+ERq1w7Nixbdu2jRoFAAAAqh0500POBAAA AICCkDM95EwAAAAAKAg500POBAAAAICCkDM95EwAAAAAKAg500POBAAAAICCkDM95EwAAAAAKAg5 00POBAAAAICCkDM95EwAAAAAKAg500PObMD2NARuXwEAAIAjFznTQ85swFySq9/cvgIAAABHLnKm h5zZgLkkV7+5fQUAAACOXORMDzkzUtHkQdZcv/5xSa5+c/sKAAAAHLnImR5yZqQGlDOPSstcln79 VNkzerTrmlGjUsVzz3XdeAnXEN5ueNntKwAAAHDkImd6yJmRjoycuXbtnlat9rRuvWf9elfRgipq b7zhKvESriG83fCy21cAAADgyEXO9JAzIx0ZOVOuukrFPT//uetqQd3hw103iSRrCG83vOz2FQAA ADhykTM9RWOKxozv/9jyRpkzJ6xbcmL5bc3uH9Zk6pCSWdcOePb+5ds3ubFQzly/c1uvJ+5qOm1o i+lXDls2Z9/XX7kZFRU7v9x79fK5bWeO0Bp0O+LlR1VR/eChQ6rovru/+tJmBjRBdY1qjrrx+xDP gpyEc1142Wzduqddu1QyXLZsz9KlqYWSklQxuSRrCG83vOz2FQAAADhykTM96fczlyyZVPZwY8uZ yoRBkgw3NxzKme1nXxcsq+mONmHvgf1dH70pPKTWbd5YC6I9H79T3ac2r7PJgQWb16h+8p/v0HLO fYhnQU7CuS68HLj99lQ4PPXUVNOCugGbn5WbkRazBhO+S3jZ7SsAAABw5CJnelLvZ/6m6DejiyYN bGQ5s+m0oRbqln70jroHDh5c/MFbZ//lHhuVIPUNf+mRg4cOzf7rCuu2nTnCJoxZucAqg5bO0oQh Lz5oXdU1OmzZHC1PfPNZmxyYsG6J6hrVcs59iGdBLonPP9/TpUsqH6ppQd2AZcKs3Iy0mDXEc/sK AAAAHLnImZ7G+/uZ7WaNsozXd9F9D7/72ra9qUczzEbVgo/CWrd4ymCbELyZufHv29XVrXW7PPJb deduWqnli56bruX+z0zVsm61fMGSaVrWqJZz7kM8l+SSmTnTpUQt5Ce/Nbh9BQAAAI5c5ExP482Z ynVKjBbzrCkfTn5rqRvO9j1AXsV+AzNzQtNpQ7W8ZfdOLZ9YfpuWOzw4WsvtZ1+n5R7zb9Xy+7t3 aDnnPsRzSS4xS4mFyGMNbl8BAACAIxc505P+3OwJ48eVLRza+L4HSGFv7OtP9l10X8s/DQ+S3o2v PWGjQcW64lW8nBm84Wk5U9o8cI2Wt/9jl4pnPDVBt1pWsFTdJkj8PsRzSS6xrCnRfUY2GzcjhJwJ AAAAZCJnevi7Js7CLW9axmsx/UqrBKnPuuJV4j83K/2enqTuLaue0u3iD97Srf1Kp+o2wZO5D/Fc kkuMnAkAAADUBHKmp/HmzJ6P3zl9w0tbdu/U8sFDh57avM4yXvBupHXVrCteJfw9QOoG3wM09vUn bcK41X9Rt92sUSWzrlVXt/YLmarbhJz7EM8lucTySIkeciYAAACQiZzpyZEzw1w1L/UwZ1qiy2z2 TbDhCdYVr7Lv66+6z785KFpTJfgDm/YeptoFS6apa98GpLZo63qbYN3MFuxDPJfkEiNnAgAAADWB nOlpvO9nrvls64iXHy0tH9c0/cdFmt0/rNcTd01Yt8QNJ8iZsvPLvVpJyaxrm0wdolst25fTmgMH D9rX/Ex7e5m6utWyKqrbhJz7EM8lucTImQAAAEBNIGd6+P3MBswlufrN7SsAAABw5CJnesiZDZhL cvWb21cAAADgyEXO9JAzGzCX5Oo3t68AAADAkYuc6SFnNmAuydVvbl8BAACAIxc500PObMBckqvf 3L4CAAAARy5ypoec2YC5JFe/uX0FAAAAjlzkTE+RnND/NwvJmQ2QS3L1m9tXAAAA4MhFzvSk389c cn9Z2WhyZoPjklz95vYVAAAAOHKRMz2p9zPTys4jZwIAAABA1ZEzPfx+JgAAAAAUhJzpIWcCAAAA QEHImZ70Z2ZPOOH4skkDG2vO/OSLfRfPeK7VVTOaDJlaNGiymhsAAAAAgATImR7ez6zoP/UZi5dB cwMAAAAAkAA500POrGg6dJrFyw8+58tRAQAAAFQZOdNDzqzgbUwAAAAAhSBnekI5c+BZLhRWqrmc GUS71Vt29Lh1fpMhU7v89pGn1m12w5WCadv+vrffpKebDbu/5NpZ972w3kZ37v3y6rnL246Yqbvr dsSjL6tiQybnhGD9XnPDAAAAAJAAOdPjv5+pbBnFEmN+onJmu1GzguXiwVPWbP3MzUgLho4bMzdY VtPQ3v0Hut70aLio1m3svH1ffW33zTlBvNGguWEAAAAASICc6cmSMy0ZemooZw6c+cLBQ4cGzVpq 3YumP+dmpAXTOl3/0Iq/fazKzr1fjpy3QgtjFqy0Id1Xaxjy4IvWVT1919wTAlZXc30AAAAAqApy pqeOc+bbH32u7sbtf7du++tm2wQTTFu+absrVQreq9R91Q3W0OW3jyScELC6musDAAAAQFWQMz11 nDNdv7LSdOg0108Lph08dMiVKmX+rUvrBmvIOSFg9fDMKjnhcK4KAAAAoNEgZ3qy50zdhgX1vMXn TMVI60blTNcP8WJk5hpyTghYPZhZVS5fVnJVAAAAAI0GOdPTMD436/ohfG4WAAAAQD1BzvQUyQn9 f7OwTr8HKPiSngH3P+tmpAXTXD8k/DU/6gZrGPvk6wknBKyu5voAAAAAUBXkTE/6/cwl95eVja6T nJnw75q4fsi+r77ufvP8YII1VYI/W5JzQiAYdX0AAAAAqApypif1fmZa2XmVOTOKJcb8ROXM9dt2 9rh1fpMhU48bM/epdZvdcKVgmusfbufeL0c8+nLJtbN0d91qWRU3lpZzgonfCgAAAADEI2d6/N/P DCswW4ZF5UzXBwAAAIAGi5zpIWcCAAAAQEHImZ70Z2ZPOOH4skkDyZkAAAAAUHXkTE/dvJ/ZdOg0 a64PAAAAAA0WOdNTNzkTAAAAAI4Y5EwPORMAAAAACkLO9IRy5sCzXCisRM4EAAAAgJzImR7ezwQA AACAgpAzPeRMFGQPAABAdXPXGUDDQc70kDNREPfTAAAAoPq46wyg4SBnesiZKIj7aQAAAFB93HUG 0HCQMz2NN2cWDZpszfWRF/fToCpuuOGG3r17u059FbOTH3744aBBg0pKSo5Kc9U9e6wbcNX6Ledz UYdP1umnn37jjTe6Ts3IuYnCJ9QmXln1R31+4XBWV7tGclZHqbkzyl1nAA0HOdNDzqzXObMozXWy sQmZiouL3Ywa5n4aVP7UzFz2rF27tlWrVo899pjrV7eYTScXv5NXXHGFbcW4agO8bsj5XGSd0K+f jnTP6NGua0aNShXPPdd1PcuXL9cDElyHvfLKK9dcc81JJ53Utm3b1q1bd+nSRQ/pm2++aaMBbVdb 1z64foSsD3V1baLwCbUm65NVjdInNa+sRLIeZv154RQ+IaHCn6z4E6Zw6ROKszpSrZ1y4QchvOyu M4CGg5zpSeXM+/unksl3uzauv2tyZOfMs88+282oYfbDQMI/G8LLnksuueToo4/+4osvXL+6xWw6 ufid1JA2sXTpUtfPUC37UAtyPhdZJ+hSoVWrPa1b71m/3lW0oIraG2+4iqesrEwPyMKFC61rj4+n pKRk0aJFNsFoux07drzwwgtd/3Dat1WrVmlB99Wtli+77LL0SIqt01PVTUjhE2oNr6z6oz6/cKTw CfHiX5tVwlldt2zfPDVxytmaM5fddQbQcJAzPe79zEllx581kPcz6x0Lja6TTLdu3XQXXZq4fg2z HwYS/tkQXg7TmdaqVau8rzmSiNp0cjl3Mucmck6oD3IeZsyEq67SMe75+c9dVwvqDh/uup61a9fq 0SgtLXX9PXtOPfXUCRMmrFy50q7MtHDWWWdpzkknnWQTApdffrn2QXvi+iGzZ88+9thjy8vLdUfd alkVN1ZNmzCFT6gFMU9WddGjJ66Tl5w7mXMTOSfUBzGHWR9eOKZGz+r412ZyOU+YwqXOJ87qaLV2 yoUfhPCyu84AGg5ypqeo6PtjlmxaUnb86IGN9XOz67ft7HXXE02HTmtx5fRhc5bt++prN6OiYuk7 H5VNXqx6kyFTddv77icXrNnsxioquvz2Ed39nD8ucv2Kij4TF6qiuutXVOzat3/Eoy+XXDtLa2hz zQODZi3dvusfbiyBquZM/RjQ/Pbt27t+zbMfBhL+2RBeDhs/frzqmdccwXxNOO6441q3bt21a9eJ EyfaqFm2bNngwYN1yaLRdu3anXfeea+88oobq1xDVm5GYvE7mckNh0TVRT9ldRR6gnQUutWy93M3 5wQJ1n/rrbceffTRmuY9VklEHWYgZsLWrXvatdNu6EnZs3RpaqGkJFXMaujQoVrPzJkzXT+brVu3 ao6uQvRPkiulaeuq60LH9Q+3fv36nj17aoIuhjI/yuXJbxNS+IRawCurQbyy6skLRwqfEK9Kr80o nNX156wO1NApl9rFygchvOyuM4CGg5zpKZr58+//5je/Ob5skv1+prJlFEuM+anPObP9dbODZTXF QjcjNCfcFr/1gY2OnLdC3WbD7j946JC6ulVYVeW6+a/YhL37D3QbOy+4o7V2o2bt2LPPJuRU1Zw5 ZMgQzb/xxhtdvypsW+L6ydgPAwn/bAgvh51//vmqZ36CyObrp6AtBMLXWK4Uop+sixcvjhoN2ITk 4ncykxsOiapv3rxZ1z02GlBF9YQTjNUnTZpkC8aNJRZ1mIH4Cbffrt3Yc+qpqaYFdbN69913dUWi q0DXj/Dxxx+nD+Kojz76yJXSdLGoovbE9Q+3YcMGu5bVrZZdNUJ+m5DCJ0RJ7U0ENyOxqCfL1sYr q/68surDC0dq7qw2VXptRok/YTira/OsDtTQKZdepdur8LK7zgAaDnKmp2jrzJ+fcMIJZZPc9wBF 5ckjOGcOf+QlRcTZK/5q3bYjZroZFRWn/MeC+av+tv/AQS0//sb7NqHfpKdt9PmN26yyfNN2dZe9 +5F1VbcJYxastIoSqbp3LVpj3XCUjVel4Ld3795mzZpp/vvvv+9KVWHbEtdPxn4YJNSxY0f9/Pj8 889dv5L9XOnRo4d+FKmrH2C/+MUvVDn99NNtgvTp02fu3Ll2X024Iv3lCj/60Y9sNJBeU/4/RCVq JwM5NxE1YdSoUaqXlpa+kf59LN3apdi1116bcIJRRTQ0b968L774Qo+G7ujGEst5mPETVO7SRXuS alqIWs3o0aO1kpz/fa4D1DRdIbl+JW1dde2J64fMnj27c+fOjz32mCboVvfNfEshLI9NmMInRNG9 orgZiUU9WbY2Xln155Wlct2+cEzhE2JU9bUZJeqRVFE4q2vzrA7U3CmXlbvOABoOcqanaOvWF/sX nTB6YePNmTv3fqmuoqZ1iwdPsQmZbEKLK6dbV3fRsioKkOqO+8tqLbcc/icbla43PWp32f3lV+oG m+h0/UM2IacqBb/JeoyLinr37u36VWTbEtdPxv00SKZVq1b6SeM6ISrKCy+84PqVH85p27at62fQ uasJJSUlrl8pvaaCrhuidjKQcxNRE7p37656+H++taxKt27drJtzglFF7r33XtfPS87DzDlh5kzt SapFfbJPFzR6gjp16hRzESa33357+oCOmjNnjiuFqN66dWvXCbnkkkvs6koTdKtlVdIjWeS3iUDh E2oaryzVG8orq25fOIHCJ0Sp0mszBme16vXkrDY1fcplctcZQMNBzvT4f9ekEeZM18+oKBYqQJ54 W3mzYfcrfAajTYZMtQnSf+ozqtivaOpWyxdMW2JDopnBvcItvIZ4VQp+PXr00OS5c+e6fq1wPw2S 0c8Y/aRxnZDUD66MulecPXv2T3/603bt2tnPdaNlN1zJ6q6Tl6idDOTcRNQEW7N9oYLRsipt2rSx bs4JRhXRxajr5yXnYeacIBqPmWIfbNM/Ha6fQf8ADR48OHUwRx119913u+rhNKQ9cZ1sNMEtZVNd myhwQk2LerJUzKx7RV5ZAVWkpl9ZovGYKbX2wilwQk5ag1vKS9QjqWJm3StyVgdUkQLP6to55TK5 6wyg4SBnerLnTN2GBfW8NcScOfyRl4KK12yCPPzau+oqiB44eFC3WlbFjUXnTDU3I5fkOXPNmjWa qR8wBw+mPuVba9xPg2TiPwflOpXCxeC/UTPZhEDWYpXU3Oegqve6wXXylfMwc04Q7UXUjuiOnTp1 Kikpibq+2bx58+mnn65NaEPl5eWuejitRBOOOeYY16+iatlE4ROi6F5R3IzEop6srGsLF3lluX6a KuI6+WoQL5zCJ9QCzmrV68NZXTunXFbuOgNoOMiZHt7PjMyZ9qU+aovf+uDgoUNKkt4E2f3lV/ZW 54Ql63SrZfuIrAk+N7tr335XqqLkOdO+AWjkyJGuX1vcT4Nk7CsTwp93MiqK61QKF9u3b6/lSZMm BT/OP/300/CEQNZilUTtZCDnJjJ//Jvq/RyU6+Qr52HmnCDai6gdueeee3T3qF8EWr58eefOnTXh sssu8761IswOP+qrI+JV1yYKnxBF94riZiQW9WRlXVu4yCvLukYVcZ185TxM0UaitlM7L5zCJ9SC qEdSRXGdSuEiZ7V1jSriOlVXa6dcVu46A2g4yJmeUM4ceJYCITkzqAQ5c83Wz5Qzr5v/ijfBnPIf C1Q5bsxc3WrZVdOC7wHqN+npLTt3q7L/wMHy1e+d9rvDpsVImDP379/fvHlzzdy4caMrVZ1tS1w/ GffTIJmJEyfqJ03md0KoKK5TKVxs06aNlh977DH7Ybxq1ap+/fqFJwQ6deqk4tSpUzN/bCcUtZOB 9GbjfmyfdNJJmqCrHNevZF/boFH75SUdxcknn6yK970OMROMKuI6+cp5mDkniPYi647owbe/N/Du u++6UsiMGTP0hPbs2VNXMK4UYebMmdqHPP64QjVuovAJtYBXluoN5ZUl2kjW7dTaC4ez2nBWx6vN Uy4rd50BNBzkTA/vZ0bmzEsfeD6oqLUdMTNYtglm/GL3LbJqdz+z1lXT9n31dem48mA03NyMXFzy y8bNSJs2bZoq+mHg+nmx1YrrJ+N+GiSjM61Vtj9pnf45GHfdYN8WGGY/YsUmBHQaWz3gBhKL2slA ztXqR6nNMa4a/TX07733XsIJxuquk6+ch5lzgmgvsu6IXVIMHTrU9Q9n+59V8P6DufDCC7UP2hPX T8ytLpuqbqLwCbUg6smyQ3adSuEiryybYKzuOvnKeZiijWTdTq29cDirDWd1PLtvVtV+ymXlrjOA hoOc6cmSM6NYYsxPQ8yZu7/86oqHXmp11YziwVNOvuPPa7Z+5k0wb3/0eVDXsqtWUtS85alV3W+e b18m1GH0gxdNf87+DkoSLvll42aknXjiiapMn+6+CDc/tlpx/WTcT4PELrnkkqOPPtr7z2P7ueU6 lcJFnam//vWv9RNUP6g6d+58e/qvzoUnBD7++GNdUnTp0kUzs05IIutOBpKsVq8X+59yb6auAAYP HqyVt27dWreDBg3y3rjIOUEyV5uf+MOUnBO0F1l3pLS0VHto/8ueyfY/q/C1i7arrevqxPWrwq0u myptovAJtYZXVgN6ZWkjWbdTOy+cwifUGs7quj2r7b5ZVe8pF8VdZwANBznT4+fMsAKzZVg9zJmo Fu6nQWI60/QTfe7cua5fLzWInSxczsPM73FYsGCBrkIK/82uefPmaetr1651/RqQcxOFT6g1vLLq j3r+wuGsrl6N5KyOUXNnlLvOABoOcqaHnImCuJ8GVXHTTTdl/r3s+qZB7GThch5mHo/DWWed1aZN m5y/z5OT1jNmzBjXqRk5N1H4hNrEK6v+qM8vHM7qatdIzuooNXdGuesMoOEgZ3qKvj+GnIn8uZ8G AAAA1cddZwANBznTw/uZKIj7aQAAAFB93HUG0HCQMz28n4mCuJ8GAAAA1cddZwANBznTQ85EQdxP AwAAgOrjrjOAhoOc6SFnoiDupwEAAED1cdcZQMNBzvSQM1EQ99MAAACg+rjrDKDhIGd6GmvOfOml BtAAAAAANATkTE9RUdHWoqJNRUXrzyNn1rcGAAAAoCEgZ3oa69818RJd/WwAAAAAGgJypoecWY8b AAAAgIaAnOkhZ9bjBgAAAKAhIGd6yJn1uAEAAABoCMiZHnJmPW4AAAAAGgJypqdR58wJ05448fpZ zYZMbTJ4Ssnw6QPGPbL8z4v/GfNeemnnc0uv/v28tlferwm6HTFhvirhCWpFgyZb2/bMC/1ufUhr 06ru+9OCJBO0ddU7XvOnYHL30TNV6XbdA6kuAAAAgIaAnOlpvDlToTFIgOEWRL69L7zY9boHvFEl wH1LlwVz1IKh40bNCJbVkkyY/KcFtvzq48+ou3/psuJfpro33FOeui8AAACAhoCc6Wm8ObPp4CmW 8ZY+lnoP88CyZYsfXXT22DmpgJduY+4ttwmD/uPRg8uWDRn/qHVVD+aoWVGt0zV/WpGOizufWzpy wvwkE3a/8GKT9G5c94fH1F3w8F9spsVOt6sAAAAA6jdypqfo+2Maac5sd9X9Fur63vrQww/+57Zn XkhFu1AL3szcuPA5dXVr3S6jZoSnWVHN+8xt0OInXHznIxqyj85eP/ExLXe4erobBQAAANAQkDM9 jff9TGVL+5Bq0BQgJ4d+r9LeaVQLKtZtOnhKUAmKageXHfZ52qDFT3h+/tM2+urjz/Qe86AWhv9+ nhsFAAAA0BCQMz2N9/1MtfcXPT/23vK+tz7U8lfTLOyp3fjH1EdY1bycqZRo3aicGS6GW84Jna75 k0ZHTphvW3x2/tNuCAAAAEBDQM70NOqcGW4L57rfjWwxbKpVqvq52XAx3HJOUNbVqGXdVr+a9s8h AAAAAA0BOdPTeHNmzxtmTX/gyS2Ln9fywWXLnqrMmcHbleHvAVI3+B4gxUKbYM2KauFiuOWcoH0I PsF78Z2P/HMIAAAAQENAzvTkyJlhrpqXepgzg/jntWG/c78euW/pMvtrluGmStTfNQkXwy3nBLUz bkr9ZqZa+UML/1kHAAAA0BCQMz2N9/3MNQuWjJgwv/TfZ9ofOGk2ZGqv38yeMO2Jf8a89B8g0ZyS 4dObDJ6iWy2rEp6gZvlQzasHLecENW1XE7QnB8LfFQQAAACgISBneoqKirYWFW0qKlp/XuP+/cy6 bT1vmKWc2f/2hw+rAwAAAGgIyJmexvt3TepPW/ToInvDc/as/zxsCAAAAEBDQM70kDPruFnCVGt3 1f2HfWhWDQAAAEBDQM70kDPruDUdPEWt0zV/Wv7nxd6Q21UAAAAA9Rs500POrMcNAAAAQENAzvSQ M+txAwAAANAQkDM95Mx63AAAAAA0BORMDzmzHjcAAAAADQE509NYcyYAAAAAVBNypoecCQAAAAAF IWd6yJkAAAAAUBBypqeoqGhr0QmbJi0kZwIAAABAPsiZnvT7mUs2lR2//jxyJgAAAABUHTnT4z43 u3D0+p7nkTMBAAAAoMrImR5yJgAAAAAUhJzpSeXMJfdvOp7PzQIAAABAXsiZHr4HCAAAAAAKQs70 8HdNAAAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMA AAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9BQVFW09of+m heRMAAAAAMgLOdOTfj9zyaayMnImAAAAAOSDnOlJvZ9ZVLSpqGj9eeRMAAAAAKg6cqaH388EAAAA gIKQMz3kTAAAAAAoCDnTk/7c7Ambji9bP5CcCQAAAABVR8708H5m/bUHAFDX3L/IAADEImd6yJn1 l7vGAQDUHfcvMgAAsciZHnJm/eWucQAAdcf9iwwAQCxypqfx5syiQZOtuX79465xquKGG27o3bu3 62STc0LeTj/99BtvvNF1GqCjDueqGerVYdbcs1mNYnbyww8/HDRoUElJifeYWzfgqvVbHb70cqqF kzbnJgqfUIfcv8gAAMQiZ3rImQ0gZ4avtsPLnrVr17Zq1eqxxx5z/Qw5J0TRHe+4445TTz01Zuta rVauma7f0NihBVw1Q7Uc5nPPPdc6TQuuVHV5P5sJxT8OCcXv5BVXXGFbMa7aAHNmzuci64R+/XSk e0aPdl0zalSqeO65rutZvny5HpAgr77yyivXXHPNSSed1LZtW51OXbp00UP65ptv2mgg4Umb9aGu rk0UPqEOuX+RAQCIRc70kDOPnJx5ySWXHH300V988YXrZ8g5IYptNOCqh9NqO3bseOGFF7p+gxVz jFL4YW7YsKFTp07dunXr3r27Ft555x03UEV5P5sJxT8OCcXvpIa0iaVLl7p+hmrZh1qQ30tPkapV qz2tW+9Zv95VtKCK2htvuIqnrKxMD8jChQuta4+Pp6SkZNGiRTbBxJ+02rdVq1ZpQffVrZYvu+yy 9EiKrdNT1U1I4RPqkPsXGQCAWORMDznzCMmZehJbtWoVvkD05JwQo7S09NZbb127dm3U1s3ll1+u TWhDrt8wxR+jFHKYH3/88Q9+8IMuXbro7tK5c2d1VXTDiem+eT+bCeV8HHLKuZM5N5FzQn2Q8zBj Jlx1lY5xz89/7rpaUHf4cNf12AtQL0bX37Pn1FNPnTBhwsqVKy3BauGss87SnJNOOskmBGJO2tmz Zx977LHl5eW6o261rIobq6ZNmMIn1BX3LzIAALHImR5y5uT123b2uuuJpkOntbhy+rA5y/Z99bWb UVGx9J2PyiYvVr3JkKm67X33kwvWbHZjFRVdfvuI7n7OHxe5fkVFn4kLVVHd9Ssqdu3bP+LRl0uu naU1tLnmgUGzlm7f9Q83lou7xjn8aju8HDZ+/HjVwxeInpwTkkhvPPK6XyvXqK5KXb+6BVtX6D36 6KPbt28/ceJEGxKdzap37969devWJSUlF1544YYNG9xY2rJlywYPHqzLaE1o167deeed98orr7ix kGArUQo5zHPPPfeYY44J3sO09zZVtG5yUc9met9TO68Jxx13nI60a9eu4UdJ4h8HW0NWbkZi8TuZ yQ2HRNVF/2rpKHQO6Ch0q2Uvn+ScIMH6s55RCRXy0tu6dU+7dtoNPSl7li5NLZSUpIpZDR06VOuZ OXOm62ejf881R2lNLwdXSos/afXvf8+ePTVBqTLzM7Ge/DYhhU+oK+5fZAAAYpEzPX7OVLaMYokx P/U5Z7a/bnawrKZY6GaE5oTb4rc+sNGR81ao22zY/QcPHVJXtwqrqlw3/xWbsHf/gW5j5wV3tNZu 1Kwde/bZhHjuGufwq+3wctj555+vesxHEHNOSCK98ezX/aIAo1FtyPUzxN9d4ifY6KRJk2zB2NAX X3xhb7OEKcK9++67NkFcNUQJZPHixW64kg25TjY5DzPKtddeq12yzygG1FXxmmuucf1kop7N9L4f pdRkC4FwOHGlkPDj4ErZ2ITk4ncykxsOiapv3rxZOdlGA6qonnCCsXrWMyq5nK+s+Am3367d2HPq qammBXWz0pmsaNe1a1fXj/Dxxx+nD+Kojz76yJXS4k/aDRs2WM7Urfe/M5ny24QUPiFKam8iuBmF cf8iAwAQi5zpyZIzLRl6juCcOfyRlxQRZ6/4q3XbjpjpZlRUnPIfC+av+tv+Awe1/Pgb79uEfpOe ttHnN26zyvJN29Vd9u5H1lXdJoxZsNIqSqTq3rVojXXDUTaGu8ZJpmPHjrqo+vzzz10/Q84JSaSv 3CIv3bRyjWpDrp8h/u4SP8FGdSk8b948BUtd5o4aNcqG7rjjDg2deuqpK1euVFdx4pJLLlFleOgz iH369Jk7d649ArqvfQnNj370IxsNpLYRu5M5D7MWRD2b6X0/qkePHrpkV1eH+Ytf/EKV008/3SZI dT0OOeU85XJuImqCnnfVS0tL30j/IqNuLSYpySecYFSRrGdUcjkPM36Cyl26aE9STQtRqxk9erRW kvPtVh2gpilRu34lbV31rCft7NmzO3fu/Nhjj2mCbnVfVdxYNnlswhQ+IYruFcXNKIz7FxkAgFjk TE9RUdHWohM2TVrYeHPmzr1fqquoad3iwVNsQiab0OLK6dbVXbSsigKkuuP+slrLLYf/yUal602P 2l12f/mVusEmOl3/kE2I565xkmnVqlX8RVXOCUmkr9xyBIPWrVu7ToYkd4+ZYKP33nuv64coUWgo /FaMMoMquoB2/Qw6+zWhpKTE9SultpHrgdKEmMOsBVHPZnrfj3rhhRdcv/JTjm3btnX9DIU8DvFy nnI5NxE1oXv37qqH3yHUsirdunWzbs4JRhXJekYlV/hLb+ZM7UmqRX0kVieznqBOnTpFhVVz++23 pw/oqDlz5rhSiOpZT9pLLrnE0rgm6FbLqqRHsshvE4HCJ9QJ9y8yAACxyJme9PuZSzaVHb/+vMaa M10/o6JYqAB54m3lzYbdr/AZjDYZMtUmSP+pz6hiv6KpWy1fMG2JDYlmBvcKt/AaYrhrnGR0caZL NNfJJn6ChsJcNUP8qGi05i4Tbeu65nb9EDu6TOGdmT179k9/+tN27drZdb/RshuuZHXXiaAJNXeY SUQ9m+l99+tesRofh3hROxnIuYmoCbZm+2Yao2VV2rRpY92cE4wqkvWMSi7nYeacIBqPmWIfhNY/ wq6fQf+UDx48OHUwRx119913u+rhNKQ9cZ1sNMEtZVNdmyhwQp1w/yIDABCLnOlxn5tdOHp9z/P+ mTN1GxbU89YQc+bwR14KKl6zCfLwa++qqyB64OBB3WpZFTcWnTPV3IxY7honmfjP5kn8BA2FuWqG +FH72Nsxxxzj+tUtZut2KZ+VTQjeh8lkEwJZi2E1fZhJRD2b6X2PO6JqfBxyynlO5txE1AR7uqsr Z7pOvgp86RntRdSO6I6dOnUqKSmJysObN28+/fTTtQltqLy83FUPp5VoQt4nbbVsovAJUXSvKG5G Ydy/yAAAxCJnerLnzEyNMGfal/qoLX7rg4OHDilJehNk95df2VudE5as062W7SOyJvjc7K59+12p Ktw1TjL2XSPhD0x6ck5IIn3lFnnpZh9NzONrPBKK2frJJ5+sCPHZZ5+5fob27dvrvpMmTdK1rFU+ /fTTrCvMjCiemj7MJKKezdTxZBxRuJj8ccharJKcp1zOTUQ9F9X7uVnXyVfOw8w5QbQXUTtyzz33 6O5Rvzi6fPnyzp07a8Jll13mfctRWCEnbXVtovAJUXSvKG5GYdy/yAAAxCJnelI5c8n9m47nc7PR OXPN1s+UM6+b/4o3wZzyHwtUOW7MXN1q2VXTgu8B6jfp6S07d6uy/8DB8tXvnfa7w6ZFcdc4yUyc OFEXVTFf4JFzQhLpK7fIS7eZM2dqNObPEsTfXeInxIzan4740Y9+pKt5iyXvvffe9OnTe/fubROU QjXhscces9FVq1b169cvvT5/hSeddJKKSmKunyHnYdaCqGczdTwZRxQuJn8cOnXqpOLUqVNjIne8 nKdcerPZn1AT9VzY1/xo1H6xUEdx8sknq+J9D1DMBKOKuE6+quWlp73IuiN68O3v04S/OTkwY8YM PaE9e/ZUFHSlCHmftNW4icIn1BX3LzIAALHImR6+BygyZ176wPNBRa3tiJnBsk0w4xe7b5FVu/uZ ta6atu+rr0vHlQej4eZmxHLXOMlsiv5b8CbnhBi6+MvKDVe68MILtQltyPUzZL1XWPyE+NFzzz3X Jnhs1L5VNcyiiNiEgC5zrW5cNSTnYdaCqGcz6z6Hi8kfB/2DYPWAG0gs5ymXc7VRz8XmiD9b8t57 7yWcYKzuOvnKeZg5J4j2IuuOWPQaOnSo6x/O9j+r4P1qk/dJ61aXTVU3UfiEuuL+RQYAIBY505Pl 75pEscSYn4aYM3d/+dUVD73U6qoZxYOnnHzHn9ds/cybYN7+6POgrmVXraSoectTq7rfPN++TKjD 6Acvmv6c/R2UnNw1TmKXXHLJ0UcfHfPuU84JUdx1ZQY3nKbVauW6UnT9bDLv5YmfED8q99577+mn n962bVtdrR533HG6Orc/7yE613/9618raWioc+fOt6f/TGHUCnW227t5maNJDrN2ZH02s+5zuJj8 cfj4448VQbt06aKZWSckEX/KJVlt1HOhxDh48GCtvHXr1rodNGiQ945fzgmSudr8FP7S015k3RH7 ImV7VzaT7X9W4RBYyEnrVpdNlTZR+IQ65P5FBgAgFjnT4+fMsAKzZVg9zJn1n7vGSUxPoiLB3Llz XT9DzgmFmDdvnla+du1a1z9C1Z/DrNFns7o0iJ0sXA299BYsWKA4l98vVYbVwkmbcxOFT6hD7l9k AABikTM95Mz6y13jVMVNN92U+Qf3w3JOyNtZZ501ZswY1zly1avDrLlnsxo1iJ0sXE289HSytWnT JucvRuZUCydtzk0UPqEOuX+RAQCIRc70kDPrL3eNAwCoO+5fZAAAYpEzPeTM+std4wAA6o77FxkA gFjkTA85s/5y1zgAgLrj/kUGACAWOdNDzqy/3DUOAKDuuH+RAQCIRc70kDPrL3eNAwCoO+5fZAAA YpEzPeTM+std4wAA6o77FxkAgFjkTE8d5Ez3oxsAAKA+sQsVAMgDOdNTVFS09YT+mxaSMwEAQONm FyoAkAdypif9fuaSTWVl5EwAANCo2YUKAOSBnOlJvZ9ZVLSpqGj9eeTMhu+GG27o3bu362STc0Le Tj/99BtvvNF1GqCjDueqGerVYRb+bNbc+VCNYnbyww8/HDRoUElJifesWTfgqvVbHT4XOc/qwifU Js7q+q8Wzqi812AXKgCQB3Kmh9/PPHKsXbu2VatWjz32mOtnyDkhiu54xx13nHrqqTHXN1qtVq6Z rt/Q2KEFXDVDtRzmc8891zpNC65UdXk/m4HC1xAv/pFMKH4nr7jiCtuKcdUGeEWe9TD79dOB7Bk9 2nXNqFGp4rnnuq5n+fLlOt4gwLzyyivXXHPNSSed1LZtW51vXbp00SP25ptv2mgg51ld+ISECn+y 4k+YwqVPKM7qSLV2yuWUcw3hhzG8bBcqAJAHcqaHnHnkuOSSS44++ugvvvjC9TPknBDFfgYHXPVw Wm3Hjh0vvPBC12+wYo5RCj/MDRs2dOrUqVu3bt27d9fCO++84waqKO9nM1D4GuLFP5IJxe+khrSJ pUuXun6GatmHWpD1MHWF3KrVntat96xf7ypaUEXtjTdcxVNWVqbjXbhwoXXt8D0lJSWLFi2yCSbn WV34hHg6/FWrVmlBu6dbLV922WXpkSrjrK5btm+emjjlcsq5Btu3zGW7UAGAPJAzPenPzZ6w6fiy 9QPJmQ3Zpk2bWrVqFXNxlnNCjNLS0ltvvXXt2rXhH8aZLr/8cm1CG3L9hin+GKWQw/z4449/8IMf dOnSRXeXzp07q6uiG05M98372TSFryGnnI9kTjl3Mucmck6oD2IO86qrdAh7fv5z19WCusOHu67H XqF6tbr+nj2nnnrqhAkTVq5caZFGC2eddZbmnHTSSTYhkPOsLnxCjNmzZx977LHl5eXaN91qWRU3 VhU5T5jCpc4nzupotXnK5RS/hvDDGF62CxUAyAM508P7mUeI8ePH68dkzMVZzglJpH8WR17faOUa 1UWG61e3YOsKvUcffXT79u0nTpxoQ6KzWfXu3bu3bt26pKTkwgsv3LBhgxtLW7Zs2eDBg3UJqwnt 2rU777zzXnnlFTcWEmwlSiGHee655x5zzDHBe5j23qaK1k2u8Gczag2pg08fviYcd9xxeqy6du0a fpwl/pG0NWTlZiQWv5OZ3HBIVF30756OQmeRjkK3WvauR3NOkGD9Wc/JhGKeza1b97Rrp63oMd+z dGlqoaQkVcxq6NChWs/MmTNdPxv9g685uvjW68WV0nKe1YVPiKefQT179tQaFFQyP2aZEGd1/Tmr AzV3yuUUvwYNSeayXagAQB7ImR5y5hHi/PPP14/JmI9a5ZyQRPpncfbrG9GFmka1IdfPEH93iZ9g o5MmTbIFY0NffPGF/a95mCLcu+++axPEVUN0pbV48WI3XMmGXCebnIcZ5dprr9Uu2ecDA+qqeM01 17h+MoU/m1FrSB38UUfp+tIWAuH04koh4UfSlbKxCcnF72QmNxwSVd+8ebMShY0GVFE94QRj9azn ZHLxz+btt2sre049NdW0oG5WOtV1Ka/45PoRPv74Y9vJjz76yJXScp7VhU+It2HDBsuZuvX+hyi5 +BOGs7o2z+pAzZ1yOcWvIbVPlccVXrYLFQDIAznTQ848QnTs2FE/Jj///HPXz5BzQhLpn8WRFxxa uUa1IdfPEH93iZ9go7oMnTdvnoKlrlpGjRplQ3fccYeGTj311JUrV6qry6ZLLrlEleGhjxj26dNn 7ty59gjovvZlGz/60Y9sNJDaRuxO5jzMWlD4sxm1htTBH3VUjx49dImmrh6oX/ziF6qcfvrpNkGq 65HMKedh5txE1ASdOaqXlpa+kf5NR91ayLn22msTTjCqSNZzMrn4w1S5SxdtKNW0EPVgjB49WivJ +b6T9l/TFC1cv5K2rnrMWV34hBizZ8/u3LnzY489pjXoVruX+XZfElGPpIrCWV2bZ3Wg5k65nPJb g12oAEAeyJkecuYRolWrVvqB6jrZ5JyQhNYQvxKNtm7d2nUyJLl7zAQbvffee10/RFdOGgq/DaJr I1V08er6GXT2a0JJSYnrV0ptI9cDpQkxh1kLCn82o9aQOvijjnrhhRdcv/Jjb23btnX9DIU8kvFy HmbOTURN6N69u+rh95S0rEq3bt2sm3OCUUWynpPJ5TzMmTO1oVSL+kisznY9/p06dYpJL3L77bfb Ds+ZM8eVQlSPP6sLnxDlkksuseSjNehWy6qkR6qGs1r1enJWm5o+5XLKYw12oQIAeSBnesiZRwj9 KNUPVNfJJn6ChsJcNUP8qGi0wMuCGLZ1XVK7fogdXabwzsyePfunP/1pu3bt7DrPaNkNV7K660TQ hJo7zCTin80kotaQOviMulesxkcyXs7DzLmJqAm2ZvuqEqNlVdq0aWPdnBOMKpL1nEwuybOp8Zgp 9olQ/Yvt+hn0b/3gwYPTO3vU3Xff7aqH05D2xHWyKXxCTlqDW8pL1COpYmbdK3JWB1SRAs/q2jnl cspjDXahAgB5IGd6yJlHiJyfxYqfoKEwV80QP2ofUjrmmGNcv7rFbN2un7KyCcF/q2eyCYGsxbCa Pswkcj7dOUWtIXXwsY9JNT6SOeU8zJybiJqQ84I75wSjirhOvpI8m9pI1HZ0x06dOpWUlEQFg82b N59++unahDZUXl7uqofTSjQh5qwufEIt4KxWvT6c1bVzyuWU3xrsQgUA8kDO9JAzjxD23RLhD4Z5 ck5IQmsQ18lgH8Eq5Gsb4sVs/eSTT9al0meffeb6Gdq3b6/7Tpo0Kbi8+/TTT7OuMPNSzFPTh5lE 4c9m1BpUFNepFC4mfySzFqsk52Hm3ETUs1m9nzB0nXwleTa1kajt3HPPPbp71G/QLV++vHPnzppw 2WWXeV/3EpbzrC58Qi2IeiRVFNepFC5yVlvXqCKuU3W1dsrllN8a7EIFAPJAzvSQM48QEydO1A/U mC/PyDkhCa1BXCfDzJkzNRrzNfTxd5f4CTGj9qcCfvSjH+nqzS6/3nvvvenTp/fu3dsmKIVqwmOP PWajq1at6tevX3p9/gpPOukkFXXF6foZch5mLSj82Yxag4riOpXCxeSPZKdOnVScOnVq5gVxQjkP M73Z7KeEiXo27QtRNGq/FqijOPnkk1XxvjElZoJRRVwnX0meTW0k63b02Nof6gh/tXJgxowZer56 9uypS39XipDzrC58Qi3grFa9bs/q2jzlcspvDXahAgB5IGd6cuTMMFfNCzmzpulJbBX7t79zToiR uujIxg1XuvDCC7UJbcj1M2S9V1j8hPjRc8891yZ4bNS+PTLMLrnEJgR0UWJ146ohOQ+zFhTybJqo NWQ96nAx+SOpf1KsHnADieU8zJyrjXo2N0f8gYf33nsv4QRjddfJV5JnUxvJuh27kh46dKjrH852 L6vgjTuT86wufEItiHok7ZBdp1K4yFltE4zVXaeK7L5ZVfspl1N+a7ALFQDIAznTw/uZR45LLrnk 6KOPjvlf9pwTorjLhAxuOE2r1cr1c931s8m8lyd+Qvyo3Hvvvaeffnrbtm11bXHcccfp4tv+jIHo XP/1r3+tKyoNde7c+fb0XyGMWqHOfHvXInM0yWHWjryfzUDWNWQ96nAx+SP58ccf62K9S5cumpl1 QhLxh5lktVHPpq6tBw8erJW3bt1at4MGDfLeEsw5QTJXm5+cz6Y2knU79k3L9vZUJtu9rMIX/TnP 6sIn1BrO6ro9q+2+WVXvKZdT3muwCxUAyAM501NUVLS16IRNkxaSMxu89evX69Jn7ty5rp8h54RC zJs3Tytfu3at6x+h6s9hFv5s1uj5UF0axE4WLr/DXLBggS7fC/kFNpPzrC58Qq3hrG4QauGMynsN dqECAHkgZ3rS72cu2VR2/PrzyJkN30033ZT5h8XDck7I21lnnTVmzBjXOXLVq8Ms/NmsufOhGjWI nSxcHoeps7FNmzY5fxEup5xndeETahNndf1XC2dU3muwCxUAyAM50+M+N7tw9Pqe55EzAQBA42UX KgCQB3Kmh5wJAACQYhcqAJAHcqYnlTOX3L/peD43CwAAGje7UAGAPJAzPXwPEAAAQIpdqABAHsiZ Hv6uCQAAQIpdqABAHsiZHnImAABAil2oAEAeyJmeOsiZAAAAAHAkIWd6yJkAAAAAUBBypoecCQAA AAAFIWd6yJk15txz/VbD9CS2aNGiZ8+erl9NTkhznQZOD07z5s03btzo+gAAAEB1IGd6yJk1xguZ ajXp4MGDXbt2LSoqmjt3ritVk2rMmXmvSsclrpONTchUXFzsZqSVl5erqAdKD5crAQAAAAUjZ3rI mTWvVnLmuHHjlKBatmxZ7Qkq73CYKe9VpTNjPjnz7LPPdjPS9ODoIVJdD5crAQAAAAUjZ3rImTWv 5nPm/v37W7Vqpfh00UUXuVL1yTscZsp7VenMGJczM3Xr1k13WbhwoetX6t+/v+pt2rTZt2+fKwEA AACFIWd6GnfOXL++4s47K84/v6Jfv9Ttb39b8dprbkiCfPi3v1WMGJGa86tfVaxc6UYl5wQTTMs0 cmSqPmiQ68o116QqV13lusnMmDEjHcSK5syZ40ohixYtGjlyZK9evU488cTS0tJzzz137Nixb775 po1mzX7hoi3v3bv3t7/9re7+r//6r6NGjdq2bZuNmiSbyMom5GRH5zoJrFy5UvPbt2/v+iGzZ8+2 tU2fPt2VAAAAgMKQMz263t5adMKmSQsbZc4MEmC4vfGGP3rppf9c/ulPK957L+kEEwxlWrTIDf31 r6nugQOpu6v74IPp4aT69etn2WnZsmWuVOmee+5xkS6DTQgvB8JFW/71r39tC6Z3796fffaZTUi4 iaxsQk52dK6TwJAhQzT/xhtvdP2QFStW2NrKyspcCQAAACgMOdOTfj9zyaay49ef1whz5g03VLz8 cirdySuvuMh3xx3psVA+/OMfKw4dqrj3XtedMCHpBBNMy7RvX+pdUA3NnJnqvvaam2mxM7H27dtb dtq/f78rVSotLVWcmzlzpp5sq3z88cdPPvnkwIEDrZs174WLtty/f//30vn5/fff//nPf67K+PHj bULOTQTSa0qaLcPs6Fwnl7179zZr1kzztauuFKKHyNbWrl07VwIAAAAKQ870uM/NLhy9vud5jf73 My3jnX/+YV21Dz5IdT/80HUvuyw9nGCCCaZl9Yc/pIbso7OzZ6eWL788PVAFxcXFlp1cP+Tss89W tLvmmmtuuOGGcePGKf6tPPyTvVmzX7hoy+vWrbOuaFmVcyuPKOcmAuk11XjOnKxzraiod+/erp/B 1takSRPXBwAAAApDzvQ04px56FBFeXnqNyR/9jP3aVVr/fq5CUElYN3g85Y5J5jMaWFvvulG//rX 1C+IamHaNDeUmCKTZSfXD1mzZk3fvn0t4AX69ev36aef2gSr2HIgXLTl8NfYalmVE0880bo5NxGw Idepiqijy6pHjx6aHPP3XWxt5EwAAABUF3KmJ5Uzl9y/6fhG+LlZxTkLeJnNeF3lUutG5czMCcab lumXv0yNzpjhPkO7dq2rJ9ahQwfLTpmfmzUbNmxYtGjR9OnTR40a9X//7/9V2LvmmmtsKDP7WYwM iracmTNLS0tdPy1mE4H0mmo2Zyr0amabNm3COxzG52YBAABQ7ciZHl1vN9bvAVIatPj3xhupiPj1 166rZoJugZ+btfSopq1k9cgjqdELLkjdDhjgilVhf6tDMr8HKNPOnTsV9oKU+K//+q/q6lSwrtjH YsW6thzzudlM3iYC6TXVbM60bwAaOXKk62dYvny5rU0PmisBAAAAhSFnehrx3zUJcuZ776US4MyZ rhvEp6BrX/MzaZLr3n130gnG/lSJmvJk1qj56af//ODuH/7gilUxffp0y04z7fuEQn7xi1/MnTv3 3Xfftff3Pvvss8mTJyvsKV7ahMsvv1zdG264YdeuXeoqQ/br1y+dBw/LmT/72c90nqj7/vvvn3/+ +ar8/ve/twk5NxHo3bu36uXl5VFvNkaxo3OdaPv372/evLlmbty40ZUyBH/XZMaMGa4EAAAAFIac 6WnEOXPiRBftrP3iF/9cNkG3wL9r8tRT/xwNmuemm1x9xQpXqQrlqzZt2ig7Zb5Hl8qI2Uyr/C3Q BQsWuFKlqVOn2oJNsOXrr7/eFswZZ5yxc+fO8IRMwSYCd955pxur5AZysWSYlZuRpi2q0rNnT9fP xt771cMV9RljAAAAoKrImZ5GnDP37auYOjX1OVUlw9GjU+HQC4FBd8uWihEjUh9/vfLKivA3qeac EHjiiYpf/eqwbxvyPPlkqlhWlvr4bl7GjRun+NSiRQvvrcJ33nnnd7/73fnnn19aWvr9739fGWzE iBHPP/+8G0576KGHfvzjH2v07LPP1rIq4RBoy3v37v3tb3+rlfzrv/6rMuf27dttVJJswmglmnnW WWdpmq3WDeSSCpQR3Iy0E088UZXp06e7fgY9OC1bttQcPVyuBAAAABSMnOlpxDkzp6hMGMg5Iblf /zq1nv/4D9etOiWorl27KkHFfM8qysvL9RDpgarqB3cBAACAGORMDzkzWs4YmXNCQqtXu/W88IKr 5GXjxo2tWrU65ZRTXB8ZTjvtND1EMb+9CQAAAOSBnOkhZ0bLGSNzTkgiWMmll+b9oVkAAAAAdYic 6SFnRisrcy1KzglJ2Bp++cuKDRtcBQAAAECDQs70kDMBAAAAoCDkTA85EwAAAAAKQs70kDMBAAAA oCDkTE9RUdHWE/pvWkjOBAAAAIC8kDM96fczl2wqKyNnAgAAAEA+yJme1PuZRUWbiorWn0fOBAAA AICqI2d6+P1MAAAAACgIOdPTeHNm0aDJ1lwfAAAAAPJCzvSkPzd7wqbjy9YPJGfWYyekuQ4AAACA +oSc6eH9THImAAAAgIKQMz3kTHImAAAAgIKQMz3kzMnrt+3scev8JkOmdr3p0afWbXbDFRUn3lau 0Y6/nuP6FRXdb56vSrex81w/gTfffHPs2LFnnHHGiSee2LNnzxEjRmzYsMGNRaTHcNGWs7IJ8umn n2oTvXr10iZ0q2VV3BgAAACAmkfO9JAzJ7cbNStYLh48Zc3Wz2zC5KVvWfHV9z5Rd/+BgxpV94Y/ v2YTknChMERpcOXKleFRWw6Ei7aclU3YuXOnQqwrVVJFdZsAAAAAoKaRMz3kzMkDZ75w8NChQbOW WnfA/c/ahN1fftVkyFRVrpv/iroL1my2CRY7ExoyZMiSJUu++uorLe/Zs+e2225TDrz88stt1GKh LQeSF+V3v/ud6v3793/vvffU1e3Pf/5zVcaPH28TAAAAANQ0cqaHnDn57Y8+V3fj9r9bt/11s22C XDzjOVXso7PXl7+q5Q6jH7Sh/Hz99dcKgf/3//5f66ayY2E5s2/fvqqvW7fO9SsqtKzKueee6/oA AAAAahg500PO/OdeWbfp0GmuX1Hx/MZtVnz1vU963/2kFoY/8pIbS2bhwoVXXnllz549v//976ej YoqWbdS6thxIXpQTTzxR9YMHD7p+RYWWVSktLXV9AAAAADWMnOkhZ7q9OnjokHXDOVM6Xf+QiiPn rbDP0D674UM3kMD06dPT8TALmxBeNpYSvaJkLQo5EwAAAKhz5EwPOdP/3Gy7UbNsghn75Osqthz+ J922umqGqybTq1cvRb758+fb72fKvn37UnmxMjH+67/+q5b1NFhX7FOvwYRA1qLwuVkAAACgzjWs nPlEp07xTXNcgkzGsmUYOdN9D9CQB1+0bvA9QGbLzt32NbNqF894zlWTKS0tVeR7/vnn7f1GPc56 kFN5sTIxXn755Vq+4YYbdu3apa4iYr9+/cITAr1791axvLw8/Nal2PcA/exnP7PvAdImzj//fFX4 HiAAAACg1pAzPTlyZpir5qU+58yov2sSOGPCUzZavjqV5ZKzb5cNs1goNmHBggXWDUydOtUWbELg zjvvtHrA6lF/1+Szz/yjAAAAAFBDyJke3s+cvHrLjh63zm8yZGrn3zzy1LrNbjhkwpJ1mtZ06LQD h7+XmNPXX3/9hz/8Qanv+9///plnnjl9+nQVLQraBHnooYd+/OMfa8LZZ5+tZVW8CWbv3r3KqGed dVbwfUJuoKJCkXLs2LGnnHLKiSeeqNubbrrp448/dmMAAAAAah4509N4c2ZyPe98XDmz/9RnXB8A AAAAQsiZHnJmDovWb7W3PWev+KsrAQAAAEAIOdNDzoxjCVOt3ahZVf3QLAAAAIBGgpzpIWfGaTp0 mlqn6x9avmm7KwEAAADA4ciZHnImAAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABA QciZnjrJme/Tjpi2Z88GGo1GozX0VlRUEd/8fmbL+AFBo9Fojaqlc6ZfrLfNS5WZTQfjEmQyLlyG kDNpBTXvSoVGo9FoDbEpJ3qVcEulyCBPRrWMHxA0Go3WqBo500POpBXUvGsRGo1GozXEppzoVcIt lSKDPBnVMn5A0Gg0WqNq5ExPYTlzzRsbp0zcMHLY25f+LNVGDts49Y8qutGQBpcziwZN9po3oXZa 3W49SfOuRRpPu+GG4b179/KK4Vb4hLzb6af/8MYbr/KKDagddThvNGi1cJj16pGsuROmGlvMTn74 4WuDBg0oKfmO97RaNxDU63Orw+ci5zmZ9wTlRK8SbqkUGeTJqJbxA4JGo9EaVSNnevLPme8sKN8w eMDmf7/y4wm3fDbtbjUtqLth8M815CZVImfm1+p260lacBUSvkYMLx+Rbe3ap1u1avXYY1O8etAK nxDVdMc77vj1qaeeHPMga7VauWZ69YbS7NAC3mjQkhzmc8890rr1f1PTQrj+yitPXHPNoJNOOqFt 229rtEuXY6+44pI331wcnqNWLY9k1D5UqeV9wiRs8Q91wha/k3qEbSsmqLt+paBeb1vWw+zXb4f2 ffToj8LFUaM+UvHcc3eEi0Fbvrxcxxvk1eo6J/OeoJxoC+EnIlhOpcggT0a1jB8QNBqN1qgaOdOT Z85Uktw46Pztd9+8Y8rvvKaihryo2eByZtDqNunV7daTNLsWCV+OeMtHZLvkkvOOPrr9F1+85dWD VviEqGaPbcAbtabVduzY4cIL+3n1BtdijlEt52Fu2PB8p07/vVu3/929e1ctvPPOC8GQrdlTUvKd RYseDOaoFf5IxuxDlVreJ0zCZo+AV6xqi99JDWkTS5fO9+pBq5Z9qIWW9TDXrt3UqtWe1q13r1// rlW0oIraG29sCqaFW1nZj3W8CxfOtK4dviePczLvCcqJtmCb9pZTKTLIk1Et4wcEjUajNapGzvTk lTPXvPH2Ly/46K7ffPrH262l02NF0NXQhl9e8Nc3Vrv55Mx8W91uPUmza5Hw5Yi3fOS1TZuWtWrV 6rLLzvfqQSt8QkwrLe1x663XrV37dPyDfPnlF2gT2pBXb1gt/hjVYg7z449X/eAHx3fpcqxG1Tp3 PlZdFW301FNPnjDhppUrn7K0oIWzzjpN2zrppBNsQtAKeSTj9yF5033zPmEStpwPdc6WcydzbiLn hPrQYg7zqqu2a/d//vNPrasFdYcP3x5MCDd7CevlHFSq8ZzMb4Jyoi2knwf3RATLqRQZ5MmolvED gkaj0RpVI2d68smZG6f+8b1rB318901Bqzh4UC1c0YSNUya6O9TXnLn0ndVlkx9vceW0JkOm6Lb3 3fMWrHnNmxOf9CYseeHE2x5uNiy1hpJrZwy4f8HyTW+EJ+zc+9er5/6l7Yg/aYJuRzy6SJXwhPgW bH39tjd73TW36dCp2s9hcxbu++pvwZz4o+jy29m6+zl/LA8qfSY+porqQWXXvne1Y9p/raHNNX8a NOs/t+96JxiNb3YtEr4c8ZaPvDZ+/I06utmz/+DVg1b4hCQt9RBHP8hauUZ12erVq6sFW1foPfro 9u3bt5s4cWww+ve/v6l69+5dW7f+byUl37nwwn4bNjwfjKotW/bY4MEXHnvs/9CEdu1KzjvvJ6+8 8kR4grVgK1Et5jDPPfdHxxzzveD9Q3tfUcVggte2bn1Fq9LFt3Y+XC/kkazqPkS1qBNGRdGCJhx3 XGc9mF27dgk/EWrxD7WtIatgTsIWv5OZvGlqUXU1JSIdhU4zHYVutexlpJwT1IL1Zz1pE7aYF+/W re+0a/eFtrBs2aalS/+mhZKS3Sp606wNHfoLrWfmzN979XDL+5zMb4Jyoi1oSLzlVIoM8mRUy/gB QaPRaI2qkTM9fs5UtoxiiVHeHjnsg99evX3c9UH7eueOrz//LFzRhA0jh7k71NecGaS4cFv81utZ 54SL1pTNgtFwCybs3b+p601zvNFuY+eEU2J8C+7V/roHgmU1bTpzTrgFRzFy3tPqKgkfPPSeurpV WFXluvmLbYJ2UrsU3NFau1EzduxJFDXtWiR8OeIt15Nmu5SVNzNnO//8c3WvmI//FT4hSUvtevTO K11oVBvy6kGLv7ta/AQbnTTpdlswNvTFF2/Z+zBhylfvvrvUu3uY4sHixXOCCeFpXjHcog7z2mt/ qS2uWrUwXFRXxWuuGRQuBu3jj1fZ5j766PVwPecjGdXy2IeoFnXCpPf3KKUmWwiE04srhYQfalfK JlhDwha/k5m8aWpR9c2bVygn22hAFdUTTrBm9awnbfIWdZjWbr99m1Z56qk71bSgrjfBml4LSo9d u3bx6l7L+5zMb4Jyoi2kNln5yATLqRQZ5MmolvEDgkaj0RpVI2d6suRMS4aew3LmpT/bdtM128aO CNqX77795aaN4YomvH1pmbtDfc2Zp/zHo/NXvbL/QCqAPf7Gqxax+k36c3hOEL3CRWsW2NSWvrNa 3QMH/6Z0d/Y9/3zncMyCZ2zCoFn/qYA35MH/tK7qwZz4ZvPVhj/yF61h9oqXrdt2xJ+COfFH8fzG 1VaxN1qXveu6qtuEYCeVSNW9a9Hz1g1H2Zhm1yL1v9nVUlbezJytY8cOutfnnx/2DkO4FT4hSUvt evTOa+Ua1Ya8etDi764WP8FGe/Y8ad68yQqWug4eNWqIDd1xx681dOqpJ69c+ZS6uta/5JLzVBk+ /DKboNanT++5c++zR0D3tW+I+dGPTg0mWEttI3Yncx5m8qZYqFUpnHj1atxE3i3qhFFRevT4P4oN 6uqR/MUvylQ5/fQfBnOq66HO2XKe1Tk3ETVBp5bqpaU93njjL+rqVieeKnrKEk6wpopkPWmTt/jD /PzzjV26/F0HoaYFdb0J1kaPHqaV5Hw3Ne9zMr8JyonhrtdSKTLIk1Et4wcEjUajNapGzvTkmTM/ +PdffXDDFUHbs2LpnldeDFe2/vuv3r68v7tDA/n9TMtXLa6clllUCxettRs1w4b63lf+8Gsrtv19 ozcheDNz4/a31NWtdcOfWY1vNl/NPm2rqGnd4sFTwtPCzSYER6G7aFkVBUh1x/3lWS23HH6/jaoF O7n7y3dtvnU7XT8rmBPTvGuRxtBatWqlSzSvGG6FT0jStIb4lWi0dev/5hWDluTuMRNs9N57b/Pq arrc11D4g7K6oFelc+djg4rX/v731FVvScl3vHpqG7keKE2IOcyE7fbbR9u25syZ6A2pVcsmCmlR J0x6l4964YVHg4p90rJt228HFa8V8lDHt5xndc5NRE3o3r2r6uG3ELWsSrdu/zvhBGuqSNaTNnnL eZgzZ27RuJoWvCFrejno8e/U6b/HZHK1As/JPCYoJ4a7XkulyCBPRrWMHxA0Go3WqBo505NXzhw5 7P2rL90y6pdBU6pUC1c0YcOoev25WQUqRS/77UrFNgtXak2GHBbhgnq4aE3ZMnxHNQXIyUtfDCZo VVYPKtZtOnRqUIlvNj9zDUElyVH0n/q4KvYrmrrV8gXTnghGg530mvc4RDXvWqQxNF2c6RLNK4Zb gRM0FOaNBi1+VE2j8ReahTTbuq6YvbqaHV2m8M7Mnv2Hn/70rHbtSuyq3Wg5mGDN6l7Ra5pQyGEq dw0efKFt6O67x3ij1grcROHNHlKvqJbea7/uFavxoY5vUTsZtJybiJpga7Zvx7GmZVXatGmdcII1 VSTrSZu85TxMNY2npmTUrdnnnG++eaRXD1q1nJN5TFBODHe9lkqRQZ6Mahk/IGg0Gq1RNXKmJ3vO 1G1YUDcbp/7xr788X0kyaPs2rlcLVzShnn8P0PBH/uIlq6CFp2UtBu39HRvGPrmk733lLYffH8y8 8Qn3sVgvZwZvFVZjzkxyFMrD6iqIHjj4N91qWZVgNCpnqgVzYpp3LVJvW+qSLYI3M2fL+fnAAiek 9inEGw1a/Kh9Lu6YY77n1aurxWzdLsSzsgnBGzWZgpVYy1oMtwIPc/PmFaef/kOtQc9Iefk0b9Ra TT+SSVrUCaOixBSr8aHO2XKe9jk3ETXBzqjqypnhSh4t52GqaSOp7WTU1XTHTp3+e0nJd6LibrWc k/lNUE4Md72WSpFBnoxqGT8gaDQarVE1cqYnn/cz//rG6rcHnf+3YQPeu/Iia+n0WBF0NaQJ9fzv mgS/Xbn4rdeVAJXBsuarIIZpTrie2Ra+udJmBp9ZrcbPzUZVkhzF7i/ftbc6Jyx5Qbdato/IWgt2 cte+fxaTN+9apN42XVRF8WbmbPZFIOEPK3qt8AlJWmrXo3fePjcY80UgBbaYrZ988g90ff/ZZ2u9 etDat2+n+06adHtwsf7pp29kXWFmfvBaIYe5fHl5587H6u6XXXa+94Ux4VbTj2SSFnXCqCgxxeQP ddZilVrOszrnJqKe7ur93Gy4kkfLeZhq2khqOxl1tXvuuUV3j/q90Oo6J/OboJwY7notlSKDPBnV Mn5A0Gg0WqNqDStnuiwYTQfjEmQy7m4heeXMv/71nQXlGy75/zYNuUCR0msqakgT3NS0+pwz12x9 UwntuvmLrasWntb95oesOPbJJV7U7Hnn3OkvvbRl5wYta+ipda/ZzODtyvD3AKkbfA+QVmUTcjab rxZVSXgUp/zHo6ocN+ZB3Wo5PBTsZL9Jf7Zj2X/gvfLVr572u8OmRTXvWiS+6cpGvGK4FT6hFtrE iWO1D7Oj/ypJ4ROStNQDEf1QzJz5e43G/GGD+LurxU+IGbU//PCjH52qa3HLDO+9t3z69PG9e/ey CUqhmvDYY1NsdNWqhf369Umvz1/hSSedoKJiklcPWs7DjGozZvxOu9Gz50m6sveGvJb3JqqxRZ0w KkpMMflD3anTf1dx6tQ7Y1J9fMt5Vqc3m/2csRb1dNvX/GjUvuZHR3HyyT9QxfseoJgJ1lSRcCWP luTFq42ktpNR12Nrf34m/N3LQavGczK/CcqJ4a7XUikyyJNRLeMHBI1GozWqRs705Jkz5Z0nHnv7 8vPfuazs3V/2V7ZU04K6qeLhIVPqYc689IEnLV9ZazviT8FyeNrEZ5cG9aDZkFcM2rA5C23Cvq/+ FsTUoKmSx981iaokPIrxi923yKrd/cwL4SHtTOm4h4PRcAtPi2retUh805WNeMVwK3xCLbRNuf4e feETYpo9Apm8aRde2E+byPwTgkHLeq9wi58QP3ruuT+yCR4bta88DbOcIMEarOk62OrGG1XLeZhR za0xm+CtP2t5b6IaW9QJYzscU0z+UF911eVWD3gTcracZ3XO1UY93Zsj/mzJe+8tTzjBmtXDlTxa zsNU00ZS28moW7obOvQXXt2a7V5WVT0n85ugnBjuei2VIoM8GdUyfkDQaDRao2rkTE+WnBnFEuNh 1ryxccrEDSOHvn3J//f2wPM2XPerDVPvUdGNhtTDnLn7y3eveOgvra6aXjx4ysl3PLJm65tR+UrB rMtvZ4e/ZcfqusuIRxcppNmbis2GTet119wJSw5LcTv3/lVzSq6d0WTIFN1q2b45NmHztphZSXgU b3+0PqhrOTykpqh5y1PPKgDblwl1GP3ARdOftL+DkrN51yLxza6ZvGK4FT6hdtoll5x39NHtY975 KXxCVLNHIFN4jlarletSMlz0Wua9vBY/IX5U7d57bzv99B+2bfttXc4ed1xnXVvb395Q+/vf3/z1 r69QDNBQ587H3n77aBWjVnjzzSPtrbbM0SSHGdVshVmFr+kL2UT1tqwnjO1wuOIVkz/UH3+8ShG0 S5djNTPrhCQt/qxOstqop1uJcfDgC7Xy1q3/m24HDRrgvSWYc4Ja5mrzazlfvNpIajsZdfsqZnvT NbPZ7mVVpXMy7wnKiV4l3FIpMsiTUS3jBwSNRqM1qkbO9Pg5Myx7tsxLPcyZtGpp3rVII2nr1y/R 5fjcufd59aAVPqGQNm/eZK187dqnvfoR1mrhMOvPI1mjJ0x1tQaxk4W3/A5zwYI/KTHG/M5kwpbz nMx7gnKiVwm3VIoM8mRUy/gBQaPRaI2qkTM95ExaQc27Fmk87aabRmT+sftwK3xC3u2ss04bM+Ya r3jktVo4zHr1SNbcCVONrUHsZOEtj8PUudSmTeucv3uZs+U8J/OeoJzoVcItlSKDPBnVMn5A0Gg0 WqNq5EwPOZNWUPOuRWg0Go3WEJtyolcJt1SKDPJkVMv4AUGj0WiNqpEzPeRMWkHNuxah0Wg0WkNs yoleJdxSKTLIk1Et4wcEjUajNapGzvQ00pz5fFrdLidplX8mtS6X45t3LUKj0Wi0htiUE71KuKVS ZJAno1rGDwgajUZrVI2c6SkqKtp6Qv9NCxvl+5nh1FdXy1EtKvXV5nKS5l2L0Gg0Gq0hNuVErxJu qRQZ5MmolvEDgkaj0RpVI2d60u9nLtlUVsbnZmn5NO9ahEaj0WgNsSknepVwS6XIIE9GtYwfEDQa jdaoGjnTk3o/s6hoU1HR+vPImbSqN+9ahEaj0WgNsXmZMbNVfPlOjpbxA4JGo9EaVSNneurk9zMB AAAA4MiRzpkNhsuC0TTHJchk3N1CyJkAAAAAUBBypif9udkTNh1ftn4gORMAAAAAqo6c6eH9TAAA AAAoCDnTQ84EAAAAgIKQMz3kTAAAAAAoCDnTQ84EAAAAgIKQMz2NOmfu3Pvl1XOXtx0xs8mQqbod 8ejLqrixtPgJRYMmW1u9ZUePW+drTpffPvLUus1uOG3CknUn3lbebNj9Gi25dtaA+59dvmm7GwMA AABwRCBnehpvzty7/0DXmx4NsqK1bmPn7fvq64QTgmK7UbOC5eLBU9Zs/cwmKJcG9XCzUQAAAABH BnKmp/HmzDELVlrqGzRr6cFDh4Y8+KJ1VU84wbpqA2e+oAmaZt2Lpj9nE5oOnWaVpe98pO6BgwcX v/XB2ff8xUYBAAAAHBnImZ7GmzOD9yo3bk89jrq1bpffPpJwgnXV3v7o8/CE9tfNtgnB+5x971v0 8Gvvbvv7XqsDAAAAOJKQMz2NN2c2GTLVQqDrV+bGpkOnWTfnBOvGTFC2LB48JZimpow6eelbNgoA AADgyEDO9JAz3V4dPHTIulE5M3OCdWMmyPs7do998vW+9y1qOfxPwfwbn3jNDQMAAABo+MiZHj43 W4Ofm/UsfHOLTWhx5XRXAgAAANDwkTM9fA9Q6mt+1A2+5mfsk68nnGBdNfseoGDCgPuftQk973x8 +ksbtuzcrWVNeGrdZpsQfsMTAAAAQENHzvTkyJlhrpqXepgz9331dfeb51vwC5oqwZ8tyTkhKEb9 XZOg6LVhc5bZBAAAAABHAHKmJy5nVqN6mDNl594vRzz6csm1s5oMmapbLavixtLiJwS5cf22nT1u na85x42Z+9S6zW64okKBU3cpHVfeNP0HTpoNu7/XXU9MWLLODQMAAAA4IpAzPY06ZxYoyJmuDwAA AKBRImd6yJn5I2cCAAAAEHKmh5yZP3ImAAAAACFnesiZ+Ws6dJo11wcAAADQKJEzPeRMAAAAACjI kZcz3VK+yJkAAAAAUBBypoecCQAAAAAFIWd6yJkAAAAAUBBypoecCQAAAAAFIWd6yJkAAAAAUBBy poecCQAAAAAFIWd6jpycWTR5kDXXBwAAAIBaQc70kDMBAAAAoCDkTA85EwAAAAAKQs70kDMBAAAA oCDkTE+d5cxd+/eNePnRklnXNpk6pM0D1wxaOmv7P3a5sVBoXPPZ1l5P3NV02tAW068ctmzOvq+/ cjMqKp7avK7rozfp7j3m37p+57bgLm4YAAAAAGoFOdPj58ybo1lizI+XM/ce2N9t3tggGVprN2vU jn17bEK4GCyrKZrahNU7thRPGRzUw9NsAgAAAADUDnKmJ0vOtGToqd6cOWblAsuEI1fMU/euNYus G8RI66oNf+mRg4cOzf7rCuuWzLrWJlz03HSrDFo668DBg7q1rppNAAAAAIDaQc701E3O7ProTZYJ d3/1pbpKktbt9ND1NsG6aju/3BueUDxlsE1Q4LTKxr9vV1e31lWzCQAAAABQO8iZnrrJmU2mDgli YbipbhOCinXFqwQfmrWueBMAAAAAoHaQMz3Zc6Zuw4J63hLmTDWb4HXFq3g5M3jDM6gAAAAAQO0g Z3rq+HOzu/bvc6XDZYZGr9J+9nXW5XOzAAAAAOoWOdNTx98D1O/pSVt271Rl/8ED5e+tPm3B72xC Zmj0KuHvAVJ34AszvQkAAAAAUDvImZ66yZn7vv6qtHxckAzDzSZ4XfEqaz7bGv67JsHbm2o2AQAA AABqBznTkyVnRrHEmB8vZ4qi5i2rnuo+/+Zm9w9TYuzw4OiLnpu+fPsmG80MjZmVpzav6/LIb5tM HdJj/q3rPvswcwIAAAAA1AJypsfPmWEFZsuwzJwJAAAAAEcGcqaHnAkAAAAABSFnesiZAAAAAFAQ cqanqKho6wn9Ny0kZwIAAABAXsiZnvT7mUs2lZWRMwEAAAAgH+RMT+r9zKKiTUVF688jZwIAAABA 1ZEzPfx+JgAAAAAUhJzpIWcCAAAAQEHImZ7052ZP2HR82fqB5EwAAAAAqLojO2defPHFbqlSZsXD +5kAAAAAUJAjPmeGg6XXzYqcCQAAAAAFaQw5U7zlGORMAAAAACjIEf/7mS5cVnLVaORMAAAAAChI Y/geIBcxE4RMIWcCAAAAQEEaQ86UhCFTyJkAAAAAUJBGkjOTI2cCAAAAQEHImR5yJgAAAAAUhJzp IWcCAAAAQEHImR5yJgAAAAAUhJzpKSoq2npC/00L0zlzRa2wYwMAAAAA1D4XzKqVy5eV0u9nLtlU VlZ7OdNtGQAAAABQ61wwq1Zu1ZVS72cWFW0qKlp/HjkTAAAAAI50LphVK7fqSof9fqabUsPclgEA AAAAtc4Fs2rlVl2JnAkAAAAAjYgLZtXKrbpS+nOzJ2w6vmz9wLrOmRdXcn0AAAAAQBW5WBUdrFww q1Zu1ZXqy/uZ7pEgZAIAAABAYVy4iohXLphVK7fqSvUiZ7rHgJAJAAAAANXBRaxsIcsFs2rlVl2p 7nOmO3pCJgAAAABUHxe0MqKWC2bVyq26Eu9nAgAAAMCRxkWsRvt+pnGPAVETAAAAAArjwlVEvHLB rFq5VVeqLzlT3CNB1AQAAACAfLlYFR2sXDCrVm7VlepRzgQAAAAA1DQXzKqVW3UlciYAAAAANCIu mFUrt+pK5EwAAAAAaERcMKtWbtWVyJkAAAAA0Ii4YFat3KorFRUVbT2h/6aF5EwAAAAAaARcMKtW btWV0u9nLtlUVpbKma4GAAAAAEC+Uu9nFhVtKipafx45EwAAAABQsMN+P9PVAAAAAADIFzkTAAAA AFCd0p+bPWHT8WXrB5IzAQAAAAAF4/1MAAAAAEB1ImcCAAAAAKoTORMAAAAAUJ3ImQAAAACA6kTO BAAAAABUJ3ImAAAAAKA6kTMBAAAAANWJnAkAAAAAqE7kTAAAAABAdSJnAgAAAACqEzkTAAAAAFCd yJkAAACoS/MbPnck9caj8xfQGkRzT1glb7SeN7fTEciZAAAAqEvKaZsbsvqZMytQ72VGtQb0xJEz AQAAUK+RM6sdObNBIGcCAAAANYWcWe3ImQ0CORMAAKAG9UjGzT6yuGPLxc0+QpEzqx05s0EgZwIA ANQg5Sh35RKt2rPWvHnzvv3tb3/rW99y/TpSJ8deiKKiIrdUfWo6Z2qf3VLNqJ2cWaVHnpzZIJAz AQAAalAeWUvX3NK0adOTTz555cqVrloV/+t//a+nn37adSLEX9nHjyaUX87csWPHv/zLvxx11FFa cKUM1bJ7maJWW8jmqpQztSG3lOZ1s4qak+S+SWTNmStWrDjppJN0in7rW9/63//7f7tqAar0CJMz G4T4nLlr166SkhLXqajYtm1baWlpkyZNevbsuX379qwVnYrt2rXTvbSQvlNF7969ly9fbsvVi5wJ AADqu5istWXLlh/96Ed/+ctfMnOmbnfu3Pn73//+//yf/2PFKtHFmVuKFn9lX6Xr/ih5HLs89NBD P/7xj3/yk588+OCDrpShWnYvU9RqC9ncEZkzO3fuHPPs5KFKjzA5s67oaYrhJlWKz5neXS699NKx Y8dqQbdDhgzJWmnVqtUHaS1btlR3xYoVp512mhZqAjkTAADUd1FZy4LWsGHD/vGPf2TNmcYSoyrv v/9++/bttawLG81XXbdazlpJX8KlaDkwZcqU73znO02bNu3Xr5+6bkblnHbt2mkN3/72tydOnOiN vvvuu2eccYbu2LFjRyXD9PREtD/uaA8Xc+xywQUX3HnnnePGjRswYIBVbDeMLad3LUXLmYcfsAnG lnX7q1/9SsfSoUOHF198URUd3f/7f/9Pdz/++OOD+dX4aBSeM3V7+eWXf/Ob39QJsHDhQlVWrVr1 wx/+8Bvf+EbXrl2Du3z3u99VpXXr1nr01FXdaFnzdUWuNeioq7Q/kjVn6vB1QrpOWtaHJfNhzDyN e/bsaUPXXXfdv/zLv2jyjBkzUneufMoykTPrUOqUysYNh8TnTAnfq23btnv37tXC7t27dYZkrbRo 0UIhU/96aEFdndKKmlqoCeRMAABQ32XNWuGgpa6XtXT5pdudO3def/31ikBWmTdvXnrw7//2b/92 ++23a0G3NppZsTV4/st/+S+6KNJqFeHUzTrnjTfe0DQthEfLysrmzp2rhWeffbZz585WTCKPY9fu /df/+l91+agQqAV1VQzvjC2HK5mHH8h6x4ceekgLv//970tLS7Wgo9OFojakpBSeL9XyaFRLzpw2 bZoWdIA/+MEPtHDOOecMGTLkvffeU4D07qLHTfushXBd8xXetPDEE08cc8wxVkwoa87UKaQ8eeWV Vyq0b9++XZWYhyX8MAansc4Bnd62LBq677779Cw8/fTT3/nOd4KiLXjImXVLz4vHDRyuSjmzuLjY LVVUNGnSRLeZFb0KlDBbtmyphbzfzHzllVfcUkhmkZwJAADqO+Wov/zlL7qqVr6yKxgvaElmzpSm TZuee+65Cj9WsSFR3dKXbrWctRKeHzj++ON/8pOfTJ8+/cMPP1Q3PEdbufzyy//H//gf3/rWt6zu bVFdo4s/V00gj2N/6qmnWrdubctHHXXUggWpqz1t1ypiy+FK5uEHYu4YfvSCXwS10ep9NKolZ1pX wfKb3/ymFnSrS1wr2qgC50UXXfS9733P9jmoG81X12ifXTWZrDlTFGjHjBlz4403XnDBBepmPiw5 H0Z71kx4KLycFTmzzuk5CrhShirlTEuSxpYzK2H2ZqZOTu83NuPt2rVrwIAB3mR1VdSQ66eRMwEA QH2nHKVMpWRlcSszaElmznRLlcKV4AI9nJS8SuYaRPFSIbNfv372xS3hObrMuvPOO//2t79pDVbP usWqyuPYBw8erE0H1FVRCzYqthyuZB5+IOaOypb2Jlv46Gy0eh8NXcW6xJaAAqHCpC1rQQlNC9q6 VXRZa+9VhqfZ6M9+9rOxY8e+8cYbqlsluJeE51eV9t8dSTZ6KLSTWsh8WKr0MIaHwstZkTPrAz1N 4jrZVClnKi7u3r1bC8p7Ws5aCShhnnHGGVrwfmMzCS9qZg2ZQs4EAAD1nXKUrlqCuJUZtKRKOfPf /u3fbr31Vi3cfPPNwedmvUrmGmT06NGKmhs2bAjyla6RbOgnP/nJypUrdd0/Y8YMu2949Nxzz1Vg 0Kgyw8UXX2zFJPI49vbt29vv8sl9992n60stfOc733n66ae1A3/84x8zdy/z8AOZd9StHgFVrrzy yrKyMlV69er1u9/9TgsPP/ywzaneR6NKOfO0004bM2aMLd94440//OEPtaB9eO211xQUf/nLX55z zjmqnHzyyTpkLUyfPl2jWjjzzDOfe+45zbn33nutomz58ssva0H69OmjFKpRBdELLrjAignF58xZ s2bZV1VlPiyZD6PdGj3sOlLXOXwoWA4Xw8iZDUKVcuall156yy23aEFnxaBBg7JWAnqZ6NTSgvcb mwkFUVOyhkwhZwIAgPrOspZY3MoMWlKlnKkLmx/84AdNmjTRrYWfzErWC/T+/fsrL33729+eMmWK uk899ZQSgmXOZ599VgFPoyNGjLD7hkffffddpQiNirKEKglV9dhffPFFbT34Uy4KRepq35SmtNv/ 8i//csMNN2TuXubhBzLvqNvjjz9ek5Vz7DPJK1as6Ny5syr2Vqoq1fto6FrWJbYElCd79+7dMk0L 6qqofejates3vvENxctVq1ap8swzzxxzzDGq6Fpco6o88cQTyuTKlr/61a+s8sgjjxx33HHaZy3r XoqaGhUFTlWS0/67IwnRnnzrW98qLi7Wg6kHUJXMhyXzYbRboydXD6kedq1K3fBQsBwuhpEzG4T4 nKkn11h3+/btOhPsfLC/YpJZMcuXL7c3MyX8G5tWSciiZlTIFHImAACo74KsFcPLmUeMenjsuq51 S7WlSjkzK+2zW6oLWXNm3SJnNgjxObPOKWFGhUwhZwIAgPqOnBmvlo+96eG/wFkLCs+Z30x/909d IWciP/U8Z8YjZwIAgPpOOSoJN/vI4o4tFzf7CFV4zqxb5Ezkh5wJAAAA1BRyZrUjZzYI5EwAAACg ppAzqx05s0EgZwIAAAA1hZxZ7ciZDULWnNmAmtvpCORMAAAA1CXltIbOHUm94eUBWr1t7gk7EpEz AQAAAADViZwJAAAAAKhO5EwAAAAAQHUiZwIAAAAAqhM5EwAAAABQnciZAAAAAIDqdFjO/Gs1cX8R BgAAAADQALm8mC9yJgAAAADgMC4v5oucCQAAAAA4jMuL+WoUOXPnzp2XXnpp8+bNi9Jctequv/76 nj17uk5D06tXrxtuuMF1AAAAACCay4v5UuzaekL/TQuP6Jw5ZMgQS5jGVato48aNxcXFjz/+uOtX USGbNgWuQXuu/ddRuD4AAAAARHB5MV/p9zOXbCorO5JzZqtWrZTQVqxY4fp5GTBggNZz8OBB16+i AlOiFLgG7XmbNm369+/v+gAAAAAQweXFfCm5bC0q2lRUtP68IzdnFpjQZNu2bcXFxRdddJHrV13h +1D4Gi6++GIdhY7F9QEAAAAgG5cXD6dA4ZZyqanfz7RQtHv3bu1K06ZNmzVrVlZWtmXLFtvpgE3T wi233NKqVauWLVtOnDjRhkSJaODAgSo2adJEt1r2MlL8BFt5JjdcFePHj9cd58yZ4/ohDz/8cL9+ /WwfdKTHHnusduPVV1+1UdtiVjZBNFl3adeundbQokWLvn37rl692o0lW8OBAwf0AHbu3FlraN68 ef/+/d9//303FqL9170mTJjg+gAAAACQjcuLIUp2xvVj1WzOvOCCC2zBlJSUfPLJJ7bfxuqTJ0+2 BWNDmqno5UqVVAnWkHOCK2Ww0SpRktQdMz95e/3119s6M9kE18nGJojrhyguPv/881GjAZtw8ODB 0047zZUqtW3b9oMPPrAJAQVaDelYXB8AAAAAsnF5sZKLmJVcNZpyx9aiEzYdX7Z+YA3kzG7dur39 9tvqbty4sUePHqqMHDkyvduOTdNQeXm58tKuXbtGjBhhQ1rQULAG3doarr766oQTAiqK6+SlTZs2 WsP+/ftdv1LTpk1Vv+uuu3bs2GEVpbuZM2f26tXLuoH0LmTfh969e8+fP99WrkfAvrXolFNOsdFA 1BrGjRunemlp6bp169RVzB4wYIAqw4YNswkBbUJ1HYvrAwAAAEA2Li+muXCZjpduKVfUrNn3M8Nv AGpZlWOPPdb102zafffd5/ohnTt31lDMGnJOCKgorpOX4uLirGvo1KmT6uecc46inXKdEmbwPqQn vQuJ9uHAgQOa2bx5c9evFLUGJW3Vwx+UVVhVpX379q4fonqTJk1cBwAAAACycXkxzQuWXjerms2Z 4W9n1bIqTZs2df00m6Zc5PohikMaillDzgkBFcV18mLbcp2Q5cuXW9wN69KlS+Z37diQ6xxuzpw5 ffr0adGihaVZo2U3XMnqrhNi+5Ypa56MqgMAAABAwOXFtMxUWe9yphdybJrrHM7iU0yMzDkhoKK4 Tl6iPjdrVq9e/fDDD992221lZWXNmzfXzHPOOceNVUrvQpZ90L1sKJObUSlrUexxyMrNqGSfmy0p KXF9AAAAAMjG5cV81fbnZjt16uT6aTbNdQ5Xrz43a98DtHz5cteP9sknn2hm8qzbsmVL1SdPnhyE 2L1792adnLUo3bt31+b27dvn+tHs8eF7gAAAAADEc3kxXzWbM7t27ao1q7tx40bFIVWCr/kxNs11 Dmdf86M12Nf8aD22Bu97gGImBFQU18nLxIkTtYbMv2tSWlr6xz/+cd26dfa26vbt28eMGaOZzZo1 swmBtm3bqj5t2rTwG7CiiKj6448/bnUdxdlnn62K2IRA1Brsb66ccsopisHBbsyYMaNnz542ITB7 9mzN5O+aAAAAAIjn8mK+ajZnlpWV2YIpKSlRBLL9NlZ3ncNF/dmSYA05JwRsyHXysm3btuLi4osu usj1K9maM91yyy1uRqUrrrjCjVWyun27bJjlZ7EJgag1yJlnnulKh3PDlfr376+jyPzdUQAAAAAI c3kxXzWbM3fv3n3xxRc3bdq0WbNmF1xwwZYtW2ynAzbNdTIoMQ4cOLBVq1ZNmjTR7aWXXur9Tcic E0z8VhIaMGCANuG9l7hmzRrFQvvkqiJcixYt+vbt+/jjj7vhED0UmtmhQ4fgy36sfuDAgeuuu07x WPX27dvfdtttKoYnBKLWYO67775evXrpcdZox44dBw0a9Oqrr7qxNO259l9R0/UBAAAAIILLi/mq 2Zxpu3hk0KOkCDd//nzXb2jKy8u1/xs3bnR9AAAAAIjwelW4cBlCzqyCMWPGnHLKKa7T0Jx22mk3 3nij6wAAAABANJcgk3HhMoScCQAAAAA4jEuQybhwGVJTObNpmu0iAAAAAKABcQkyGRcuQ2oqZwIA AAAAGiiXIJNx4TKEnAkAAAAAOIxLkMm4cBlCzgQAAAAAHMYlyGRcuAwhZwIAAAAADuMSZDIuXIaQ MwEAAAAAh3EJMhkXLkPImQAAAACAw7gEmYwLlyHkTAAAAADAYVyCTMaFy5A6y5lFaa6TS5UmAwAA AAAK4RJkMi5chtR4zoyKiFH1rKo0GQAAAABQCJcgk3HhMqRh5EwAAAAAQK1xCTIZFy5DyJkAAAAA gMO4BJmMC5chNZUzLUZmZfsdLI8fP75jx45NmjTp1KnTxIkTbdTYnICrhjz88MP9+vVr2bKl7t60 adNjjz124MCBr776qhsGAAAAAFSdS5DJuHAZ4ufMm6NZhkxCu+WiYTa237Z8yy232EJg9uzZNkFc qZKrVrr++uvdQAY3o1LWIgAAAAAgK5cgk3HhMiRLzrSs6KlqzgxEZTyrd+nSxd5+3LVr1wUXXKBK r169bEKYTXadSk2bNlXxrrvu2rFjh1U++OCDmTNnZq4h690BAAAAAFm5BJmMC5chdZwzly9f7voV FYqLqjRr1sz1Q2yy61Tq1KmTiuecc86AAQOGDRumhPn888+7scNlvTsAAAAAICuXIJNx4TKkjnOm 61TKWpSsdWXUzp0721CgS5cu27ZtczMAAAAAAFXnEmQyLlyGZM+Zug0L6gm5XUuz+Oc6IVnrWYsS VZfVq1c//PDDt912W1lZWfPmzTXtnHPOcWMAAAAAgKpzCTIZFy5DGvD7mZk++eQTTWvatKnrAwAA AACqziXIZFy4DKnxnNm2bVtlv2nTph08eNCV0tLJsaCcWVpa+sc//nHdunW25u3bt48ZM0bTMn/D M+vdAQAAAABZuQSZjAuXITWeM6+44gqLeQGrh5cDXtG6meJHb7nlFpsQsLrrAAAAAABiuQSZjAuX IVlyZhTLkEm4XUvbvXv3iBEjOnToUFxcHM574eWAV7RuJhtds2aN1ty9e/emTZtq5S1atOjbt+/j jz9uo2HhewEAAAAA4rkEmYwLlyF+zgyrUrYMc7sGAAAAAGiAXIJMxoXLEHImAAAAAOAwLkEm48Jl CDkTAAAAAHAYlyCTceEyhJwJAAAAADiMS5DJuHAZQs4EAAAAABzGJchkXLgMIWcCAAAAAA7jEmQy LlyGkDMBAAAAAIdxCTIZFy5DyJkAAAAAgMO4BJmMC5ch5EwAAAAAwGFcgkzGhcsQciYAAAAA4DAu QSbjwmVIUVHR1hP6b1pIzkQuM2fO3Llzp+sgXwsWLOA1gpyOgJdbIz/VC3wG+YcCAFDnXIJMxoXL kPT7mUs2lZXV95x5/fXX9+zZ03VqV69evW644QbXacQuuuiipUuXug7yNWzYsKeeesp16givJlOH j0NOR8DLrT6c6nWowGcw6tHj5xEAoNa4BJmMC5chqfczi4o2FRWtP68e58yNGzcWFxc//vjjrl99 tOZx48aVlpbqgRBXPZy2q61rpuvnZdmyZU3StOBKtS7mGJPIetl09tlabcXIka5rRoxIFc8803Wr auXKldrP5AFg9erVw4cP79q1a7NmzfQId+jQYciQIXmfh/k9RMn3oc4vvnk1mZp7HEzMg5DEEfBy K/BUL+TRqxbpJ7Can8HCH71qeQUBAJCES5DJuHAZ0jB+P3PAgAGtWrU6ePCg61cfu5IIuOrhtN02 bdr079/f9avu/fffb9u27bHHHtu5c2ctbNmyxQ3UrphjTCLrZZOudoqLK5o0qdi0yVW0oIra22+7 SlWdc8452s/Fixe7fi52XJ7mzZs/++yzbkYCOsf0KtCC7qtbLet40yOJ2EY9WfehznMmryZTc4+D iXkQkjgCXm75neoFvhKrkR2a61Rd1mfQ1ump0qNX+CsIAICEXIJMxoXLkAaQM7dt21ZcXFxDlxrd unW75ZZbNm7caD/vXTXDxRdfrH3Qnrh+Vezevfu4447r0KGD7i7t27dXV0U3XIvijzGnrJdNcsUV WnNFWZnrakHdYcNct6rsudDz4voJlJaWTpgwYd26dZYZtHDaaadpJV27drUJScyZM6ddu3YLFizQ HXWrZVXcWALJ96Fuc6bOQF5NovvW3ONg4h+EnI6Al1t+p3qBr8RqlHr+qvsZrJZHr5BXEAAAybkE mYwLlyH6Abe16IRNx5etH1hfc+b48eO1lzV9qZG6oIi+pNDWNarrA9evijPPPLOkpCR418XejVHR ujkFO6bHoWPHjk2aNOnUqdPEiRNt1Lz66qsDBw7UBZlGW7Ro0bdv39WrV7uxyjVk5WYkE3Xhu2NH RYsWqYvdV1+tWLEitdC8eaqYn0GDBmnHZs+e7fp52bFjh1aiS7EDBw64UgKbNm3q0aOH7qhrwcJP 46h9qNuc2chfTYGoxyG947zcqqbaT/VCXompB7p+P4OePB69Ql5BAAAk5xJkMi5chjSA9zP79eun n6krdElVk1IXEdGXEbou0aj2xPUTu/rqq3UdbB8DC6ir4vDhw10/lu3YLbfcYguB8KWhK4Xo+un5 55+PGg3YhIRiLptuu01bqSgtTTUtqJufDz74QNdbui50/Xzt3r3bDnDXrl2ulIBCi13d6lbLrpqv qH3I4+Lb1pOVm5FYI381BaIeh/SO83Krmmo81U0hr0Tbk3r+DIbl8ejl/QoCAKBKXIJMxoXLkAaQ M9u0aaOfqfv373f9mpH+QR95GaGta1R74vq1yHasS5cuurZQV9ciF1xwgSq9evWyCdK7d+/58+fb Q6QJQ4YM0YRTTjnFRgPpNVU5mQRiLpu05Q4dtP5U00Lez9XIkSO1h96bD3lQINF62rVr5/oJzJkz p3379o8//rjuqNvCP60XtQ91mzMb+aspEPU4pHecl1vVVOOpLgW+ElMPer1/BsPyePTqwysIANAY uASZjAuXIQ0gZxYXFxfywz6h1AVF7FY02qRJE9epRbZjy5cvd/3Kz1k1a9bM9TMcOHBAE5o3b+76 ldJrqqnLptmztf5Uy/sjeLrg0z63bds28+q/Sm677TY70ocfftiVEhgwYMDb6a9SsYdIy6qkR/IR sw95v8lTLRr5qykQ9Tikd5yXWxVU+6le4CvRdqb+P4Mm70dPd6nbVxAAoDFwCTIZFy5DGkDO1E9T /Ux1nQzpn9H/5KpVl/PuGq3DnOk6lbzinDlz+vTp06JFC7t6Nlp2w5Ws7jpVl/OySesuYPUV9lG3 sWPHun7V6Xpx4MCBdph33323q1aR7uuW8pJzH+o2ZzbyV1Mg6nFI77hf94q83ExNn+parVuqCtsf 16nkFevDM1jgo6d71e0rCADQGPz/7b0PkFVVmuD5AshIICMjIwn+bUZG6jASNGyzmUKHooFUhhK4 KASNVQiyGahEWg7FKINgYSkFtLBoLa0jgf+oFhoxCx0cVAZbcBSosqsdy64putpl3dzarHGFdh2a ptqhXctmLPfL9x1OnTz3vntPvn/5Hvn7xS+Ie79z7rnnnnvfzfPx3rvPZJBhmOTSoeo/N5v9M/17 TLT/JG+un1MaP368WS8jsR1zg/Z/xKNoBUtsMJySTnxlhMeOHVtXV/dZf75R6XLmzJlZs2bJAcoF c+jQIRMtLyF9yGPynT1v8ZgawQzyV5Ml1zhkO+733A3yclNKdKkXTuywu8FKOIMFjl4lvIIAAGAw YDLIMExy6VA1zwFyPwdVCnonFLmnFO+9956UDshzF2I75gYbGhpkeefOnXbS/Pnnn7sVLLHBcEo6 8X3qqaekb2vWrDHr/eTnP/95c3OztCCdlDmciZaXwD4MbJ45yF9NllzjkO140guHl5tQuku9cLKj XtFnsPDRq4RXEAAADAZMBhmGSS4dqiDP3LFjh/xN7dejIPKgd0KRe0rR1dUlpQPyHPnYjrnB2tpa WT548KD+IJucyvnz57sVLGPHjpXgc889pzX7S+kmvtIf/QWC06dPm1B/2Lt3rwzC9OnTZQJnQmUn vA8DMvm2DPJXkyXXOGQ7zsstiQq/1GPPhRsc2DNYlNGrhFcQAAAMBkwGGYZJLh1S8kwXEw3AdK1I lPQX1bOzixhM8UWWLFkifRiQ38WO7Y8b1IcluqxZs0YXtILlnnvu0bjFFIRRuomvTpu+/e1vm/V+ oscSi33LotSY/cXh9WFg88xB/mqy5BqH2A67QV5ueiyxVMKlrj0xKxdxgwN7Bk1DcYSPXiW8ggAA YDBgMsgwTHLpkJRn5o3pWvHo6OhobGzM7z+VkzF/4SOY4iyyX9m7/Gk36+Ul2h/BDV64cGHdunVN TU0y82hubt6a/TU9t4Ll/PnzMqNqaWmRmrEVkindxLe1tVU6ow+ZzAM9lljIM6MM5leTS+w4RDss uEFebnossVRFnjmwZ1DbiSVw9CrnFQQAAJc8JoMMwySXDtWRZ0oP5S/9gQMHzHp5efXVV2Xv3d3d Zn2wkjrxzY/Dhw/LHGvwfNdowPNMXk3KwI5DKpfAy23AL/WBpcAzmGv0+HsEAABlw2SQYZjk0kGm HKemLek5XNl5prBp06bo72iXh+uvv37Dhg1mZRBToomvDG9tbe0AfrWyzFTC5JtXkzKA45DKJfBy I88sRZ7J3yMAACgbJoMMwySXDtn3M4/2LFpU6XkmDDglmvgONgb55BsCuQRebuSZpcgzAQAAyobJ IMMwyaVD7/uZmUxPJnNyMXkmJEKeWRSYPkII5JnVDnkmAABUOyaDDMMklw7V8f1MqAQ2bdrU3Nx8 eZYJEyZ8/PHHpgDS2LFjh46b0NTUdOLECVMAkIMqfblxqVvyOIOMHgAAVBQmgwzDJJcO5JkAAAAA AADQB5NBhmGSS4fs52an9bQtOtlJngkAAAAAAAC8nwkAAAAAAADFxWSQYZjk0oE8EwAAAAAAAPpg MsgwTHLpQJ4JAAAAAAAAfTAZZBgmuXQgzwQAAAAAAIA+mAwyDJNcOpBnAgAAAAAAQB9MBhmGSS4d yDMBAAAAAACgDyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaUDeSYAAAAA AAD0wWSQYZjk0oE8EwAAAAAAAPpgMsgwTHLpkMlkTmWm9Tx7mDwTAAAAAAAAejEZZBgmuXTIvp95 tGdR28nF5JkAAAAAAABQrM/NHn7g5MzF5JkAAAAAAABAngkAAAAAAABFxWSQYZjk0qE3zzy6q6eN z80CAAAAAABAFpNBhmGSSweeAwQAAAAAAAB9MBlkGCa5dOB3TQAAAAAAAKAPJoMMwySXDuSZAAAA AAAA0AeTQYZhkksH8kwAAAAAAADog8kgwzDJpQN5JgAAAAAAAPTBZJBhmOTSgTwTAAAAAAAA+mAy yDBMculAngkAAAAAAAB9MBlkGCa5dCDPBAAAAAAAgD6YDDIMk1w6kGcCAAAAAABAH0wGGYZJLh3I MwEAAAAAAKAPJoMMwySXDuSZAAAAAAAA0AeTQYZhkkuHTCZzKjOt59nD5JkAAAAAAADQi8kgwzDJ pUP2/cyjPYvaTi4mzwQAAAAAAIBifW728AMnZy4mzwQAAAAAAIBBnGdmvr3T1UQL4MEHH5w5c6ZZ qRgyWczKAKF9sJhohFmzZq1fv96sAAAAAABA1WIyyDBMcunQm2ce3dXTVoWfmy1untnd3T106NCD Bw+a9YtI/NFHH50xY0ZyilU6Bmq/LtoHi4lGkNGTMZQRM+sAAAAAAFCdmAwyDJNcOkjWUPXPASpK ntnR0dHY2PjVV1+Z9YtoZmUx0TIyUPuNJbkzMnqjR49esmSJWQcAAAAAgOrEZJBhmOTS4VL4XZPC 88xPPvlk6NChy5YtM+sOra2tW7Zs6e7uTk6xSsdA7TeW1M7ccccdMpIynmYdAAAAAACqEJNBhmGS S4cS5pmnf/NPS587OmLlrtrvPLds9/Hzv/1nLyH85B8/79z7k4ZVf16z4s/kX1mWiCnL8v5/OSPB pu++IBXq79298Jk3T3x81pQ5FJ5nPvbYY5I+7du3z6zHkZpi5eKll1765je/2dDQUFNTU1tbO3Hi xM7Ozvfff19LY5t1g7p8/vx5SeFk8xEjRixatOijjz7SUuX06dNLly6VIqkg2bJU1q1McTaRlp1q H+RfWfZSQemPBJuamqRCfX39woULT5w4YcocvGajyBhKhe3bt5t1AAAAAACoQkwGGYZJLh1KlWee +/y3LQ/8SDNAVXJOXdB+n/lvX0gCaUtViUhcKwheqSgJ54+7/ffKtMis5IXkgZIdvffee2Y9jmyG 1e8888EHH9QNo2gFd9niBnV5yZIluqCMHTv2008/1Qrnzp1raWkxBVkk59QFrXDmzBlJIDVikYjE tYJgog6ScP74xz82xRfRIrMSh+SrUkHG06xHSG0BAAAAAAAGHJNBhmGSS4dS5ZnrDvxMcr+pf/Ly yU/OyeqH/+9vpv+vB9yEcM3L/0mWWx/+91LkVli9/12tIMz+t68f+MWvv7zQ+53Jz774csWP/lIq tP/pIS21uM3mx+jRoyX5+fLLL816HPklSLW1tbLVtm3bzp4178SePn167969s2bN0tXYZt2gLre2 tn744Yey2t3dPX36dImsXr1aK6xbt05Wp06dKidRVqWaVhC0wpo1a2TZtmAr2BaE2bNnHzhwQEfg s88+W7FihVRob2/XUktvo4mDIC1IBRlPsx4htQUAAAAAABhwTAYZhkkuHUqVZ07e+O8k93u3x7zn Jrz36//qJoSTvt9bQYK6KmiFietfMusRLnz1lVSou2eXWb+I22x+DB06NDX5yS9BmjBhgmy1YMGC jo6OlStXSobpvUkY26wb1GX3vVZZlsjEiRN1dfLkybL67ru/z8+1gqCrkyZNkuWEFqJcuHBBKtTV 1Zn1i/Q2GjBQNTU1ZiVCSAsAAAAAADCwmAwyDJNcOpQqz6xZ8WeS+331u99pLwVZdhPCXBVqv/Oc Wf/6633v/+rmHYfr79099F/9ULcVZdkUX0TjZiUvJC9KTX7yS5Ak/dM0z0UyQ/v1SI3ossUN6rL7 IFxZlojN5bTz0QqCruaqUFtba9az36u8+eab6+vrNeVWZNkUX0TjZiUHUiEhzwQAAAAAgMrHZJBh mOTSoXLzzK1vnND6UbWCJTbYL0r3uVnlxIkTL7300tatWxctWlRXVyftLFiwQIuizXpZoi4nZImF 55nSsWz1GLSCJTboop+bHT9+vFkHAAAAAIAqxGSQYZjk0qFUeaZ+LLaQz802rPpzWd35zv+h388U Pv/ygtuCJZqy9hd9DpD70dMo2QwrKcUK5MyZM9KOzfFGjBghq/bbm4L3qVddTvjUq75fWsjnZhsa GmR1586dNtP+/PPPe7ePHG80ZfXQlhOeAwQAAAAAAJWPySDDMMmlQ2mfAzR547/T5wD1/P1nsc8B mvonL+tzgKTalZv7PAeo9jvPyerBv/lIE0ipMP/JI24LFmlEgpKRmvX+s2PHDsmOSvG7JjNmzHjq qac++OADzc0+/fTTTZs2STuSXmqF9vZ2We3o6Dh3rnegJE/T71sKWkGX7WN+uru7r7zySoncf//9 WkGfAyRbaQU5m7HPAZIW9DlAUk1bsM8B0ocVHTx4UDspFebPn9+7feR4pREJSkZq1iN0dXVJhYTf Ncm22u9hBAAAAACAcmIyyDBMculQqjzz3Oe/bV7XpWmhuvz5H+uC9jvX75p8+tn/pxX06bKumpqK WsGy/egHtk60NIRPPvlk6NChy5YtM+sOmhdFMcVpmNoRtmzZohX27NljQhd5+OGHdUEr6LL9qRLF /VUSSVCbm5tNQZbly5frglbI9bsm9pdR9OmyLpqaClrBIgmkxhUTdViyZImMpPfjnC65NgQAAAAA gMrBZJBhmOTSQeb8pzLTep49XOQ8Uzj9m39a+tzRESt31X7nuTv2HD//23+WJNB9zI+klJ17f9L4 b/bUrPgz+VcSUdnElGWfLrvuwM8k8xz6r34oKevWN05IMFcm+fDr/3nsmr1555lCR0dHY2Nj9BOh mhdFMcVp/PKXv5Sc7corr6ytrZUErL6+fuHChQcPHjTFWSR5u/zyy6V0woQJ+k6guwtdPn/+/B13 3CGNjBgxQnLOjz/+WEuV06dPS1CKpIJUk8qyif1oriApZWdnpxxgTU2N/CuJqGxiyrJPl123bp1k ntIHSVm3bt0qQd2vVnCRNHjs2LGxpTJ60rikmmY9jtgNAQAAAACgojAZZBgmuXTIvp95tGdR28nF xc4zPbo//UdJAhN+tmRg6enpkSzrwIEDZr2a6e7ullwu4WdLSsSrr74qYyh7N+sAAAAAAFCdmAwy DJNcOpjPzR5+4OTMxUXOM2dt+w8HfvFrfYrPB3/3DzP/t4OSZ6478DMtrUA2bdrU3t5uVqqKWbNm SYasT/H54IMPZs6cKXnmunXrtLRsXH/99Rs2bDArAAAAAABQtZgMMgyTXDqUMM/UT7G6Xv69fWf/ 6QsthSKS/SxqHy6//HL3GbYAAAAAAADhmAwyDJNcOvTmmUd39bSV4HOz7/Z82rHrWMOqP6/9znMt D/xo9f53z/w3ksyS8O6773Z0dDQ0NNTW1ra0tKxevdo+JQgAAAAAAKC/mAwyDJNcOmRK9xwgAAAA AAAAqEZMBhmGSS4dSvW7JgAAAAAAAFClmAwyDJNcOpBnAgAAAAAAQB9MBhmGSS4dyDMBAAAAAACg DyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaUDeSYAAAAAAAD0wWSQYZjk 0oE8EwAAAAAAAPpgMsgwTHLpMJB5Znd396OPPjpjxoxMFhMtHvPnfy2t3n+/WVXWrOkNzp1rVktN JfQBAAAAAACgX5gMMgyTXDoMZJ6p6aXFRItHd/fXQ4d+XVPzdU+PiciCRMQPPzSRUlMJfQAAAAAA AOgXJoMMwySXDgOZZ7a2tm7ZsqW7u7tEeaZwzz297xwuWmRWZUFWV640q+WhEvoAAAAAAAAQjskg wzDJpYPkd6cy03qePTyQ388sXZ559uzX9fW9ed3773/93nu9C3V1vcFyUgl9AAAAAAAACMdkkGGY 5NIh+37m0Z5FbScXX4p5prB1a29qN2NGr7Igq+Fox2IxNcIopA8AAAAAAABlxmSQYZjk0sF8bvbw AydnLr4088wvv/y6paU3uxNlQVbD0Y7FYmqEUUgfAAAAAAAAyozJIMMwyaXDpZ9nCl1dJseThYGi EvoAAAAAAAAQgskgwzDJpUNvnnl0V0/bpfu5WUVzvIGlEvoAAAAAAACQiskgwzDJpYPkd5fyc4As +eV42rFYTI3+kF8fAAAAAAAAyozJIMMwyaXDQP6uiSXvzC2c/HI87VgspkZ/yK8PAAAAAAAAZcZk kGGY5NKhCvLM5NJAKiHHq4Q+AAAAAAAApGIyyDBMcukwkHmmJpBRTPFFYoP9pRJyvEroAwAAAAAA QComgwzDJJcO5JnloxL6AAAAAAAAkIrJIMMwyaVDRXxuFgAAAAAAACoHk0GGYZJLB/JMAAAAAAAA 6IPJIMMwyaUDeSYAAAAAAAD0wWSQYZjk0oE8EwAAAAAAAPpgMsgwTHLpkPmjTeSZAAAAAAAA8HtM BhmGSS4dyDMBAAAAAACgDyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaVD afLMn/wEERERERERq1LyTERERERERCym5JmIiIiIiIhYTAvPMzOZU5lMT6aNPLNQZSgFL2g99/rr y2+6qW748IRqCUVlc8D7EDJQqcZuq0GLV5q3xW0tVd2dxSstiqVrOWpRTjcWoo68xSutZKuuw4iI iNVk4XnmqVMleT9TZwC56HMMl4rJh7ZiwQKtoHilakJRUQxpP6ROSQ0ZqFRjt9WgxSvN2+K2pn60 f//KhQtbxo2rGTZsRG3tzddc89bjj2uR7s5iNymipWs5auGnO+8NK0f3ENzl8qh7tHilVrfUXR5A 8+iGu4m7fMnoHpS7jIiI2G/JM6vFxvp6OfD3nnnGi5fTqhj8MgxUccehuK2Jx554on7kSG3WxasW GyyKpWs5auGnu5y9LZHuIbjLZTZ5126puzyA5tENdxN3+ZLRPSh3GRERsd9WbJ7pyl87sRIGoRL6 kGoZOlncXRS3tbOHDmnqtfymm7q7uiRy4dixtx5/fP6117rVxOLu17V0LUctfF+FtzDguofgLpfZ 5F27pe7yAJpHN9xN3OUyePL5571IKXQPyl1GRETst9WbZ177h38owa71623k8LZtEpk+aZKuZjfK nD9y5I65c2trakbU1i5qb//45ZdtfVGm4Fs6Oye1tNQMG1Y3fPiSG274aP9+t0KyuouEoF1+bOXK y8ePl71MaGrasWqVlrp1LG5RtNSSUMctUr86fnzbihUyMjIIMhSzWlsPPfKIW+H9nTs7581rGj1a elg/cuTC6647sWuXLTXtxpGrjo1bP3nlFdlFQ12d7EL+lWWJ2FK7VcJAJastRHHrJB+maLa5iFvk mlCaekXJFShBKZITIVemXJ8JreXhw8uXS2vf/MY3vHjUhP2mDtRLGzfKLvRsyoFMbG6W+rKVltqW 8z6bYsgFE8VWSNVsEIdWKM8dJnkkA9WeRJetNiidaayvl925pyO1k6nXg2r3Eqtb6i4HmtwH22DC JVeUl567ibtcBuXQ3KuxRLoH5S4jIiL22+rNM3c/8IAEZ06daiMyyZPI9nvv1dXsRpmls2frgjJ+ 1KgzBw9qBcm+rp82zRRcZGxj4+kDB7RCqrpJQlCXZQ6nCxZ3umBCF7Hx2FJLQh23SIw9TMGtY0IO MlH78fbtuUotuVqwcVXGXCaIpuwiErHnQiPJA5Ws2SBCch33MKMVbNwzV2nqFSXHK1egKcgiOYYu 2EbU2GCIs1pbZcNjTzzhxaMm7EKLXNyBerCjw0QjuJsXcjYDL5gotoVUzQZxaIUy3GFSRzJQdxN3 2arBnWvX6oKiRSG3QRN18F44bjUvaHVL3eVAdROX6D0q4ZILf+kl627iLpdBOVNzr77609de8+LF 1T0odxkREbHfVm+eeeHYsdENDRLXTxOde/11mXaIZw8d0gq6VesVV3z4wguy2t3VNX3SJIncf9tt WuHRu++W1RlTpnywZ4+sykSkY84ciaxcuFArpNq7g0jH3KAuT77sMn2D4rM33tBZqSQDWsFVK3tB a3KpGltHD1Mmji9t3CiDJhEZkGU33ujWmT19+oHNm798+21Zlk7qs1Xa29rcOmK2+Xz6sGbxYgna cyH/6rlYfeutWiG7UehAJatNeUE18DDFhEbEXKWpV5SOgxz7r/btk1UZBxmT3rYircUGQxxRWysb ypTUi0dN2EXyQNXW1MjqthUr7GtNcpK9Dz1kT1a24YLOZuoFY+3dU14DZc3VQhnuMKkjWSxlL4J0 79UtW+TakDMiI6xFIbfBIt4f8ja5D7rrhEsu/KU3gH7+5ptyJST4y9275YjkHHkbIiIiVqJV/f1M mc9JXCYcsrxj1SpZXjBzpi3NbtTnASGyLJGJzc26qvMM9xNiMjuRSPOYMTaSbO8OIh1zg7r87tNP 21KZK0hEkgEbsWplL2hNLlVj6+hhyvzSiycoM2zZpG74cC+ebT6fPkxqaZFgwrnIbhQ6UMlqU14w 1lyHKSY3kqs09YqS45XV6DgINqLGBkMM3zC8pjdQE5qaZFVea5KQSDYieZH31la24YLOZuoFY+3d U14DZU1oodR3mNSRLJayF+GZ++7z4mIet8FC7g/F0uuD7jrhkgt/6Q2gq2+9ddmNN6YqKfc7O3Z4 2yIiIlacVZ1nytxI4jKTOH/kyFWTJ8vywa1bbWl2oz5v7MiyRGpranS1ZtgwreMhcbtJslo/Iegu W2ODYq64mlyqxtbRw0x+g2vfhg03X3NN/ciRQ4cM0UYEWfaqadwLesbWifbBOxfZjfytYoOpJmwV eJiiFnlBa67S1Csq1zgINlKg8nKQ1mQW7sWjJuw3eaBkNq95oMvkyy6z35/UiC5bY4O5TL1grNlW Cxq9hBZKfYdJHcliqS1LAunFxdROikW8P+Rtch901VaOBnNdUbZCFfnFW29tuP32+ddeq+9Oe6WI iIiVYlXnmeKNV10lRSsXLpR/Rzc0uH90sxvFTCzs/CnXBEuwmyQbrezNXdxla2xQzBVXk0vV2DrR CZbn1rvu0g2jeDVjg56xdXJN8sqZZ4YfppgrruYqTb2idIocHQdboXBnTJkirRXy/czAgTqxa9dL GzdK5UXt7XXDh0upfa8vWjlXMJepF4w122pBo5fcQhnuMAkjWSyjO7WmdrK494f8TO2Du2x1g2V4 6ZXTw9u2tbe1PdjR4X6NFhERsbKs9jzz0COPaKlwzy23uEUajH5QakJTk65eOXGiTFu/eOstW6G/ 6ntHZy9+t0r0PovlLltjg2KuuJpcqsbW0c/FHdi82YtbG+rqpMLOtWv1u0/i52++mW0ptOeusXUC PzdrSxOCqebaKvwwxVxxNZoFqalXVK5xEGykQDfcfru0tvC667x41FxH0a+BUs8cPCilRfxfgwr5 3KxY5juMN5LFMtvT+GNM7WT49ZDriirc1D64y1Y3WIaXXuH+xQ9+8NLGjaneMXfuls7OkM8sICIi DqSF55mZzKlpS3oOD1CeKbaMG6cVfvrkk25cg1MnTNDHeHR3dcmMSiL2ARiPrVwpq+1tbe8+/bTO jT597bU93/ue+4TJZGVbaaFjzpxzr78uqzJxmXzZZb17DZ79uOaKq8mlamydbStWSHBsY2PX+vU6 NfnwhRdkpmIryCxTKhzculUHQYZr/rXXZlvym5JGJPjcd7+bMJWM3VAfwiHnQp+YIrvQc+E9B0iX rbHBVHNtFX6YYq64KgcipTLr9eKpV5R9GIn+sqX0QZsStII1NhjiWef3M3W0pSdvPf549C2yXEeR OlAzpkx5avXqD/bssce46c47pdR+F86tbI0N5jL1grFmW81noKypV3Xp7jCpI1ksezuaY5RSOxn+ wsl1RRVuah/cZasbDH/pDaBygHsfeihBGdvLx4/3rkNERMQKtTjvZx7tWbRowPJMfZZ90+jRXly3 0p8isIwfNUpmUbbO3KuvNgV9sRWSldmY2eAi+uuFglZwl61eUFej2ApuNS+oalEULZWZWfLvmuiT G110TibYOuo9t9yicYstMusRtPRMjp+psOdCI7psjQ2mmmurkMPU1Si2grr93ntNQRa3KPmKkiTQ G4clN9ygC7YFNTYY6Jt/+qf1I0dqCy5etVxHkTpQuhxFXoluBV22xgZzmXrBWLXIC/bLhKtaLd0d xqxEsCNZLLVZL2hN7mT4/SHhdVGggdekrR8Nhr/0Ktmls2fzBCBERKwai/J+ZibTk8mcXDxAeeb6 ZcukdNW3vuXFdSv3V9Tlj7T3K+riM/fdN6u1VUqHDhly+fjx354/X5+MH6hMrWQr2XZCU5P+sJ7u V0vdZasX1NUotoJbzQuqWhTFVpBU87GVK6+aPFnGQWxvazv0yCO29MKxY+uWLpVJmBxF85gxW++6 S4JeC6oMpkzvWsaN0y87uRV0NYqtIJPvznnzGuvra4YNk3+X33RT9Af67GpCMNVcW4Ucpq5GsRWs Dy9fru+DRUuTryi5AjvmzJFSOREJPxYfGwy358UXVy5cqGdKdiSJhCSfXh0x9ihSB+qXu3fLZaCf t5Q6ktMuvO66g5EH5NjVhGCCyReMtb/NRk24qtXS3WFSR7JYale9oGtCJ8PvD2LC66IQU/vgLlu9 YOBLr2J9dcuWDbff7gUREREr16r4fmay+tsA0f/lra45BCJWptxhsBI89sQThTxNABERsdxWe565 c+1ameo1x/3UG7NARCxQ7jCIiIiI+Vicz81O62lbdLKz7HmmzvOEh5cv94pELfKCiIiB6j1E4A6D yerFEItXc0A0XYnDq4mIiFg0q/r9TP1OVOe8efoQQk8pFb0gImKg3GEwUL0YYvVqDohel1y9moiI iEXzEvh+JiIiIiIiIlaQ5JmIiIiIiIhYTMkzERERERERsZiSZyIiIiIiImIxJc9ERERERETEYkqe iYiIiIiIiMWUPBMRERERERGLKXkmIiIiIiIiFlPyTERERERERCymheeZmcypaUt6DpNnIiIiIiIi olic9zOP9ixaRJ6JiIiIiIiIRXo/M5PpyWROLibPRERERERERL6fiYiIiIiIiMWUPBMRERERERGL aXE+Nzutp23RyU7yTEREREREROT9TERERERERCym5JmIiIiIiIhYTMkzERERERERsZgWM8/sJM9E REREREQc9PJ+JiIiIiIiIhZT8kxEREREREQspuSZiIiIiIiIWEzJMxEREREREbGYkmciIiIiIiJi MSXPRERERERExGJaeJ6ZyZzKZHoWPUueiYiIiIiIiLyfiYiIiIiIiMWVPBMRERERERGLKXkmIiIi IiIiFtOi5JlHv9/TljnZSZ6JiIiIiIiIxXkO0LSeZw/zfiYiIiIiIiLyuVlEREREREQsruSZ6JrJ 4gWrQu25xSv1DKlTaiuhD6lWRSfLYOw4xAZdtYLFK8VkGTRERMTqtmLzTJ1k5KLPMWDxrN7h1Z5b vFLPkDqFGNJ+SJ0Btyo6WaAhxxhbJzboqhUsXikmm9+g5bcVIiIiFl/yTLzErIQrpBL6gIHmfbLC Nwyvidb8Bi2/rRAREbH4VsXnZpk6YLiVcLVUQh8w0LxPVviG4TXRmt+g5bcVIiIiFt/qzTOv/cM/ lGDX+vU2cnjbNolMnzRJV7MbZc4fOXLH3Lm1NTUjamsXtbd//PLLtr544dixLZ2dk1paaoYNqxs+ fMkNN3y0f79bIdWQFrQnsiA1G+vrG+rqdqxaFV7hk1de6Zw3T4KyC/lXliViS9XkFlLVzS2xpbLw 2MqVl48fL92Y0NTUr/bF93fulJ43jR4tm9ePHLnwuutO7NplS3UXCScrtYJVa3pBVYssXqn41fHj 21askEtI2pe9zGptPfTII26FkKOIJVcdG7cmn267VSHnIlXdiyW2VBYS+pA6kiGHeWDzZhnkKydO /PS11x5evlyamnzZZT0vvmgrJF8PpT5ZGvT6EHsD0ZpeUC38FhQykoXfBrUdWYi9w4QMtSwkXDDS Jdmv7F06KV2VDtutQtTKsWiFCvl7gYiIOIis3jxz9wMPSHDm1Kk2ItMCiWy/915dzW6UWTp7ti4o 40eNOnPwoFaQqfD106aZgouMbWw8feCAVkg1sAWN71y7VheUwArSW5m9mdBFJGKPQtV4wi6SNRtc JLZUJli6YHEnbamabRxkrvbj7dvd0oSTpZGEClYt8oKqFlm80tizKbh1TMghehSx5GrBxtXU062R kHOhcS8YqG5riS1N6EPqSAYepuQzuuC21jFnjq2QfD2YqENxT5YGJdnQBUVe/pIVx9b0gmLht6DA kSz8NqjxXHcYs+4QHeqEC0Y6I10y0Szf/MY3dEErpKqVY9EKlfD3AhERcXBZvXnmhWPHRjc0SPzk 88/L6rnXX5eZjXj20CGtoFu1XnHFhy+8IKvdXV3TJ02SyP233aYVHr37blmdMWXKB3v2yKrMJ2QK K5GVCxdqhVQDW5CIIHt/dcsWmax89sYbaxYvDqwgC1Jkj0L+1aNYfeutWkHNNpC0i0C1ndjg5Msu e3/nTlmVxnU2Nqu11a2W7Ozp0w9s3vzl22/LsrSwYsECaaG9rU1Ls3tIOlmpFaxa0wt6xtbRsykT x5c2bpSrSyKyr2U33ujWST4Ka7b5fPqQerqzGwWdC63pBftrbCMaTOhD6kgGHuaxJ5746ZNP6vJb jz/+3jPPyELLuHG2QvL1UOqTpcFoH7zXpqg1vaBY+C0ocCQTBqooN7GQV3fCBaNHIY3/at8+WZWu SoezG/X7As61VSX8vUBERBxcVvX3M2UGIHGZ08jyjlWrZHnBzJm2NLtRRuamNqLz1InNzbqqUxn3 g08yAZJI85gxNpJsYAsSEZ657z436JpQYVJLixQlHIWabSBpF4FqO7HBd59+2kZkciaREbW1NtJf ZdonLdQNH66r2T0kHWZqBavW9IKesXX0bMo02osn6B2FNdt8Pn1IPd3ZjYLOhdb0gv01thENJvQh dSQDD1PyGdFb1r1oMKGFqEU/WRoM6YPW9IJi4begwJFMqFCsm5hr7Ks74YKRzshqtJOCjQSasNWA /71AREQcXFZ1nil/8iUuk5XzR45cNXmyLB/cutWWZjfqnZ7aiM5Ta2tqdLVm2DCt4yFxu0mygS1o UCYlbtA1oYLuIuEo1GwDSbsIVNvJO5jgvg0bbr7mmvqRI4cOGaLbCrKspbqacJipFaxa0wt6xtaJ DnXU5KOwatwLesbWST3d2Y38rWKDRTG25dRg6kj26zC9ZR1tDSa0IJb6ZGkw2gc5OhtRtaYXFHUc okRbyGXgSCZUCOyDBnPdYUJe3bZyNJjrKGyFcBO2GvC/F4iIiIPLr782+WK+yN/ZU5lpPQ8cHoA8 U7zxqqukaOXChfLv6IYGd5aQ3ShpFphr3iDYTZINbCEa8UyooLtImP2o2QZCu51gbDvhwVxuvesu rR9FK+hywslKrWDVml7QM7ZOdKg9U4/CGhv0jK2TerqzG+Wzu/yMbTk1mDqS/TrM2GVdiLZgr4cy nCwNJhyFVWt6QVHHIRavZi4DRzJawQ5UYB+iEWvgq9vWjwY1O4120lYIN3mrgf17gYiIOLgsPM/U 9zMfaDu5eCDyzEOPPKKlwj233OIWaTD6OagJTU26euXEiTIb++Ktt2yF/hrYgvbEC7omVOjX52bd SH7GthMezGVDXZ1U3rl2rX6DS/z8zTfdFnQ54WSlVrBGZ95Rs435ndfPxR3YvNmLW1OPwhob9Iyt E/gxSFuaECyKsS2nBlNHsl+HGbusC9EW7PVQhpOlwYSjsOa6Jgu/BeX9udn+3ga1HS+oBr66ddnq BnMdha0QbvJWA/v3AhERcXBZrDzz8AMnZy4egDxTbBk3Tiv89Mkn3bgGp06YoA9+6O7qkomCROzj Kx5buVJW29va3n36aZ0Cfvraa3u+9z33mYTJBrbQ24/ECVNCBX1ChhyFPp1CjkWPIvY5QG4kP2Pb CQ/mUuZnUvng1q06SnIU86+91m1BlxNOVmoFq9SRuMx6vbhrtjG/89tWrJDg2MbGrvXrL1x8es0d c+faCqlHYZVGJPjcd78bTS2ssRumnu7sRv5W4cH+GttIajB1JPt1mLHLupBwPZThZGkw2gf3WURq rmuy8FtQ4EgmDFThN7HAV7cuW92gHsX0SZOke7IqLeiI2Qrhpp7NAfx7gYiIOLi8BPJMfVx+0+jR Xly30ofXW8aPGiWTA1tn7tVXm4K+2AqphrQQjXgmVDiT43cL3KMQNe5G+qVuHsUttZUTgrnU50+6 6MxS0Aq6nHCyNJJ8NtXt995rirO4RSYUQUtl7pj8axypR2G955ZbNG6xRWY9gpamnm6N6LI1PBio bhvFLbWVo8HUkezXYcYu60LC9VCGk6XL3i9hyFHI0dkW1IRrssBbUOBIFn4bjEasga9uWz8aPHvo kHcU9tdibP1AE86mOrB/LxAREQeR1f65WXH9smVSuupb3/LiupX7u9syI4z+sv8z9903q7VVSocO GXL5+PHfnj9fH74fbmoL2hM34plcQSY6nfPmNdbX1wwbJv8uv+mm6C+2JbeQqm4exS21lROCubxw 7Ni6pUtlbidD1DxmzNa77pKg24IuJ5ys1AquDy9frm9rCG5cI1FsBUmQHlu58qrJk2UXYntb26FH HrGlqUdhlX7KVLtl3Dj94plbQVej2ArJp9ur3N9goLptFLfUVo4NJo+kGH6Yscu6kHA9lOFk6XKB 16RY4C0oZCRTO1nITSzw1a3LVi8oXeqYM0c6IJ2UrkqHvQqBJpxNdcD/XiAiIg4Wi/UcoGdL+Ryg ZCc0NUkn3tmxw4tnpw39nqbggJh6slIr4KCS6yFQBsqTvxeIiIhlsljvZ5b0d00S3Ll2rUwOYn/B jHlDFZl6slIr4KCS6yFQBsqVvxeIiIjls6rzTJ0ZCA8vX+4ViVrkBbEyTT1ZqRVwUMn1ECgDZdWh EPh7gYiIWA6rOs/Ub9F0zpunT//zlFLRC2JlmnqyOJvoyvUQKANllXHg7wUiImL5rPbPzSIiIiIi ImJlSZ6JiIiIiIiIxZQ8ExEREREREYspeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiIiFhMyTMR ERERERGxmBYlz9y1pCeTOfk/TCXPREREREREHPQW6/3MZxedvKmTPBMREREREXHQW3iemfmjU0d7 eha1nezkc7OIiIiIiIhYeJ6593859f3v97Qt4vuZiIiIiIiIWJTPze49NW1az6JnyTMRERERERGx SN/PXJLpeeAweSYiIiIiIiIW7zlA/K4JIiIiIiIi9kqeiYiIiIiIiMWUPBMRERERERGLaTHzTH4/ ExEREREREXk/ExEREREREYspeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiIiFhMyTMRERERERGx mJJnIiIiIiIiYjEtPM/MZE5lMj2LniXPRERERERERN7PRERERERExOJKnomIiIiIiIjFlDwTERER ERERi2lR8syj3+9py5zsJM9ERERERETE4jwHaFrPs4d5PxMRERERERH53CwiIiIiIiIWV/JMRERE RERELKbkmYiIiIiIiFhMyTPR88GOjplTp3rBEGe1tq5ftswLDk7zHsPKMZPFC5ZB3a/FK3U99/rr y2+6qW748NSal5h6vBav1Fqxr8fkbhdF3YXFK0VERMRyWMl55vkjR9YsXjx+1KiaYcPkX1mWyO+7 XkleMrOZ7q6uoUOGHNy61YuHKFvJttKCFx9s5hrD//pnP//Jko9+9Afn9v7L3/z7Pzrzt2s/7G8F 657L/1H0gsU1+ZJOLi1EbdnilbquWLDAVMrilV7CmgO+iFdqrdjXY3K3i6LuwuKVIiIiYjms5Dxz 5tSpZppwkVmtrb/veiWp3fOC1WjHnDmN9fVfHT/uxUOUrUY3NCy54QYvPtjMNYaaHIovXHFOF/7m vv+zXxWsWuoFy2kZLvjUXcggS4X3nnnGiw8ek4eoYl+Pyd0uruXcFyIiIvaxYvPMlzZulPlB0+jR v9y9W1Y/2LOnecwYiUj8972vGLOTmaqfzXzyyitDhwxZduONXjzcO+bOlRakHS8+eEwYw7f/+OO/ e+oXvzveu/wPL7wvieJL/9PZflWwkmeKqRXy8+Tzz3uRijV1BEr0eixwiFK7XUTLuS9ERETsY8Xm md/8xjdkfrD7gQdsX2VZIva/57Pzh8z5I0dkLlVbUzOitnZRe/vHL79s64sXjh3b0tk5qaWlZtiw uuHDZduP9u93K4jajixIzcb6+oa6uh2rVtnS93fu7Jw3T9JdaaF+5MiF1113YtcuW6rbxmLryCRP WpBmpQX5V5aj0z67SWwfyuZjK1dKN/Zt2ODFw5VtpYXt997rxQePgWP4+WvvSqL4whXnvLg1uUKu PPPv9/z1X93+6/1Xnt37L3/zoz84d+yb/4/kq16dZHsvRIfkUhdb56WNG+XFqxe8vDAnNjfLNS+v I1sh5FUpes1aNR7Fq5a3cga71q/3gv3Vdin2FZ06Asm3HavdSy5L9HoscIi0296t2xuB1NtmyH1V 1H15QURERCyHFZtntowbJ/MDd+ogyxJpHjNGV7Pzh8zS2bN1QRk/atSZgwe1wlfHj18/bZopuMjY xsbTBw5oBVXjO9eu1QXFK3WRac2Pt2/PVWrRCtIZmSya0EUkYjupajxXH9w6XrC4am4f/SCi7joW r6bMjyUo7XjxCjG2z66pFVLNNYauX7z+V/9h1qeSKL5z23/xitTUCrnyTI27SsL56c6fe9US1BGw JJe6aIUHOzrMegStEPiqFLXIC4oaj+JVy1vp4dyrr/70tde8eL/ULsW+okNGwEQd3NuOV80Lupbo 9VjgEGm3JbvWBUVGwDaYetsMvK+KWuQFERERsRxWbJ4p8ypvfiCTG4mMqK3V1ez8IdN6xRUfvvCC rHZ3dU2fNEki9992m1Z49O67ZXXGlCkf7NkjqzIF6ZgzRyIrFy7UCmpvK5mMbPvqli2yi8/eeGPN 4sW2dPb06Qc2b/7y7bdlWYr00SPtbW22gqqNeEFRmpK47aT8q51cfeutbrXs1jn74NbxgsV1dEOD 7EIP1lV3HYtXU7aVoLTjxSvE2D67plZINdcYWi/8x7/UHFL+/e1f/JVXKqZWSPDNm0599NjffHX0 HVn+5yN/+Z+W/9/SzpH/+bRbJ9DkochVWltTI/FtK1acPXRII5I+7X3oIfvN6sBXpdi7g9KcrM/f fFO6l+Avd++WDkeTlnC1b7Gv6JARKPC2Y8379VjSIdJuR2/d9q6YetsMvK+KEhS8ICIiIpbDis0z Y+cHEpH80y4L7htHsiyRic3NuiqzEFl1P44lMzaJ2HdE1d5WMpln7rvPDebywrFjUrlu+HAvro14 QXFSS4vEEzqpZrdO6YPW8YLFdeiQIYXvQlqw56jSzA5h0gGmVkg1dQz/esWvJPd79dqcOWRqhXB/ d/wdaaprUs5P5yaYPBS5Sic0NUl8wcyZkjtJ4iQZpvcuXOCrUuzdQWlOlmQjy268MVVJ9t7ZscPb NlDtW+wrOnwErP297bhKhTxejyUdIu12wl0x9bYZeF8VJSh4QURERCyH1f5+pgS9CrU1NbqqLUTx Zl0alKmeG7Tu27Dh5muuqR85UvMHRZa9ahr3gqL2IaGTanbrnH0om9Exz0NpwRvhQWXqGO6/8qzk fue6fubFrakVEvz1D/727T/++Ed/cO75Cb+RRlRZ9qqF2HtF5j6QXKXvPv205gAuky+7zH4AXscn SvSa0bgXdE2tUKBfvPXWhttvn3/ttfqepFearPYt9hUdMgIF3nZcpUJ0bItlfkOk3Y7eFW0/dYii Fbx7e0IFqwQFL4iIiIjlsMK/n+l+Zyn2+5nRqYY3WYnFbiJGI9atd92lpVG8mrFBMXA+lN164CdD xfrc7PhRo7z44DH1c7OaAXpB19QKufzbtR/a3NLTqxli9vTmvCaTS0/s2vXSxo3y8lnU3l43fLjU XDBzphYFvirF2KBraoXCPbxtW3tb24MdHdGvjyab0LfUESj8tmMtw+sxjyHSbifcFVNvm4H3VVGC ghdERETEclixeaY+TyX1ebPRj05NaGrS1SsnTpRpxxdvvWUrxKrteEG1oa5OinauXWvThs/ffDO2 fmxQ7NfnZt3IgKhj/u7TT3tx7V4sXk09uop9DlAZzDWG1tTEL+/McN/kf5ANu//kf9fvZ4oX/mPv 52bzay17enNek8mlrmcOHpSaNgEIfFWK0VzCM9uFfF41f/GDH0ganOodc+du6ey8cOyYt3mICX1L HYHw207qEOX9eizpEGUPpUyfm00dIkRERCyVFZtnyiRG5gfNY8bo72fKv7IsEfuLEbIsTJ0wQX/M rburSyZwErHP29BfmGhva5NJv84zPn3ttT3f+97MqVO1gpptJn5GKNNBKTq4datuLjuaf+21sfXH NjZK8Lnvfteb0OjzKqST+rwKaUE76T2vorfFtBlzSJ0C3bFqlewi9Tc5Euxav15aqNjfNckOYdIY plZItfAxzNsXrjgnKeXHT5zQX+D8zb6fHf3jj0uUZ+a64GdMmfLU6tUf7NljX3Gb7rxTatqPuwe+ KkV51UhNSbe8uFVKBS8Yoryi9z70UIKy08vHj//pk096G4ab0LfUEQi/7aQOUd6vx5IOUfZQYm7d 9hFuqbfNwPuqmDpEiIiIWCorNs8UZeIlUwQX+9RKUSOL2tt1QRk/apR9OL449+qrTUFfbAUxGrHq Yx5ddH4jeDXvueUWjVs0fibH8/fdTooadyNRQ+oU6CevvDJ0yJBlN97oxcNdcsMN0oL7azThSkLS Mm5cz4sv2shH+/fLXHbD7bfbiCirEnSrhZs6hqkVUk0dw9TEL+/MUJ8u66qPFBK9mgnqCETxquW6 4M1KhC2dnXbbkFelKNmRKcjilYq54oW7dPbsvJ8ApCb3LXkEwm87qUNUyOsx2UKGSHvr/SRVyM+W 2Ntm4H1VTB0iRERELJWVnGeeP3JEJliSOtYMGyZziNW33ioR23WdN7g/9i0Tl49fftlWUJ+57z7J TqVU5luSn3x7/nz3J+NFbceNWC8cO7Zu6VLZtWzbPGbM1rvukmBsfe2qpElS06sgU5/OefMa6+vl KOTf5TfdFP0ik7dJrCF1CrdjzhzppPcmVaCylWxrP9jcXxded50coPuJU/0s3I1XXWUjYrRauL0j mDiGqRVCTB7D1MSvv5mh9XfH3/n5yv9r/5Vnn5/wm/1X/v3frv1Qgv1tTUcgilct1wX/y927JX5l 9qOhUlQ/cqScr4Nbt9oN1dRXpfrw8uX6xqlt3zVXvEBf3bLF+6+NPEztW8IIhN92xIQhKvD1mGCB Q6S9Tb51p942Q+6ravJVhIiIiKWykvPMZJk3lMKeF1+U2e2BzZu9eIgy+5Rtu7u6vHigMu/UXxR0 Pfn885+/+aYbia1WURYyhjjgHnviiZCvj1a+Bb4eE7xkhggRERFLKHkmem668872yC/Ch3j9tGmF vxF0aZj3GCIWS16PiIiIOJCSZyIiIiIiImIxrd48s7amRvSCiIiIiIiIOMBWb56JiIiIiIiIlSh5 JiIiIiIiIhZT8kxEREREREQspoXnmX+0iTwTERERERERL8r7mYiIiIiIiFhMeT8Tq8VDjzwyc+rU mmHD6keO7Jw378zBg14FRERERESsCMkzsVq8+Zpr3nr88a+OH79w7Nj6ZcuunzbNq3DJu/ehh869 /roXrC4PPfLIr/bt84KIiIiIeKlJnll+M1m8YOX4YEfHzKlTvWB5nNXaKgmkF8zl0CFDvMgl77Ib b3xnxw4vWF2uXLjwL37wAy84GNRXvcUrRURERLzUrOQ88/yRI2sWLx4/alTNsGHyryxL5Pddr1or eaLZ3dUl+dvBrVu9eOFKy4/effeMKVMSDl/2K3uXml486rEnnph82WVeMNmfPvmkXEiiLHhFZTPh 2EOMzTPnX3tWmrz/tlNucM3iUxKce/U/uMFwf/7DH0o/w/+74cSuXau+9a2pEyaMqK2VEW4ZN27F ggWx71uSZypeKSIiIuKlZiXnmTLNNZOyi8xqbf1916tWPRYvWCF2zJnTWF//1fHjXrxw9agtXqkq +x3d0LDkhhu8uKckMONHjXrr8ce9eIIf7d8/trFxYnPzpJYWWfj45Ze9CuUx4dhDjM0zu7veHzrk dzXDftfz4s80IgsSET984a9ttX65YOZM6Wf4COtxedQNH37siSe8moM2z7Tq4HhBRERExEvNwvPM TOZUJtOTyZxcXNQ886WNG6XpptGjf7l7t6x+sGdP85gxEpH473tfnfZOMytyovnJK68MHTJEkhkv XhRbr7hiS2dnd1dX8uHfMXeu9EF64sWtP//hDyXJ3PvQQ148wfNHjvyP/+JftIwbJ82KciHJ6oC8 N5587Knm+tzsPbecllYXtZ/RVVmQ1ZUL/85W6Jd6juR8efEEZ0yZsv3ee+VFqv9DIQvXT5smjUyd MMGtJpJnZi8B8kxERES81C08zyzR75p88xvfkNnY7gcesH2VZYnYN7uys7WMZAuSmdTW1IyorV3U 3u69T3Xh2DHJbSa1tNQMG1Y3fLhs+9H+/W4FUduRBanZWF/fUFe3Y9UqW/r+zp2d8+ZJuist1I8c ufC6607s2mVL7baPrVx5+fjxUmdCU5O7uShdkv3K3qWT0lXpsN2q0pSjkI7t27DBixfX5MOXvUup JC1eXD28bVt/38kU5159tWxlrw19b1OCtkKytsMJZznkOonF1gkxV5559tC79SP/uzT2/s5fvPfM L2Shbvh/l6BXLdBvz58vHetav96L98uzhw5JI0OHDJHXoBuv5Dwze0J6z0jsrSD1ZpJ8DVjtXhAR EREvZSs2z2wZN05mY+77WrIskeYxY3Q1O1vLLJ09WxcUSSfsz118dfy4vqniIgnG6QMHtIKq8Z1r 1+qC4pW6yCTyx9u3u6Uy+9QFi52jS2ekSyaaRfNnQStYY4NlVvv23jPPePHimnykMlmXUumJFxfl HMlg6vvb4a6+9VY56Seff94NyqoEV33rW24wl9rhhLNs67hEr5NYbAsh5sozxa13/VoamzHlM1EW ZNWrEKi8OiQ5lETai/dX+/8pn73xhhsvJM/UBr2ga2qFZHXz2FtByM3ERB3ca8Cr5gURERERLzUr Ns+UKZo3G5OpnkRG1Nbqana21vvpvg9feEFWu7u6pk+aJJH7b7tNKzx6992yOmPKlA/27JFVSfk6 5syRiMx0tYLa20omI9u+umWL7EKmxWsWL7als6dPP7B585dvvy3LUrRiwQKp3N7WpqW67eTLLpPs SCto3mu/RypNyao0rs9Eka5Kh7Mb+RPN2GCZHd3QIH3Qgy2dyUcqe5dS6YkXF3VDl1J3VdV9JZxl Mfk6sWZbyv8sJ+SZX779Tsu430rboizIqlchUHn5SA+9d2vzUNJ7aadp9GgvXvl5ZuytIORmUp5r ABEREbE6rNg8M3Y2JhHJP+2y4L75JssSmdjcrKua0bmfbZPJn0TsO6JqbyuZzDP33ecGc3nh2DGp XDd8uK7qtu8+/bStoB8XtMmwdEZWo50UbESNDZbZoUOGlKEPqUcqpfYsV4La4YSzHNW7TqzZlvIf 4YQ8U+xa/6G0LcqCVxSovECkz2MbGwtM4LfedZceafTb1JWfZ8beCgJvJq4lugYQERERq8Nqfz9T gl6F2poaXdUWong5jAZl1ugGrfs2bLj5mmvqR47UHEyRZS3VVVs5GtQ+RDtpK1SU0TF31W5bvNJw UzeXUu8cDayxHfaCydeJVeNeMNzkPFOUtkUvGK5+Nvjh5cu9eLiSXHXOm6eH+W//9b/2SsVC8sxS q92OvRWE3EzKcw0gIiIiVocV/v1M9+tPsd/PjKZwduaXa2oo2E3EaMRq35aJohXcZasb1BlnteSZ yZ+b1W5bvNJwkzeXvUvp+FGjvPgAGtthN5h6nVhjg+GWNM+UkR/b2Fg3fHiu/3NJ9czBg7NaW+UA 5UI69MgjXqla+XmmF1RTbyZluwYQERERq8OKzTMDnzcb/UiqfYTJlRMn1tbUfPHWW7ZCrNqOF1Qb 6uqkaOfatTb1+vzNN9367rLVDU5qaZHlkM/NVoI65u4HREth8uHr+MQ+B2igjO2wG0y9TqyxwXBL mmc+tXq19M39cnK//PkPf9ic/eUh6aR9FlfUKs0zU28m4deApqzu/z0hIiIiXoJWbJ6pv58pM1d9 vqj8q7NY+6sbvTO47A/06aNEu7u6ZC4oETtR1l/paG9rk8RJZ3Wfvvbanu99b+bUqVpBzTYTP7mU maUUHdy6VTeXHc2/9lq3vrtsdYP2OUDSPVmVFqTDbgVrbLDM7li1SvpgR7hEJh9p1/r1Uprrd00G xNgOu8HU68Q6trFRgs9997v5pRmlyzOlP/qTLd7TmAPd+9BDMghynUu26RV5Vv73M72gmnozCb8G 9A4gGakXR0RERLykrNg8U5Q5nE7ULO4TPjWyqL1dF5Txo0bJ/M/WmXv11aagL7aCGI1Y9YmRLpo3 ClrBXba6wbOHDjWNHq0RZckNN+iCra/GBsvsJ6+8MnTIEElmvHhR1AOM4lWT8ZE+uL9nM+DG9tMN pl4n1ntuuUXjFq9CsqXLMzW9//b8+V48UD2WWOz7e2qV5pli8s0k/BrYfu+9Gle8UkRERMRLxErO M88fOSJzNUkda4YNk2xt9a23SsR2XWdpErlj7tzampoRtbVLZ8+2v8Vvfea++yQ7lVLJXi4fP15m 0vrrFFZtx41YLxw7tm7pUtm1bNs8ZszWu+6SoFvfXbZ6QelSx5w50gHppHTV/q6graDGBsuvdLWx vj6/d9uS1QOM4taR/cre7UejK8RoP71g6nVi1Uu6Zdw4qRlbIdnS5Zn6PFX9iaA81GOJ5ZLJM8WE m0n4NSA+vHy5vrMdW4qIiIh4KVjJeWayzNJKYc+LL8pE+cDmzV68PL66ZYvsXT9jjFFT88z8PLxt m7yUyvOd2Er+fiYiIiIiFk3yTPTcdOed0R+XL4/XT5u24fbbvSBaS5RnyrDX1tSkfrWyKJJnIiIi Ig4KyTMRq8US5ZnllDwTERERcVBYvXlmbU2N6AURL2HJMxERERGxOqzePBNxsLnpzjubx4y5fPx4 cUJTU/SpV5XpjlWrtM9i0+jRJ3bt8iogIiIi4qUmeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiI iFhM++aZd9xxh1m6SDTiQZ6JiIiIiIiIjpE8000svdVYyDMRERERERHRMS7PFLzlBMgzERERERER 0THy/UyTXF7ERHNDnomIiIiIiIiOcc8BMilmQJIpkGciIiIiIiKiY1yeKQQmmQJ5JiIiIiIiIjrm yDPDIc9ERERERERER/JMRERERERELKaF55mZzKkl3yfPRERERERExKxFeT9z15KeRc+SZyIiIiIi ImLBeeY//uP/Dw+CSmQLzZQLAAAAAElFTkSuQmCC --000000000000b16d750581fa2876-- --000000000000b16d760581fa2877 Content-Type: application/octet-stream; name="query_19_02_16a.thy" Content-Disposition: attachment; filename="query_19_02_16a.thy" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: f_js6vtv0h2 dGhlb3J5IHF1ZXJ5XzE5XzAyXzE2YQppbXBvcnRzIENvbXBsZXhfTWFpbgpiZWdpbgoKbGVtbWEK ICAgIGZpeGVzIFkgOjogcmVhbAogICAgc2hvd3MgIlk9WSIKcHJvb2YgLQogICAgaGF2ZSBMNyA6 ICIobmF0IChmbG9vciAoKFkvMikqMikpKSA9IChuYXQgKGZsb29yIChZLzIpKSkgKiAobmF0IChm bG9vciAyKSkiCiAgICBzb3JyeQogICAgCiAgICBoYXZlICIoKC0xKTo6cmVhbCkgXiAobmF0IChm bG9vciAoKFkvMikqMikpKSA9IAogICAgICAgICAgKCgtMSk6OnJlYWwpIF4gKCAobmF0IChmbG9v ciAoWS8yKSkpICogKG5hdCAoZmxvb3IgMikpICkiCiAgICBhcHBseSAoc2ltcCBvbmx5OiBMNykK ICAgIG9vcHMKZW5k --000000000000b16d760581fa2877 Content-Type: application/octet-stream; name="query_19_02_16b.thy" Content-Disposition: attachment; filename="query_19_02_16b.thy" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: f_js6vtv0w3 dGhlb3J5IHF1ZXJ5XzE5XzAyXzE2YgppbXBvcnRzIENvbXBsZXhfTWFpbgpiZWdpbgoKbGVtbWEK ICAgIGZpeGVzIFkgOjogcmVhbAogICAgc2hvd3MgIlk9WSIKcHJvb2YgLQogICAgaGF2ZSBMNyA6 ICIobmF0IChmbG9vciAoKFkvMikqMikpKSA9IChuYXQgKGZsb29yIChZLzIpKSkgKiAobmF0IChm bG9vciAyKSkiCiAgICBzb3JyeQogICAgCiAgICBoYXZlICIoKC0xKTo6cmVhbCkgXiAobmF0IChm bG9vciAoKFkvMikqMikpKSA9IAogICAgICAgICAgKCgtMSk6OnJlYWwpIF4gKCAobmF0IChmbG9v ciAoWS8yKSkpICogKG5hdCAoZmxvb3IgMikpICkiCiAgICBhcHBseSAoc3Vic3QgTDcpCiAgICBi eSBhdXRvCiAgICBhbHNvIGhhdmUgIi4uLiA9ICgoKC0xKTo6cmVhbCleMikgXiAobmF0IChmbG9v ciAoWS8yKSkpIgogICAgb29wcwplbmQK --000000000000b16d760581fa2877-- From noamneer at gmail.com Sat Feb 16 03:09:22 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:46644) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1guqLy-0000vJ-G4 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 16 Feb 2019 03:09:22 +0000 X-Cam-SpamScore: s X-Cam-SpamDetails: score 1.8 from SpamAssassin-3.4.2-1853564 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.172 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (noamneer[at]gmail.com) * 0.4 HTML_IMAGE_RATIO_02 BODY: HTML has a low ratio of text to image * area * 1.6 HTML_IMAGE_ONLY_24 BODY: HTML: images with 2000-2400 bytes of words * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta2.cl.cam.ac.uk ([128.232.25.22]:39970) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1guqLx-000m5o-eV (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sat, 16 Feb 2019 03:09:22 +0000 Received: from ppsw-33.csi.cam.ac.uk ([2001:630:212:8::e:f33]) by mta2.cl.cam.ac.uk with esmtp (Exim 4.86_2) (envelope-from ) id 1guqLx-0007Ot-Fq for isabelle-users at cl.cam.ac.uk; Sat, 16 Feb 2019 03:09:21 +0000 X-Cam-SpamScore: s X-Cam-SpamDetails: score 1.8 from SpamAssassin-3.4.2-1853564 * -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no * trust * [209.85.166.172 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider * (noamneer[at]gmail.com) * 0.4 HTML_IMAGE_RATIO_02 BODY: HTML has a low ratio of text to image * area * 1.6 HTML_IMAGE_ONLY_24 BODY: HTML: images with 2000-2400 bytes of words * 0.0 HTML_MESSAGE BODY: HTML included in message * -0.1 DKIM_VALID_EF Message has a valid DKIM or DK signature from * envelope-from domain * -0.1 DKIM_VALID Message has at least one valid DKIM or DK signature * 0.1 DKIM_SIGNED Message has a DKIM or DK signature, not necessarily * valid * -0.1 DKIM_VALID_AU Message has a valid DKIM or DK signature from * author's domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mail-it1-f172.google.com ([209.85.166.172]:38798) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128) id 1guqLw-000auA-fz (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Sat, 16 Feb 2019 03:09:21 +0000 Received: by mail-it1-f172.google.com with SMTP id l66so18212303itg.3 for ; Fri, 15 Feb 2019 19:09:19 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:mime-version:from:date:message-id:subject:to; bh=3zSeRVyEpdXtCtQ8eEZv+dvyZPjPrMCrkUsDp4P5nqI=; b=J8nTqEkwyHw1IT7O9bd67e2zXNlU+g+6Ne15tXRrYowo8p37PIcu8pFl7u9689U2pI IyP5nTYXwfc0/453Xo4TEW2bRtuMNOb3rVp2mVIBHBcguB+auclCJx/GR9A7nrHAjg5B wTogA11aYz+JkgzMuSYHvMTd/7kGw1DMORbb1ycpb8nGCcOuqKZpKsgF7ymG3jlKFvTw 8vDLhC+MvhBGeqeuQ02WaFUo5bV/bNJrBOmTQboBNERnuzNbfJ9twBrbSVMbWYy5U08o 6l6Za5BpI9eh3AmevxkFP/WusuzrlV43datMBXewrS1vv/kHJrsWCiMEdqugjOxwsmN4 jWXA== X-Gm-Message-State: AHQUAuZoBOXOZWGZ2bDq6QlMpk8XENU6/SSjv6d3kpvEI5tOClUqH45L lKIyCjMgeB96FoRF0ObFJSDUrdooQOJAA9c6LYQiZfo1 X-Google-Smtp-Source: AHgI3IaX0ujNifGj/T8fZYStjt6kgMVHAmW6+dzK0etzxlXs+aiE18vp6IH31yBnJVf/kdG1tmekiXjP1xigI2kUeaQ= X-Received: by 2002:a6b:b409:: with SMTP id d9mr7442246iof.265.1550286558695; Fri, 15 Feb 2019 19:09:18 -0800 (PST) MIME-Version: 1.0 From: noam neer Date: Sat, 16 Feb 2019 05:08:40 +0200 Message-ID: To: isabelle-users Content-Type: multipart/mixed; boundary="000000000000a29a700581fa3782" X-debug-header: local_aliases has suffix Subject: [isabelle] [Isabelle] some proof problems X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sat, 16 Feb 2019 03:09:22 -0000 --000000000000a29a700581fa3782 Content-Type: multipart/related; boundary="000000000000a29a6f0581fa3781" --000000000000a29a6f0581fa3781 Content-Type: multipart/alternative; boundary="000000000000a29a6e0581fa3780" --000000000000a29a6e0581fa3780 Content-Type: text/plain; charset="UTF-8" hi everybody. (I'm sending this mail again with '[Isabelle]' in the subject. sorry for the mess.) I have two problems I encountered while proving something. I'm bringing them here in a very simplified form. I'm working with Isabelle/jEdit 2018 on win10. 1) here there is external lemma which is not really important, so I simplified it to "Y=Y". inside the proof there is a lemma L7 whose proof is again not important, so I used "sorry". the problem comes in the "apply" statement where the cursor stands. for some reason the simplifier can't apply L7, and I don't know why. maybe you know? [image: query_19_02_16a.png] 2. it seems I can solve the first problem by applying 'subst' and 'auto' instead of 'simp'. but when I'm trying to continue the equality, before even applying anything, I get some typing problem I don't understand. maybe you do. [image: query_19_02_16b.png] I'm attaching the text files just in case. thanx in advance. --000000000000a29a6e0581fa3780 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
hi everybody.
(I'm sending this mail again with '[Isabelle]' in the subje= ct. sorry for the mess.)

I have t= wo problems I encountered while proving something.
I'm br= inging them here in a very simplified form.
I'm working w= ith Isabelle/jEdit 2018 on win10.


1= ) here there is external lemma which is not really important,=C2=A0
so I simplified it to "Y=3DY".
inside the proof ther= e is a lemma L7 whose proof is again not important,
so I used &qu= ot;sorry".
the problem comes in the "apply" statem= ent where the cursor stands.
for some reason the simplifier can&#= 39;t apply L7, and I don't know why.
maybe you know?

3D"query_19_02_16a.png"

2. it seems I can solve the first problem by applying 'sub= st' and 'auto' instead of 'simp'.
but when I&= #39;m trying to continue the equality, before even applying anything,
=
I get some typing problem I don't understand. maybe you do.
<= div>
3D"query_19_02_16b.png=

=
I'm attaching the text files just in case.
tha= nx in advance.


--000000000000a29a6e0581fa3780-- --000000000000a29a6f0581fa3781 Content-Type: image/png; name="query_19_02_16b.png" Content-Disposition: inline; filename="query_19_02_16b.png" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: ii_js6vm9qt1 iVBORw0KGgoAAAANSUhEUgAABM0AAANSCAIAAAD53663AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAOvwSURBVHhe7N0LlFTlveb/XqtDCMNBhoGQDgsZ wuiwGIdBJNE+Douow9EoMUr4d0SDxgsSLlFUBInHGMQb6iGGYJSbBAFREewoeggiXhARFUFAFIxE AUVUxCAQRIT+P1W/t3c2b9Xetbuqr/T3s95Va7+/9619qdpF74eqri7aunXrpk2b1q9ff9VVVz06 f8FmAAAAAAASU5D8++HImQAAAACA/JEzAQAAAADViZwJAAAAAKhO5MzqUVRU5JZyST7TjBo1qqys zHXqpdatW7/77ruuk69qWUkNyXvfop7ral9hmM1JsmmdV9OnT7dlAAAAoBpVIWcuefaZcXfemtme XrzIzahd2sNvf/vbrrN588svv9y9e/dvfOMbpaWlq1atctXDvfbaazbnBz/4weuvv67K7bffftxx x33zm9/s0qXL/PnzbVomb1ty44036pJdq7JufAAIjyaJCoG1a9e2b9/+rbfe0vLkyZO/853vaDe0 YKM9e/YsLy+3ZfHWHHTvvPPO733ve9pV3d51111W1Ojpp59uy9K3b1+br9swVXJu94wzznjggQds 2e6lx/Okk0567rnnrBjPthJeiccmJJF8pkk4P2bf4kWtP/MRE+vGSzLN5kTNDG9a51WnTp3s7AIA AACqURVypiKlhjKp7mbUrtS1eehiWvFy/PjxWrjiiit+9rOfWdGj+ogRI7Sg2wsvvFALffr0sTik ENWuXbvUpGy8bd17773Kq5ZUTXg0U3g0fqZn7Nixv/rVr2y5ZcuWr6S1aNFC3T//+c8nn3yyDRlv zdbVripLPPPMM1rW7THHHKOKjXbt2vXZZ5/VsiK6lm1+5u7l3O4vf/lLxXVbtru/9957FuCtmER4 JZ7MXYqSfGaVxOxbvKj98VZYvQdocxJuWmfXhAkTXAcAAACoJvnkzA8//HDbR9vkgw8+VNfLmatW rVIO+cY3vqHoUlxcrEr4kteWNee000775je/2aFDB3sXUfW1a9cq6Wm7zZs337Bhg4rvvPOOso0q qXtmE16zbUu081qDLXtat25ta37rrbe++93vWtEoGv2X//JfXCeb8LZ0gIpbrpOm0SFDhtgRLVy4 0FUradTY8vDhw7WH2hlFvvjjPfPMMx999FFb1jSFPWVCO7qs++CW0qx7/PHHh9+n1dqUkLWgUUXr vn37alnZQ8vB7qXmheTcro6iX79+thy+u73Zq4o9s1rWSrQ/qutWyzZqdwmvRMnn29/+th7Mn/zk J+raHLHlYG2iJ1Fr0yN555132qjRcuY5psopp5ySeWZmzvR2ILxvwSGUlpaGu8ERaW0//OEPbStR 6w+vUGyaeNuVzAP0TrPMldvaEm5a54OdAwAAAEA1qlrO/OCDDz7evv3THZ9+9tmOHZ/t+OTTTz/6 aJuXM3XZesUVVyi26bI7fMlrbPmcc86ZMWOGFp544oljjjnG6sHH+fr3729vueja+tJLL7ViVuE1 f+9735syZYoWnn32WV2aW9ETZFHx5owdOzb4XGhW4W1961vfssv39u3bBxf32rqOevz48T/4wQ9s WiB8Xy1rjmaWl5crVKgSc7zf+c53NNOWNaqkpyCqhcw3FUVr9qiowwzWIFrWzmvBRjt16vT000/b G49WSd/PUVdyblcPuGVXsXtpKyNGjFDcskrwzCrm3XjjjVrQrY2K3SW8EgV+nTxayZgxY9QN9kTC awu8+OKL9n8E4ZmZ55jylUKaVvv666/bTLvNnOntQHjfevfubW+Jm8wj0tpsK8p4UesPr1CC3fa2 GwgfoHeaZX0pBbc5N61XepcuXVwHAAAAyGXBgizf4JNZrFrO3L59+2effbbri1270zR7x6c7vJyp 9KXrYFsOX/IaW9YcLZjM9zwVZo4//ngt6Eo6/nf8wvdS3uvQoYNilS797aI8UzhbhpenTZs2a9Ys 14kQ3paWdb2uBd1RG7VKeiQVsXR0thzw7uuWKpdjjtcLwwF7U1HBOPybk+E1i3Xjc+bNN9+sNeg2 qHgr8WTdrtYZPOC6u+gR6NOnj4KWVWxIgnMj/CjZhPBKunbteuaZZ95zzz32q4PhNYSXtf6LLrro e9/7no7I6t621DV2jqkSfAWOisFt5kxvB8L7FhyCCbrBEelWL5/0YOT6wysU1W3B227MAYY3l1pv WvilZLc5Ny12PgAAAAA5KST+7Gc/mzp1quunqati+FOZUrWc+cnHH3/++ed79uz5x759//jHvt1f fKHY6eXMcLDR1W1wa2xZl7/BHBOeI126dJkyZUrwllcU717mySef7Nmzp+scTunIruB1dFq2osKS 4qItxwhvq0WLFkFisSgYjOqhy7xwD98363LU8WonvQdKlPRspvebk+E1i3WVYINP3oqWLdPaqPZW wcY2YRVvJWFR2xWt034FNPPu4UrwvOvWYpIEE4KV6DlS1vrJT35ib7WF1xBe1tk8duzYN954Q2uz etZtBaLOzMyZ3g5IsG/e5MwjCk+IWr8EK5Rgt73txhxgcJplrjw8M+emtZ7gGAEAAICcvKiZNWRK 1XLmp59++sWuL7788suDB7/++sCBf+z9x+d//9zLmaWlpbfemqo88MADdrH77W9/u7y8XNe7d911 l1X69OmjC2hVdA19wQUXqBJcQJubb75ZYeaRRx5x/QjevWTVqlXagXvTX3WTSQ/Btddeq4Wrr77a tvvggw/a2245hbel9djX8/zhD3+wjy9q1PLAFVdccc4556Rn/fMuuty3X96T8HqC5ajjVQi0z+WG nXzyycrSWvB+czK8ZrGucsv3vve9p59+Wsu61bL2ORgNs0pmPRC1XenXr5895lGrNaeccsoNN9yg hX//938PQnUwIViJnh0lrtdee83eeYt69PTgPPfcc3rMdS+rh2dmnmN6pu5M/5ajzkabb7eZM70d kGDf9CCMHj3aipJ5RJpg5//06dOj1i/BCiU4KG+7mQeoW+80i3opJdw0v58JAACAqgqiZlTIlCw5 8+23316zZs2rr76qKOXnzE8+2bVr175//OPAVwf2f7V/z969n3/u58xnn322U6dOuuL/yU9+Yhe7 ijqtW7dWJlHGs4qina6ANUd0HayK1QNr1679n//zf7pOBN3FuH46ZrRr184+zJnV66+/3qNHj298 4xu6tW+LdauoZNMyueHKCdp/xQmtp3v37hZsiouLbc2qB8E1mK8Aedxxx1l4CIoSLEcd75gxY4Lv mzXKSEFCC//mpLrhNUvQVbzv0KGDugqZ4b9rYgsBq+g2zIYkZruiZPXLX/5SC+G7mHBFj5UesfDj JsGEYCUKQnoqdc7YV6FGPXpPPPGEnm7N1ENk9fDMzHPsmWee0ZmpZ0rr1z6oYvfKnOntgAT79uKL L2oTuvtJJ52kbuYRaSvHHHOMKpdeemnU+iX8iBkte9vNPMDM0yxz5TbTbuM3LVpzcIwAAABAQhY1 o0KmZMmZb7311htvvLFixYphw4aFc2bU389U3c3IYBe7ebj55pt1New6jUDU8Qbfwev69dUDDzxw xhlnuE5VKO0HXx6b90qq6tFHH63qh0Wrfd9q7WAzBZvWK12RWLdWBwAAAJJTSInJKVly5rhx4265 5ZYxY8acffbZ4ZyZh29W/g5eVZ100knBL0CKvSET5gZiuakhbiCWmxriBmqSd7xho0aN+lnEnwOt P7Tz9t25VaWHN3iLNe+VJPfd735XW1S4Ki8vd6Vkqn3fauFgowSb7t+/v30bLQAAAFC9suTMqN/P BAAAAAAgJ3ImAAAAAKA6kTMBAAAAANUpd86k0Wg0Go1Go9FoNBqtSs3ly0qH5cy/1pjJRZPVKgAA AADgiDNmjFtoEFwWjJZkTjxyJgAAAAAUhJzpIWcCAAAAQEHImZ56mjOLBk225vpAXStKcx0AAAAg hJzpqcucGRMmY4ZQ+zZu3Dhu3LjS0tKorPXqq6/26dOnefPmTZs27dChw3XXXbd79243lsy+ffuu v/76kpKSJk2atGvXTsv79+93YxUVq1evHj58eNeuXZs1a6YJ2sSQIUN0XrnhZHIehSxatOiMM87Q VnQgJ5988uOPP+4GyJkAAACIRs70kDORm0WsgKtWWrZsmbKfG6vUs2dPN5yMYqq7ZyVV3FjGDhjF 2meffdbNSMDdrZKrhowfP96Nhbixyru7DgAAABBCzvToynlrUdGmoqL13/0uORPZdevW7ZZbbtm4 cWPWrNWrVy8VBwwYsH37dnXff//9vn37qjJ79mybkNPChQs1v23btitWrFBXt1pWRXWbUFpaOmHC hHXr1h08eFBdLZx22mma0LVrV5uQRPxRvP3221a/4IILdAiq6Ly9+OKLbVRs1HUAAACAkEaSM3V5 7JZyqYP3M4MMmdlsggSV9dt29rrriaZDp7W4cvqwOcv2ffW1m1FRsWvf/hGPvlxy7awmQ6a2ueaB QbOWbt/1DzeWtnPvl1fPXd52xExN0K0mq+LGKgUb2vb3vf0mPd1s2P1a4X0vrNfQibeVq97x13Ns pnS/eb4q3cbOc/0EtmzZ0r9/f/tAqZ6V3bt3h+NKeDngFQ8cOKB01Llz5yZNmmg9WpuloLDgLprZ qlWrli1bTpw40YZOPvlkDYUjn4W6Hj16uH5VpLfj77AOTcV9+/a5vp6aXbtUKSsrc/1cdFCaryTp +hUV2n9VFPlcP8OOHTs0obi4WI+PKyWmO4rrVLriiitUPPHEE10/g91Lz6CeRx1ys2bNdICZzwUA AAAaocaQM3UZbFw/lp8zb45miTE/eefM9tfNDpbVlBVtwt79B5T3wkNq7UbN2rHHpR1N6HrTo94E 3SWcVCUYOm7M3GBZTUOTl75ly6++94m6+w8cLB48Rd0b/vxa+q65ffLJJyUlJZZPjAUqsQnh5UC4 ePDgQXvjLqxt27YffPCBTTBWn6zHOMSGpk+fruXwp1iVjlQJh7rk0iv2d9g+NJuZM9u3b+/6uXTs 2FHzdZ64fvq9RFU6derk+hmCxK5tuVJidkfXqdStWzcVH374YdfPYPcKnkGj58LexQUAAEBjdsTn TBcxK7lqtCw5M5ULM1RjzgxYilNz/ZBgaPgjLx08dGj2ir9at+2ImTZhzIKVVhk5L/VJy7sWrbFu EESDCYNmLdUahjz4onVVtwnGimqdrn9oxd8+VmXn3i9tnbu//KrJkKkaum7+K+ouWLPZZlrsTGLE iBGKIj169NAjoO7bb7+tZcsnNiG8HAgXx40bp+XS0tJ169apq+A6YMAAVYYNG2YTTPoeqQ2Vl5cr mip6adM2dODAgTZt2mhUT7G6O3fuVCyUHTt22IQqsQ25TiWFWBWDz83qdLIo26xZM5uQk2Zqvn0m 9uQ0Lcev4eqrr9aEdu3auX5V6I7iOpVsHxTgtebmzZurq+NavHixG668l+Konkd1N27caM+m5tsE AAAANFpHds504TIdL91SrqhZ33OmfdJVQdG6xYOn2ITgvUqlwfAExUVvwsbtqYdJt9bt8ttHbIKx otryTVnelbp4xnMaso/OXl/+qpY7jH7QhpLo3Lmzcoj9zqHRcjqtJM2Z9iZb+MOZWd8qTN+j6L77 7nP9w40cOVKjQ4YM0bJ9HvWcc86xoapKb8ff4UWLFlk9YJ9BVZp1M3Kxe9myQrVyphWj1nDbbbfZ XWLefoxh93WdSlYcPny4LQSC3xG1buazeeyxx7o+AAAAGqvGkDNdJ6ObVX3Pma6fUbF3GjOb6t4E 64p1mw6d5vppVlRTUnWlkOc3brPRV9/7pPfdT2ph+CMvubEEiouLlUPsbTpjb9OJdcPLgXBRQcu6 Hi+AWTHqE6SKqRpt1qzZ7t27TzzxRC2H/1xHlaS34++wLF68uFevXvZbi4pqW7Zs0bSYdyM99l5i 5gOVuYYDBw4MHDgwtRNFRXfffberVpHd3XUq2W+Z9u3b11L99u3b7a3j4CPH6Ttl2cnkcRoAAABH qiM+Z7qlSnnmTN2GBfW81VrOVPMmWDd4wzMqZ7p+hk7XP6TRkfNW2Aqf3fChG0ggj5zpTYjKmWIT TGbFc8YZZ2jCsGHDdNumTZvwLlVJejtxGzJz5szRtORfBpvw9zM/+eQT+25bHcKCBQtcteq0BnGd Su3bt1cx/Gc/9+/fr0qQddN3yvJsKqC6PgAAABqrxvA9QFXSUN/PDD4Wu2vfP/+af1hVPzfr+hnG Pvm6RlsO/5NuW101w1WTOfbYY5VDYj43a+/jhX9V0pvQvXt3xZjwV+xkFb5LVkplNkeuuOIKV606 W4PrRLN3TYcPH+76uST5vtmVK1daFLzooosUOF01L1qJuE6lfv36qRjOmfZVQ17O5HOzAAAAyETO 9NRlzmw27H7LeKu3+N9JY3U118+oBF/z02/S01t2prLB/gMHy1e/d9rv3Ntc4e8BUjf4HiDlRptg rKjm+hm0cvuaWbWLZzznqskE3wO0ceNGdfUgKzem04oLOaeccoqWBwwYsHPnTnWVW7p06RKeMH78 eC1r2vLly+2dtO3bt8+YMSP8/bESvkuUDh062LRly5a5UtXZGlwn5OKLL7Zj1LmkcKg5xcXF9n05 SeT8+5kzZ85U3tYjqbRplUKkjiHjKGbPnq1i3759dQjq6nG2A/E+N9u1a1c9j+rqeO3ZHDlypE0A AABAo0XO9NRlzrxg2pIg5llzA9nin1fZ99XXpeNSf98yswUT7M9dhpsqUX/XxPWzOWPCUzZHOdaV klFW8f6uiUUXsQlKjNYNjB071hZsgpx55plW8bjhtMxKpltuuUVzCvmC1kxuONsEJWQ3lkyfPn3c PSup4said0D278/+hnYmd4cMbrjyi3PDmjRpsnRp6v8pxCrBM2j0eBb45ioAAACOAORMT5acGcUS Y36y5sxPvtg3aNbS9tfNjvrOnviKEuMtT61SdGw27P7iwVM6jH7wounPhb82dufeL0c8+nLJtbO0 ft1q2b69NixztZkmLFmnCU2HTjtQ9V9r3LJlS//+/Zs1a9a0adOLL7547969lk/csFY+YULHjh2L i4s7depkHxz1Jsh9993Xq1cvrUTTNHnQoEGvvvqqG0vLvEumG264QXOSf5Y1zNafyQ1XVDz++OMK ado97aSCcfA+ZHL79u277rrrFNsU7XR7/fXXhwOk21421Zgzd+/erX3o0KGDDkTPl4Lu8uXL3Vjl 3TVHz6NGdaTKnHp+3TAAAAAaMXKmp6jo54flzLACs2VY1pzZUPS883HlzP5Tn3H9wlhccZ1apByr 7QbvzgEAAACoLkdezny9KtzdQorGvEjOjLNo/VZ7w3P2in9+G2oh6iRnTtbDn/FXNwEAAABUC3Km x//cbBg50xKmWrtRs/L40GxWtZ8zbYsyduxYV6rkBrJxMwrmVpeNm1Ewt7ps3AwAAACgJpEzPeTM OE2HTlPrdP1D4V/7LFDTNNepFfbLhAMHDsz8s5m2M1m5GQVzq8vGzSiYW102bgYAAABQk8iZHnIm AAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABA QciZnjrOmUWTB1lzfQAAAABoaMiZHnJmY1d0OFdtyI6YAwEAAEBDQc70kDNzqIU9fP/994cNG9ah Q4cmTZo0a9asT58+ixcvdmM1z1JZwFVrl236lFNOcf2KCi1b0fWrIu87AgAAAPkhZ3r4/cwcajpn Pvvssy1atLBoFOaGa1FdbVds08XFxXv37lV39+7dWraiTQAAAADqM3Kmh5yZQ43mzB07drRq1Upp 6tJLL924caMqBw4cWLx48dlnn20TalMd5jrbdPfu3efOnavuww8/3K1bNyvaBAAAAKA+I2d66iZn BuEtaG4gzSp/XP9cs/uHHfvwDc9v23jmf/6hydQhnR/5zZrPtobnqK3esaXH/Fs12uWR3z61eZ2N mp1f7r16+dy2M0doVLcjXn5UFTdWKVjPtr1/7/f0JG2xZNa1961/IahnNnfPtAnrlpxYfpvupU3o jgOevX/59k1uLIGxY8cqSvXr18/1s9m2bdvAgQNbtmzZpEkT3WpZFTdWmdDmz5/fokUL5bTt27dr nc2aNevSpYue1mDC7t27L7744qZNm2qorKxsy5Ytdvcwm+k6h1P6veWWWzp37qx9aN68ef/+/d9/ /303VlGhXdIdjzvuuH379qmrW0uJqtuEnNJbLrrxxhsvuOACdbX+66+/3oo2QV599VWtsF27dtoH HWzfvn1Xr17txtJsfsBVKwXF8ePHd+zYUSvp1KnTxIkTbRQAAAAoBDnTU39zZvGUwbagCGcLaoqC 4Tlq7WaNCpZ1lyCI7j2wv+ujNwVD1rrNG7vv669sggmGjps7JliOb+6eFRUKrt6QNTecQK9evRR+ nn32WdfP8MknnyhZWUYKqKK6TbCKvSkqp512mi3IgAEDggnKb7ZgSkpKgjUEbMh1Qg4ePBherWnb tu0HH3xgE7xg6cXOJNKrLFKSVJDW5nS7bNkyK7oZlXPClBWff/55N5wxwVUrWVFp2RYCs2fPdjMA AACAfJEzPfXxe4Cssu6zD1fv2GLLKz99/+3PP9JC25kjwnPUBr4w8+ChQ4OWzrLuRc9NtwljVi6w ioY0YciLD1pXdZtgrKjW6aHrV3z8N1V2frl35Ip5NirBBNcPaTptqA0t/egddQ8cPLj4g7fO/ss9 NppEs2bNFHWUrFw/w4gRIzRBKe7tt99WV7c9evRQ5eqrr7YJqaiUTqpBMFu8ePGKFSu00KFDh2BC sIaNGzfaGkaOHJlewT/ZTNcJGTdunOqlpaXr1qXeLlZAVYJVZdiwYTZB9BTbb5leeumlutWyfQw4 Id1FtKAAPHbsWOXMcNH07t17/vz5+/fv1/KuXbuGDBmi0fBXBwW8OxordunSRWlWXa3Bsreivk0A AAAA8kbO9NTfnJl1WdEuWLam/Knuxr9vt2772dfZhODNTA2FJ3R55Lc2wVhRLerzrsEE1w8J3krt u+i+h999bdve1PNRJRZ+XCebzp07a4Jyo+tXVFiGPPbYY62bXkEqqYq3rBAbTIhZQ8Bmuk6IvVcZ /qCsQpoq7du3d/20OXPmpFeQomVXTcbupQXF1DZt2vTv3z9czOrAgQMabd68ueuHZL2jFZcvX+76 6V+OVcUeJQAAAKAQ5ExPA8uZxVMGB8vhIbFuEESDT9taV7wJxopqBw8dcqXDBRNcP0TZMvhwrzWF 2MlvLXXDCdj7mYpMrp+hSZMmmqDc6PrpT7Gq0rRpU+tqWbIuFxcXB8WYNQRspuuE2D5kUt3NqHTR RRepfvHFF7t+YrZCLZSXl2vBYmpQNCr26dOnRYsWwVfRih2jx4Zcp1LyIgAAAFBV5ExPA8uZ3nLQ VUq0blTOzJxgrBhMyxQ/4f3dO8a+/mTfRfe1/NPwYOaNrz3hhnMpLS1Vzon5/cxCcqYt20LmGjJT os10nZConCluRtq+ffvs3ddjjz02+W9mmsy1Sbh42223WTeTTQjLWk9eBAAAAKqKnOnRZfbWoqJN RUXrv/vdBpkzq+tzs66fIeeEwMItb9rMFtOvdKVcbrzxRj0Bffv2df0MCT83G7NsC5lr6NSpk+tX ysy0pnv37oq1OaPj8OHD05tKueKKK1w1GbuX61QKF1u2bKnlyZMn2+9nyt69e8MTwrLWkxcBAACA qiJnehr8+5n2PUDB1/wMePZ+mxD+HiB1gwljX3/SJhgrqrl+hmb3D7MJq3f4fwuk5+N3Tt/w0pbd O7WsfXhq8zqb6b1lGiP89zPte3oU8xYvXnzOOefYBPseoK5du9qonialPlW87wGKWbYFrUH3VXfj xo22Bq05PfGfNEd1ZTnXrzR+/HjVTznllOXLl1sK3b59+4wZM3r27GkTRPusOYqjCxYs0K2WY96k zaT54jqVwkVb5+OPP247oGM5++yzwxPCstaTFwEAAICqImd6cuTMMFfNi5czLY9lbcFoeGbUslrU 3zXZ9/VX3effHAxZUyXq75q4foYLlkwL5ngzvXrQhi2rwrfgLFq0yL6p1WOjUX/XREnPJlglZtkW ysrKbMGUlJQEawhMmDDBDae5atqZZ57pqoez0Z07d7Zv315drUFdW48qqtuEnNIrO2yLEi7at8uG WQIXmyDWzRQeteVA1iIAAABQVeRMT1zOrEY1lzPX79zWY/6tTaYOOW7umKc2p/7wRmDnl3tHvPxo yaxrNapbLavixioF63H9DJ/s+2LQ0lntZ1+X+cVCyrRaZ2n5uKbpP3DS7P5hvZ64a8K6JW44MT3+ w4YN69ChQ3FxcdOmTRXqFD7dWPrNw4EDB7Zq1apJkya6vfTSS4M/XCnhpJR12RZ279598cUXa+XN mjW74IILtmzx35s1Y8eObdu2rd3FlSrdd999vXr10t21kx07dhw0aJD9gRCxr/857bTTrCunnHKK KvYHPJNIb9DfYrh44MCB6667TgFbW1eCve2227wJYt1M4VFbDmQtAgAAAFVFzvTUTc4snEW+cOpD VkQpAAAAoKaRMz3kzCMcORMAAACoaeRMDznzCFfnOdN2ICs3AwAAAGjgyJkeXe1vPeGETZMaWs5s Om2oNddHhKZprlMXbAeycjMAAACABo6c6Um/n7lkU9nx6wc2qJwJAAAAAPUEOdPjPjc7qWz9WQPJ mQAAAABQZeRMDzkTAAAAAApCzvTwuVkAAAAAKAg509NQvwcIAAAAAOoJcqanof5dEwAAAACoJ8iZ niM/Z/KXNgEAAADUKHKmp25yZm1mv9rcFgAAAIBGiJzpIWcCAAAAQEHImZ4jP2cCAAAAQI0iZ3rI mQAAAABQEHKmp45z5vqd23rMv7XJ1CFdH73pqc3r3HDarv37Rrz8aMmsazXa5oFrBi2dtf0fu9xY 2vLtm7rPv9nu++yHG4J12mjQDZrVA0F9zWdbez1xV9NpQ1tMv3LYsjn7vv7KzQAAAACABMiZHj9n 3hzNEmN+onJmu1mjguXiKYMV+WzC3gP7u80bGwxZ0+Qd+/bYhE27PlUsDIaa339FsGwTgm7QrB4I 6uF9UFO4dTMAAAAAIAFypidLzrRk6KmhnDnwhZkHDx0atHSWdQc8e79NGLNygVVGrpin7l1rFlk3 CIHDls2xykXPTT9w8KDuaF01mxDIWR/+0iPah9l/XWHdklnXuhkAAAAAkAA501PHOfPtzz9Sd+Pf t1u3/ezrbELXR2+yyu6vvlRXOdC6nR663iYc+/ANVrE16Na6ajYhkLO+88u96gabKJ4y2CYAAAAA QBLkTE9RUdHWE/pvOv74usmZrl9ZaTptqHWbTB0SzAk31b0J1g1SYlAJJK9nVgAAAAAgJ3KmJ/V+ 5pL7NxUdnjN1GxbU8xafM4OUmDNnqtmE4imDw11yJgAAAIC6Qs70pN/PPGHTpIX14nOz7WaNsgnB 52Z37d9nFU+HB0fbBG8NajYhkLyeWQEAAACAnMiZnqKtL25d8hv//cxMNZQz7XuAhrz4oHUzvweo 39OTtuzeqcr+gwfK31t92oLf2QTdMbiL1lDI9wC5PjkTAAAAQF7ImR73udnjy+omZ0b9XZN9X39V Wj4uGAo3m7Dx79ub3T8sKCb5uyZB8yZYVzIrAAAAAJATOdOT+txs0eGfm41iiTE/UTlz9Y4tPebf 2mTqkM6P/OapzevccJqi5i2rnuo+/2blSUXQDg+Ovui56cu3b3LDFRXPb9uoUd332IdvWLjlTVth 8G2xwSYymzfBupJZAQAAAICcyJke/++ahBWYLcO8nFntdu3fZxGxxfQrXQkAAAAAagU509OAc2bf Rfct377p4KFD+77+Kvh1zX5PT3LDAAAAAFAryJmeBpwzLViGW5OpQ1Z++r4bBgAAAIBaQc70NOCc ueyjd/s/M7XF9CubThuq27LFk1fv2OLGAAAAAKC2kDM9R8jvZwIAAABAXSFnesiZAAAAAFAQcqaH nAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAA AFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFn esiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkA AAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQ cqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZ AAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqanoJz5+psbbvvzigvue+bfxv9F7eeTltzx+AoV 3XBIOGcWDZrsNasDAAAAQENEzvTknzPnPL/6x79fNOTBl+98+q0pL/1VTQvq9rn7LxpykyqRMwEA AAAcqciZnjxz5oPPr+5z96I7Fr05+cW/ek1FDWmCm5oWzpkBciYAAACAIwA505NPznz9zQ1n/W7h zf+57g/PbbRmuxt0NaQJK0MfoCVnAgAAADhSkTM9+eTM28tX/OJPy+5c/FbQ3v9sj1q4ogm3PLbc 3SGvnLlr3/4Rj75ccu2sJkOmtrnmgUGzlm7f9Q8bsnv98bn1zYbdf+wNDz+/cduZf/hPTev8m0fW bP0syQSz9J2PyiYvbnHldA3ptvfdTy5Ys9mNAQAAAEAy5EyPnzOVLaNYYpT+9y4eMX/VTf+5LqZp wnn3LnZ3qHrO3Lv/QLex84IJ1tqNmrVjzz6NWrd48BRbUEq0BbV+k55OMsEExXBb/NYHbhgAAAAA EiBnerLkTEuGnnD9/9351HXlq0f/+Z/Ndjdcua581Wl3POnuUPWcOWbBShsaOW+FunctWmPdEY++ rK4tr/vws9Vbdtjyyvc/ffujz7XQdsTMJBPMKf+xYP6qv+0/cFDLj7/xvs0MB1EAAAAAyImc6ckr Z97x5JVzVw5/9J/NdjdcuWLua6ff9ZS7Q9VzZtebHrWh3V9+pe7BQ4es2+n6h9S15fREf7np0GmZ xcwJWdnMFldOd30AAAAASICc6cknZ/5s4qKLZiwb9OCKoNnuhiuacN49i9wdqp4zw590DTfVNWrL NtNbLh48JbOYOUGUXe9atObE28qbDbs/+IStmm0CAAAAABIiZ3qy50zdhgV1c8v85T/+wzMXzXgp aLa74YomjJ2X//cAReVMNY0GC1HLWYve8vBHXrJuZrMJAAAAAJAEOdOTz/uZK9dt6H3Hgn6Tnz9v 2lJrtrtBV0OaoGnuDhE5MwiTBw8dcqVKwedmd+3b70ohNhSznLXoLTcdOs26i9/6QDtw4OBB6wYT AAAAACAJcqYnn5wpM59ddcrtC35y77N9Jz3vNRU1pAlualrWnNn95vmW68Y++boXNYPvAeo36ekt O3ersv/AwfLV7532uwVatqH0xOzLWYvecpAz12z9TFu/bv4r1g0mAAAAAEAS5ExPnjlTHliyqvcd C/5t/F/Omrjkx398Vk0L6qrohUzJmjMnPvtmEO2CZkP7vvq6dFy5N2RNo8FC1HLWord86QPPW9da 2xEzg2WbAAAAAABJkDM9WXJmFEuMYa+/ueG3c5f1+/3CXrc+/v9uX/CziX8ZO+8lFd1wSNacKXc/ s7bLbx8Jfw2PG0hHzVueWtX95vn2PT0dRj940fTnlm/arqHwzKzLWYve8u4vv7rioZdaXTVDKz/5 jj+v2fqZjQYTAAAAACAJcqbHz5lhWbNlfqJyJgAAAAA0dORMDzkTAAAAAApCzvSQMwEAAACgIORM DzkTAAAAAApCzvTUQc584b2davV/GQAAAACSIGd66uz9zKh0V9+WAQAAACAeOdPD52YBAAAAoCDk TA85EwAAAAAKQs70kDMBAAAAoCDkTA85EwAAAAAKQs70kDNzK5o8yJrrAwAAAEAIOdNDzqz4ZN8X Fz83o9WMq5pMHZI1T5Iz67+iw7kqAAAAUCvImR5yZkX/Z6YGSTJrnoyq1wdnn62IVTFypOuaESNS xTPPdN3GwOXLSq4KAAAA1ApypoecWdF02lCLkR/s+dyVGo6NGyuKiyuaNKnYtMlVtKCK2ttvu0qj Qs4EAABA7SNnesiZDf5jsVdckXr3sqzMdbWg7rBhrtvYkDMBAABQ+8iZnkadM4OE6bWoUasHLnpu utWXb0+9mahb616wZJpNkF379414+dGSWdc2mTqkzQPXDFo6a/s/drmxtAnrlpxYfluz+4dpgqYN ePZ+W1tyO3ZUtGiRypavvlqxYkVqoXnzVLG+CRLgLbfc0qpVq5YtW06cONGG5MCBA6p37ty5SZMm zZs379+///vvv+/G0l599dWBAwe2a9dOE1q0aNG3b9/Vq1e7sZBgKwAAAECtIWd6yJlZWtSo1QM7 v9zbbtYo1Xs9cZe6utWysuKOfXtswt4D+7vNGxvc3ZruEkxQBPVGrdlocrfdloqXpaWppgV182AJ TVw/gxvON8XZfSfrRAixoYMHD5522mmuVKlt27YffPCBTRBXDVHgfP75591wJRtyHQAAAKBWkDM9 fG429+dmYyYs2rrehm587QlbePz9N9yYzraVC6w4csU8de9as8i6ipc2IfjV0KUfvaPugYMHF3/w 1tl/ucdGk9u/v6JDB0WsVNOCunmwhCaun8EN55vi7L49evQoLy9XsNy1a9eIESNsaNy4cRoqLS1d t26dup988smAAQNUGRb6+G/v3r3nz5+/P31suu+QIUM04ZRTTrHRQGob5EwAAADULnKmh5xZUM6U IS8+GEy4+LkZrprW9dGbrL77qy/VPXjokHU7PXS9TbC3Q9X6Lrrv4Xdf27Y39YzmZ/bsVMhU00J+ LKGJ62dww4XlzPvuu8/1Q7p166ah8AdllSRVad++vetnOHDggCY0b97c9SultkHOBAAAQO0iZ3rI mYXmTGXI9rOv02irGVft/HKvq6YFf5DTa6rbBGXL4imDw0NdHvnt5LeW2mhVWc6stywBKkC6fkiT Jk1s1KO6m1FRMWfOnD59+rRo0aK4uNgNFxVp2Q1XsrrrAAAAALWCnOkhZxaaM9d8tjWY8Oon77lq WlTOVHMzKire371j7OtP9l10X8s/DQ9Gb3ztCTdcFQ0iZ7rO4aJyptiE2267zfUz2IRA1iIAAABQ o8iZHnJmoTmz+/ybNdR25gjddps31lXTgs/N7tq/z5ViLdzyps1vMf1KV6oKxav6nLBiEmD37t2b Nm26b1/ko9SyZUvdd/Lkyfb7mbJ3796sK7TIevDgQdcHAAAAah4500POLChnTnzzWdWLpwx+fttG +wTsXWsWuTGdbZXfA9Tv6Ulbdu9UZf/BA+XvrT5twe9sQs/H75y+4SUbOnjo0FOb19n8ptOG2oQq KTBnWmwT18/ghvPdRsx9x48fr6FTTjll+fLlFhG3b98+Y8aMnj172gSlUE14/PHHbVSn69lnn51e n7/Crl27qqhE6voAAABAzSNnesiZkTEyqGc2m7Bt799bTL9S3bLFqUPTrZab33/FB3s+twn7vv6q tHxccK9wswleMWjDls2xCVWizJVvBkyx2Caun8EN57uN+PueeeaZNsFjo/btsmEjRoywBZsQmDBh gtWNqwIAAAA1iZzpIWfmnzMtWKqt/DT1RakrPv6bdS12GkXNW1Y91X3+zc3uH1Y8ZXCHB0df9Nz0 5ds32eiaz7aOePlRZVH7Ayea0+uJuyasW2KjVaVUVUiwcsksehVuON9t5Lzvfffd16tXr2bNmhUX F3fs2HHQoEGvvvqqDR04cOC6665r166dhtq3b39b+i+ERq1w7Nixbdu2jRoFAAAAqh0500POBAAA AICCkDM95EwAAAAAKAg500POBAAAAICCkDM95EwAAAAAKAg500POBAAAAICCkDM95EwAAAAAKAg5 00POBAAAAICCkDM95EwAAAAAKAg500PObMD2NARuXwEAAIAjFznTQ85swFySq9/cvgIAAABHLnKm h5zZgLkkV7+5fQUAAACOXORMDzkzUtHkQdZcv/5xSa5+c/sKAAAAHLnImR5yZqQGlDOPSstcln79 VNkzerTrmlGjUsVzz3XdeAnXEN5ueNntKwAAAHDkImd6yJmRjoycuXbtnlat9rRuvWf9elfRgipq b7zhKvESriG83fCy21cAAADgyEXO9JAzIx0ZOVOuukrFPT//uetqQd3hw103iSRrCG83vOz2FQAA ADhykTM9RWOKxozv/9jyRpkzJ6xbcmL5bc3uH9Zk6pCSWdcOePb+5ds3ubFQzly/c1uvJ+5qOm1o i+lXDls2Z9/XX7kZFRU7v9x79fK5bWeO0Bp0O+LlR1VR/eChQ6rovru/+tJmBjRBdY1qjrrx+xDP gpyEc1142Wzduqddu1QyXLZsz9KlqYWSklQxuSRrCG83vOz2FQAAADhykTM96fczlyyZVPZwY8uZ yoRBkgw3NxzKme1nXxcsq+mONmHvgf1dH70pPKTWbd5YC6I9H79T3ac2r7PJgQWb16h+8p/v0HLO fYhnQU7CuS68HLj99lQ4PPXUVNOCugGbn5WbkRazBhO+S3jZ7SsAAABw5CJnelLvZ/6m6DejiyYN bGQ5s+m0oRbqln70jroHDh5c/MFbZ//lHhuVIPUNf+mRg4cOzf7rCuu2nTnCJoxZucAqg5bO0oQh Lz5oXdU1OmzZHC1PfPNZmxyYsG6J6hrVcs59iGdBLonPP9/TpUsqH6ppQd2AZcKs3Iy0mDXEc/sK AAAAHLnImZ7G+/uZ7WaNsozXd9F9D7/72ra9qUczzEbVgo/CWrd4ymCbELyZufHv29XVrXW7PPJb deduWqnli56bruX+z0zVsm61fMGSaVrWqJZz7kM8l+SSmTnTpUQt5Ce/Nbh9BQAAAI5c5ExP482Z ynVKjBbzrCkfTn5rqRvO9j1AXsV+AzNzQtNpQ7W8ZfdOLZ9YfpuWOzw4WsvtZ1+n5R7zb9Xy+7t3 aDnnPsRzSS4xS4mFyGMNbl8BAACAIxc505P+3OwJ48eVLRza+L4HSGFv7OtP9l10X8s/DQ+S3o2v PWGjQcW64lW8nBm84Wk5U9o8cI2Wt/9jl4pnPDVBt1pWsFTdJkj8PsRzSS6xrCnRfUY2GzcjhJwJ AAAAZCJnevi7Js7CLW9axmsx/UqrBKnPuuJV4j83K/2enqTuLaue0u3iD97Srf1Kp+o2wZO5D/Fc kkuMnAkAAADUBHKmp/HmzJ6P3zl9w0tbdu/U8sFDh57avM4yXvBupHXVrCteJfw9QOoG3wM09vUn bcK41X9Rt92sUSWzrlVXt/YLmarbhJz7EM8lucTySIkeciYAAACQiZzpyZEzw1w1L/UwZ1qiy2z2 TbDhCdYVr7Lv66+6z785KFpTJfgDm/YeptoFS6apa98GpLZo63qbYN3MFuxDPJfkEiNnAgAAADWB nOlpvO9nrvls64iXHy0tH9c0/cdFmt0/rNcTd01Yt8QNJ8iZsvPLvVpJyaxrm0wdolst25fTmgMH D9rX/Ex7e5m6utWyKqrbhJz7EM8lucTImQAAAEBNIGd6+P3MBswlufrN7SsAAABw5CJnesiZDZhL cvWb21cAAADgyEXO9JAzGzCX5Oo3t68AAADAkYuc6SFnNmAuydVvbl8BAACAIxc500PObMBckqvf 3L4CAAAARy5ypoec2YC5JFe/uX0FAAAAjlzkTE+RnND/NwvJmQ2QS3L1m9tXAAAA4MhFzvSk389c cn9Z2WhyZoPjklz95vYVAAAAOHKRMz2p9zPTys4jZwIAAABA1ZEzPfx+JgAAAAAUhJzpIWcCAAAA QEHImZ70Z2ZPOOH4skkDG2vO/OSLfRfPeK7VVTOaDJlaNGiymhsAAAAAgATImR7ez6zoP/UZi5dB cwMAAAAAkAA500POrGg6dJrFyw8+58tRAQAAAFQZOdNDzqzgbUwAAAAAhSBnekI5c+BZLhRWqrmc GUS71Vt29Lh1fpMhU7v89pGn1m12w5WCadv+vrffpKebDbu/5NpZ972w3kZ37v3y6rnL246Yqbvr dsSjL6tiQybnhGD9XnPDAAAAAJAAOdPjv5+pbBnFEmN+onJmu1GzguXiwVPWbP3MzUgLho4bMzdY VtPQ3v0Hut70aLio1m3svH1ffW33zTlBvNGguWEAAAAASICc6cmSMy0ZemooZw6c+cLBQ4cGzVpq 3YumP+dmpAXTOl3/0Iq/fazKzr1fjpy3QgtjFqy0Id1Xaxjy4IvWVT1919wTAlZXc30AAAAAqApy pqeOc+bbH32u7sbtf7du++tm2wQTTFu+absrVQreq9R91Q3W0OW3jyScELC6musDAAAAQFWQMz11 nDNdv7LSdOg0108Lph08dMiVKmX+rUvrBmvIOSFg9fDMKjnhcK4KAAAAoNEgZ3qy50zdhgX1vMXn TMVI60blTNcP8WJk5hpyTghYPZhZVS5fVnJVAAAAAI0GOdPTMD436/ohfG4WAAAAQD1BzvQUyQn9 f7OwTr8HKPiSngH3P+tmpAXTXD8k/DU/6gZrGPvk6wknBKyu5voAAAAAUBXkTE/6/cwl95eVja6T nJnw75q4fsi+r77ufvP8YII1VYI/W5JzQiAYdX0AAAAAqApypif1fmZa2XmVOTOKJcb8ROXM9dt2 9rh1fpMhU48bM/epdZvdcKVgmusfbufeL0c8+nLJtbN0d91qWRU3lpZzgonfCgAAAADEI2d6/N/P DCswW4ZF5UzXBwAAAIAGi5zpIWcCAAAAQEHImZ70Z2ZPOOH4skkDyZkAAAAAUHXkTE/dvJ/ZdOg0 a64PAAAAAA0WOdNTNzkTAAAAAI4Y5EwPORMAAAAACkLO9IRy5sCzXCisRM4EAAAAgJzImR7ezwQA AACAgpAzPeRMFGQPAABAdXPXGUDDQc70kDNREPfTAAAAoPq46wyg4SBnesiZKIj7aQAAAFB93HUG 0HCQMz2NN2cWDZpszfWRF/fToCpuuOGG3r17u059FbOTH3744aBBg0pKSo5Kc9U9e6wbcNX6Ledz UYdP1umnn37jjTe6Ts3IuYnCJ9QmXln1R31+4XBWV7tGclZHqbkzyl1nAA0HOdNDzqzXObMozXWy sQmZiouL3Ywa5n4aVP7UzFz2rF27tlWrVo899pjrV7eYTScXv5NXXHGFbcW4agO8bsj5XGSd0K+f jnTP6NGua0aNShXPPdd1PcuXL9cDElyHvfLKK9dcc81JJ53Utm3b1q1bd+nSRQ/pm2++aaMBbVdb 1z64foSsD3V1baLwCbUm65NVjdInNa+sRLIeZv154RQ+IaHCn6z4E6Zw6ROKszpSrZ1y4QchvOyu M4CGg5zpSeXM+/unksl3uzauv2tyZOfMs88+282oYfbDQMI/G8LLnksuueToo4/+4osvXL+6xWw6 ufid1JA2sXTpUtfPUC37UAtyPhdZJ+hSoVWrPa1b71m/3lW0oIraG2+4iqesrEwPyMKFC61rj4+n pKRk0aJFNsFoux07drzwwgtd/3Dat1WrVmlB99Wtli+77LL0SIqt01PVTUjhE2oNr6z6oz6/cKTw CfHiX5tVwlldt2zfPDVxytmaM5fddQbQcJAzPe79zEllx581kPcz6x0Lja6TTLdu3XQXXZq4fg2z HwYS/tkQXg7TmdaqVau8rzmSiNp0cjl3Mucmck6oD3IeZsyEq67SMe75+c9dVwvqDh/uup61a9fq 0SgtLXX9PXtOPfXUCRMmrFy50q7MtHDWWWdpzkknnWQTApdffrn2QXvi+iGzZ88+9thjy8vLdUfd alkVN1ZNmzCFT6gFMU9WddGjJ66Tl5w7mXMTOSfUBzGHWR9eOKZGz+r412ZyOU+YwqXOJ87qaLV2 yoUfhPCyu84AGg5ypqeo6PtjlmxaUnb86IGN9XOz67ft7HXXE02HTmtx5fRhc5bt++prN6OiYuk7 H5VNXqx6kyFTddv77icXrNnsxioquvz2Ed39nD8ucv2Kij4TF6qiuutXVOzat3/Eoy+XXDtLa2hz zQODZi3dvusfbiyBquZM/RjQ/Pbt27t+zbMfBhL+2RBeDhs/frzqmdccwXxNOO6441q3bt21a9eJ EyfaqFm2bNngwYN1yaLRdu3anXfeea+88oobq1xDVm5GYvE7mckNh0TVRT9ldRR6gnQUutWy93M3 5wQJ1n/rrbceffTRmuY9VklEHWYgZsLWrXvatdNu6EnZs3RpaqGkJFXMaujQoVrPzJkzXT+brVu3 ao6uQvRPkiulaeuq60LH9Q+3fv36nj17aoIuhjI/yuXJbxNS+IRawCurQbyy6skLRwqfEK9Kr80o nNX156wO1NApl9rFygchvOyuM4CGg5zpKZr58+//5je/Ob5skv1+prJlFEuM+anPObP9dbODZTXF QjcjNCfcFr/1gY2OnLdC3WbD7j946JC6ulVYVeW6+a/YhL37D3QbOy+4o7V2o2bt2LPPJuRU1Zw5 ZMgQzb/xxhtdvypsW+L6ydgPAwn/bAgvh51//vmqZ36CyObrp6AtBMLXWK4Uop+sixcvjhoN2ITk 4ncykxsOiapv3rxZ1z02GlBF9YQTjNUnTZpkC8aNJRZ1mIH4Cbffrt3Yc+qpqaYFdbN69913dUWi q0DXj/Dxxx+nD+Kojz76yJXSdLGoovbE9Q+3YcMGu5bVrZZdNUJ+m5DCJ0RJ7U0ENyOxqCfL1sYr q/68surDC0dq7qw2VXptRok/YTira/OsDtTQKZdepdur8LK7zgAaDnKmp2jrzJ+fcMIJZZPc9wBF 5ckjOGcOf+QlRcTZK/5q3bYjZroZFRWn/MeC+av+tv/AQS0//sb7NqHfpKdt9PmN26yyfNN2dZe9 +5F1VbcJYxastIoSqbp3LVpj3XCUjVel4Ld3795mzZpp/vvvv+9KVWHbEtdPxn4YJNSxY0f9/Pj8 889dv5L9XOnRo4d+FKmrH2C/+MUvVDn99NNtgvTp02fu3Ll2X024Iv3lCj/60Y9sNJBeU/4/RCVq JwM5NxE1YdSoUaqXlpa+kf59LN3apdi1116bcIJRRTQ0b968L774Qo+G7ujGEst5mPETVO7SRXuS alqIWs3o0aO1kpz/fa4D1DRdIbl+JW1dde2J64fMnj27c+fOjz32mCboVvfNfEshLI9NmMInRNG9 orgZiUU9WbY2Xln155Wlct2+cEzhE2JU9bUZJeqRVFE4q2vzrA7U3CmXlbvOABoOcqanaOvWF/sX nTB6YePNmTv3fqmuoqZ1iwdPsQmZbEKLK6dbV3fRsioKkOqO+8tqLbcc/icbla43PWp32f3lV+oG m+h0/UM2IacqBb/JeoyLinr37u36VWTbEtdPxv00SKZVq1b6SeM6ISrKCy+84PqVH85p27at62fQ uasJJSUlrl8pvaaCrhuidjKQcxNRE7p37656+H++taxKt27drJtzglFF7r33XtfPS87DzDlh5kzt SapFfbJPFzR6gjp16hRzESa33357+oCOmjNnjiuFqN66dWvXCbnkkkvs6koTdKtlVdIjWeS3iUDh E2oaryzVG8orq25fOIHCJ0Sp0mszBme16vXkrDY1fcplctcZQMNBzvT4f9ekEeZM18+oKBYqQJ54 W3mzYfcrfAajTYZMtQnSf+ozqtivaOpWyxdMW2JDopnBvcItvIZ4VQp+PXr00OS5c+e6fq1wPw2S 0c8Y/aRxnZDUD66MulecPXv2T3/603bt2tnPdaNlN1zJ6q6Tl6idDOTcRNQEW7N9oYLRsipt2rSx bs4JRhXRxajr5yXnYeacIBqPmWIfbNM/Ha6fQf8ADR48OHUwRx119913u+rhNKQ9cZ1sNMEtZVNd myhwQk2LerJUzKx7RV5ZAVWkpl9ZovGYKbX2wilwQk5ag1vKS9QjqWJm3StyVgdUkQLP6to55TK5 6wyg4SBnerLnTN2GBfW8NcScOfyRl4KK12yCPPzau+oqiB44eFC3WlbFjUXnTDU3I5fkOXPNmjWa qR8wBw+mPuVba9xPg2TiPwflOpXCxeC/UTPZhEDWYpXU3Oegqve6wXXylfMwc04Q7UXUjuiOnTp1 Kikpibq+2bx58+mnn65NaEPl5eWuejitRBOOOeYY16+iatlE4ROi6F5R3IzEop6srGsLF3lluX6a KuI6+WoQL5zCJ9QCzmrV68NZXTunXFbuOgNoOMiZHt7PjMyZ9qU+aovf+uDgoUNKkt4E2f3lV/ZW 54Ql63SrZfuIrAk+N7tr335XqqLkOdO+AWjkyJGuX1vcT4Nk7CsTwp93MiqK61QKF9u3b6/lSZMm BT/OP/300/CEQNZilUTtZCDnJjJ//Jvq/RyU6+Qr52HmnCDai6gdueeee3T3qF8EWr58eefOnTXh sssu8761IswOP+qrI+JV1yYKnxBF94riZiQW9WRlXVu4yCvLukYVcZ185TxM0UaitlM7L5zCJ9SC qEdSRXGdSuEiZ7V1jSriOlVXa6dcVu46A2g4yJmeUM4ceJYCITkzqAQ5c83Wz5Qzr5v/ijfBnPIf C1Q5bsxc3WrZVdOC7wHqN+npLTt3q7L/wMHy1e+d9rvDpsVImDP379/fvHlzzdy4caMrVZ1tS1w/ GffTIJmJEyfqJ03md0KoKK5TKVxs06aNlh977DH7Ybxq1ap+/fqFJwQ6deqk4tSpUzN/bCcUtZOB 9GbjfmyfdNJJmqCrHNevZF/boFH75SUdxcknn6yK970OMROMKuI6+cp5mDkniPYi647owbe/N/Du u++6UsiMGTP0hPbs2VNXMK4UYebMmdqHPP64QjVuovAJtYBXluoN5ZUl2kjW7dTaC4ez2nBWx6vN Uy4rd50BNBzkTA/vZ0bmzEsfeD6oqLUdMTNYtglm/GL3LbJqdz+z1lXT9n31dem48mA03NyMXFzy y8bNSJs2bZoq+mHg+nmx1YrrJ+N+GiSjM61Vtj9pnf45GHfdYN8WGGY/YsUmBHQaWz3gBhKL2slA ztXqR6nNMa4a/TX07733XsIJxuquk6+ch5lzgmgvsu6IXVIMHTrU9Q9n+59V8P6DufDCC7UP2hPX T8ytLpuqbqLwCbUg6smyQ3adSuEiryybYKzuOvnKeZiijWTdTq29cDirDWd1PLtvVtV+ymXlrjOA hoOc6cmSM6NYYsxPQ8yZu7/86oqHXmp11YziwVNOvuPPa7Z+5k0wb3/0eVDXsqtWUtS85alV3W+e b18m1GH0gxdNf87+DkoSLvll42aknXjiiapMn+6+CDc/tlpx/WTcT4PELrnkkqOPPtr7z2P7ueU6 lcJFnam//vWv9RNUP6g6d+58e/qvzoUnBD7++GNdUnTp0kUzs05IIutOBpKsVq8X+59yb6auAAYP HqyVt27dWreDBg3y3rjIOUEyV5uf+MOUnBO0F1l3pLS0VHto/8ueyfY/q/C1i7arrevqxPWrwq0u myptovAJtYZXVgN6ZWkjWbdTOy+cwifUGs7quj2r7b5ZVe8pF8VdZwANBznT4+fMsAKzZVg9zJmo Fu6nQWI60/QTfe7cua5fLzWInSxczsPM73FYsGCBrkIK/82uefPmaetr1651/RqQcxOFT6g1vLLq j3r+wuGsrl6N5KyOUXNnlLvOABoOcqaHnImCuJ8GVXHTTTdl/r3s+qZB7GThch5mHo/DWWed1aZN m5y/z5OT1jNmzBjXqRk5N1H4hNrEK6v+qM8vHM7qatdIzuooNXdGuesMoOEgZ3qKvj+GnIn8uZ8G AAAA1cddZwANBznTw/uZKIj7aQAAAFB93HUG0HCQMz28n4mCuJ8GAAAA1cddZwANBznTQ85EQdxP AwAAgOrjrjOAhoOc6SFnoiDupwEAAED1cdcZQMNBzvSQM1EQ99MAAACg+rjrDKDhIGd6GmvOfOml BtAAAAAANATkTE9RUdHWoqJNRUXrzyNn1rcGAAAAoCEgZ3oa69818RJd/WwAAAAAGgJypoecWY8b AAAAgIaAnOkhZ9bjBgAAAKAhIGd6yJn1uAEAAABoCMiZHnJmPW4AAAAAGgJypqdR58wJ05448fpZ zYZMbTJ4Ssnw6QPGPbL8z4v/GfNeemnnc0uv/v28tlferwm6HTFhvirhCWpFgyZb2/bMC/1ufUhr 06ru+9OCJBO0ddU7XvOnYHL30TNV6XbdA6kuAAAAgIaAnOlpvDlToTFIgOEWRL69L7zY9boHvFEl wH1LlwVz1IKh40bNCJbVkkyY/KcFtvzq48+ou3/psuJfpro33FOeui8AAACAhoCc6Wm8ObPp4CmW 8ZY+lnoP88CyZYsfXXT22DmpgJduY+4ttwmD/uPRg8uWDRn/qHVVD+aoWVGt0zV/WpGOizufWzpy wvwkE3a/8GKT9G5c94fH1F3w8F9spsVOt6sAAAAA6jdypqfo+2Maac5sd9X9Fur63vrQww/+57Zn XkhFu1AL3szcuPA5dXVr3S6jZoSnWVHN+8xt0OInXHznIxqyj85eP/ExLXe4erobBQAAANAQkDM9 jff9TGVL+5Bq0BQgJ4d+r9LeaVQLKtZtOnhKUAmKageXHfZ52qDFT3h+/tM2+urjz/Qe86AWhv9+ nhsFAAAA0BCQMz2N9/1MtfcXPT/23vK+tz7U8lfTLOyp3fjH1EdY1bycqZRo3aicGS6GW84Jna75 k0ZHTphvW3x2/tNuCAAAAEBDQM70NOqcGW4L57rfjWwxbKpVqvq52XAx3HJOUNbVqGXdVr+a9s8h AAAAAA0BOdPTeHNmzxtmTX/gyS2Ln9fywWXLnqrMmcHbleHvAVI3+B4gxUKbYM2KauFiuOWcoH0I PsF78Z2P/HMIAAAAQENAzvTkyJlhrpqXepgzg/jntWG/c78euW/pMvtrluGmStTfNQkXwy3nBLUz bkr9ZqZa+UML/1kHAAAA0BCQMz2N9/3MNQuWjJgwv/TfZ9ofOGk2ZGqv38yeMO2Jf8a89B8g0ZyS 4dObDJ6iWy2rEp6gZvlQzasHLecENW1XE7QnB8LfFQQAAACgISBneoqKirYWFW0qKlp/XuP+/cy6 bT1vmKWc2f/2hw+rAwAAAGgIyJmexvt3TepPW/ToInvDc/as/zxsCAAAAEBDQM70kDPruFnCVGt3 1f2HfWhWDQAAAEBDQM70kDPruDUdPEWt0zV/Wv7nxd6Q21UAAAAA9Rs500POrMcNAAAAQENAzvSQ M+txAwAAANAQkDM95Mx63AAAAAA0BORMDzmzHjcAAAAADQE509NYcyYAAAAAVBNypoecCQAAAAAF IWd6yJkAAAAAUBBypqeoqGhr0QmbJi0kZwIAAABAPsiZnvT7mUs2lR2//jxyJgAAAABUHTnT4z43 u3D0+p7nkTMBAAAAoMrImR5yJgAAAAAUhJzpSeXMJfdvOp7PzQIAAABAXsiZHr4HCAAAAAAKQs70 8HdNAAAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMA AAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9BQVFW09of+m heRMAAAAAMgLOdOTfj9zyaayMnImAAAAAOSDnOlJvZ9ZVLSpqGj9eeRMAAAAAKg6cqaH388EAAAA gIKQMz3kTAAAAAAoCDnTk/7c7Ambji9bP5CcCQAAAABVR8708H5m/bUHAFDX3L/IAADEImd6yJn1 l7vGAQDUHfcvMgAAsciZHnJm/eWucQAAdcf9iwwAQCxypqfx5syiQZOtuX79465xquKGG27o3bu3 62STc0LeTj/99BtvvNF1GqCjDueqGerVYdbcs1mNYnbyww8/HDRoUElJifeYWzfgqvVbHb70cqqF kzbnJgqfUIfcv8gAAMQiZ3rImQ0gZ4avtsPLnrVr17Zq1eqxxx5z/Qw5J0TRHe+4445TTz01Zuta rVauma7f0NihBVw1Q7Uc5nPPPdc6TQuuVHV5P5sJxT8OCcXv5BVXXGFbMa7aAHNmzuci64R+/XSk e0aPdl0zalSqeO65rutZvny5HpAgr77yyivXXHPNSSed1LZtW51OXbp00UP65ptv2mgg4Umb9aGu rk0UPqEOuX+RAQCIRc70kDOPnJx5ySWXHH300V988YXrZ8g5IYptNOCqh9NqO3bseOGFF7p+gxVz jFL4YW7YsKFTp07dunXr3r27Ft555x03UEV5P5sJxT8OCcXvpIa0iaVLl7p+hmrZh1qQ30tPkapV qz2tW+9Zv95VtKCK2htvuIqnrKxMD8jChQuta4+Pp6SkZNGiRTbBxJ+02rdVq1ZpQffVrZYvu+yy 9EiKrdNT1U1I4RPqkPsXGQCAWORMDznzCMmZehJbtWoVvkD05JwQo7S09NZbb127dm3U1s3ll1+u TWhDrt8wxR+jFHKYH3/88Q9+8IMuXbro7tK5c2d1VXTDiem+eT+bCeV8HHLKuZM5N5FzQn2Q8zBj Jlx1lY5xz89/7rpaUHf4cNf12AtQL0bX37Pn1FNPnTBhwsqVKy3BauGss87SnJNOOskmBGJO2tmz Zx977LHl5eW6o261rIobq6ZNmMIn1BX3LzIAALHImR5y5uT123b2uuuJpkOntbhy+rA5y/Z99bWb UVGx9J2PyiYvVr3JkKm67X33kwvWbHZjFRVdfvuI7n7OHxe5fkVFn4kLVVHd9Ssqdu3bP+LRl0uu naU1tLnmgUGzlm7f9Q83lou7xjn8aju8HDZ+/HjVwxeInpwTkkhvPPK6XyvXqK5KXb+6BVtX6D36 6KPbt28/ceJEGxKdzap37969devWJSUlF1544YYNG9xY2rJlywYPHqzLaE1o167deeed98orr7ix kGArUQo5zHPPPfeYY44J3sO09zZVtG5yUc9met9TO68Jxx13nI60a9eu4UdJ4h8HW0NWbkZi8TuZ yQ2HRNVF/2rpKHQO6Ch0q2Uvn+ScIMH6s55RCRXy0tu6dU+7dtoNPSl7li5NLZSUpIpZDR06VOuZ OXOm62ejf881R2lNLwdXSos/afXvf8+ePTVBqTLzM7Ge/DYhhU+oK+5fZAAAYpEzPX7OVLaMYokx P/U5Z7a/bnawrKZY6GaE5oTb4rc+sNGR81ao22zY/QcPHVJXtwqrqlw3/xWbsHf/gW5j5wV3tNZu 1Kwde/bZhHjuGufwq+3wctj555+vesxHEHNOSCK98ezX/aIAo1FtyPUzxN9d4ifY6KRJk2zB2NAX X3xhb7OEKcK9++67NkFcNUQJZPHixW64kg25TjY5DzPKtddeq12yzygG1FXxmmuucf1kop7N9L4f pdRkC4FwOHGlkPDj4ErZ2ITk4ncykxsOiapv3rxZOdlGA6qonnCCsXrWMyq5nK+s+Am3367d2HPq qammBXWz0pmsaNe1a1fXj/Dxxx+nD+Kojz76yJXS4k/aDRs2WM7Urfe/M5ny24QUPiFKam8iuBmF cf8iAwAQi5zpyZIzLRl6juCcOfyRlxQRZ6/4q3XbjpjpZlRUnPIfC+av+tv+Awe1/Pgb79uEfpOe ttHnN26zyvJN29Vd9u5H1lXdJoxZsNIqSqTq3rVojXXDUTaGu8ZJpmPHjrqo+vzzz10/Q84JSaSv 3CIv3bRyjWpDrp8h/u4SP8FGdSk8b948BUtd5o4aNcqG7rjjDg2deuqpK1euVFdx4pJLLlFleOgz iH369Jk7d649ArqvfQnNj370IxsNpLYRu5M5D7MWRD2b6X0/qkePHrpkV1eH+Ytf/EKV008/3SZI dT0OOeU85XJuImqCnnfVS0tL30j/IqNuLSYpySecYFSRrGdUcjkPM36Cyl26aE9STQtRqxk9erRW kvPtVh2gpilRu34lbV31rCft7NmzO3fu/Nhjj2mCbnVfVdxYNnlswhQ+IYruFcXNKIz7FxkAgFjk TE9RUdHWohM2TVrYeHPmzr1fqquoad3iwVNsQiab0OLK6dbVXbSsigKkuuP+slrLLYf/yUal602P 2l12f/mVusEmOl3/kE2I565xkmnVqlX8RVXOCUmkr9xyBIPWrVu7ToYkd4+ZYKP33nuv64coUWgo /FaMMoMquoB2/Qw6+zWhpKTE9SultpHrgdKEmMOsBVHPZnrfj3rhhRdcv/JTjm3btnX9DIU8DvFy nnI5NxE1oXv37qqH3yHUsirdunWzbs4JRhXJekYlV/hLb+ZM7UmqRX0kVieznqBOnTpFhVVz++23 pw/oqDlz5rhSiOpZT9pLLrnE0rgm6FbLqqRHsshvE4HCJ9QJ9y8yAACxyJme9PuZSzaVHb/+vMaa M10/o6JYqAB54m3lzYbdr/AZjDYZMtUmSP+pz6hiv6KpWy1fMG2JDYlmBvcKt/AaYrhrnGR0caZL NNfJJn6ChsJcNUP8qGi05i4Tbeu65nb9EDu6TOGdmT179k9/+tN27drZdb/RshuuZHXXiaAJNXeY SUQ9m+l99+tesRofh3hROxnIuYmoCbZm+2Yao2VV2rRpY92cE4wqkvWMSi7nYeacIBqPmWIfhNY/ wq6fQf+UDx48OHUwRx119913u+rhNKQ9cZ1sNMEtZVNdmyhwQp1w/yIDABCLnOlxn5tdOHp9z/P+ mTN1GxbU89YQc+bwR14KKl6zCfLwa++qqyB64OBB3WpZFTcWnTPV3IxY7honmfjP5kn8BA2FuWqG +FH72Nsxxxzj+tUtZut2KZ+VTQjeh8lkEwJZi2E1fZhJRD2b6X2PO6JqfBxyynlO5txE1AR7uqsr Z7pOvgp86RntRdSO6I6dOnUqKSmJysObN28+/fTTtQltqLy83FUPp5VoQt4nbbVsovAJUXSvKG5G Ydy/yAAAxCJnerLnzEyNMGfal/qoLX7rg4OHDilJehNk95df2VudE5as062W7SOyJvjc7K59+12p Ktw1TjL2XSPhD0x6ck5IIn3lFnnpZh9NzONrPBKK2frJJ5+sCPHZZ5+5fob27dvrvpMmTdK1rFU+ /fTTrCvMjCiemj7MJKKezdTxZBxRuJj8ccharJKcp1zOTUQ9F9X7uVnXyVfOw8w5QbQXUTtyzz33 6O5Rvzi6fPnyzp07a8Jll13mfctRWCEnbXVtovAJUXSvKG5GYdy/yAAAxCJnelI5c8n9m47nc7PR OXPN1s+UM6+b/4o3wZzyHwtUOW7MXN1q2VXTgu8B6jfp6S07d6uy/8DB8tXvnfa7w6ZFcdc4yUyc OFEXVTFf4JFzQhLpK7fIS7eZM2dqNObPEsTfXeInxIzan4740Y9+pKt5iyXvvffe9OnTe/fubROU QjXhscces9FVq1b169cvvT5/hSeddJKKSmKunyHnYdaCqGczdTwZRxQuJn8cOnXqpOLUqVNjIne8 nKdcerPZn1AT9VzY1/xo1H6xUEdx8sknq+J9D1DMBKOKuE6+quWlp73IuiN68O3v04S/OTkwY8YM PaE9e/ZUFHSlCHmftNW4icIn1BX3LzIAALHImR6+BygyZ176wPNBRa3tiJnBsk0w4xe7b5FVu/uZ ta6atu+rr0vHlQej4eZmxHLXOMlsiv5b8CbnhBi6+MvKDVe68MILtQltyPUzZL1XWPyE+NFzzz3X Jnhs1L5VNcyiiNiEgC5zrW5cNSTnYdaCqGcz6z6Hi8kfB/2DYPWAG0gs5ymXc7VRz8XmiD9b8t57 7yWcYKzuOvnKeZg5J4j2IuuOWPQaOnSo6x/O9j+r4P1qk/dJ61aXTVU3UfiEuuL+RQYAIBY505Pl 75pEscSYn4aYM3d/+dUVD73U6qoZxYOnnHzHn9ds/cybYN7+6POgrmVXraSoectTq7rfPN++TKjD 6Acvmv6c/R2UnNw1TmKXXHLJ0UcfHfPuU84JUdx1ZQY3nKbVauW6UnT9bDLv5YmfED8q99577+mn n962bVtdrR533HG6Orc/7yE613/9618raWioc+fOt6f/TGHUCnW227t5maNJDrN2ZH02s+5zuJj8 cfj4448VQbt06aKZWSckEX/KJVlt1HOhxDh48GCtvHXr1rodNGiQ945fzgmSudr8FP7S015k3RH7 ImV7VzaT7X9W4RBYyEnrVpdNlTZR+IQ65P5FBgAgFjnT4+fMsAKzZVg9zJn1n7vGSUxPoiLB3Llz XT9DzgmFmDdvnla+du1a1z9C1Z/DrNFns7o0iJ0sXA299BYsWKA4l98vVYbVwkmbcxOFT6hD7l9k AABikTM95Mz6y13jVMVNN92U+Qf3w3JOyNtZZ501ZswY1zly1avDrLlnsxo1iJ0sXE289HSytWnT JucvRuZUCydtzk0UPqEOuX+RAQCIRc70kDPrL3eNAwCoO+5fZAAAYpEzPeTM+std4wAA6o77FxkA gFjkTA85s/5y1zgAgLrj/kUGACAWOdNDzqy/3DUOAKDuuH+RAQCIRc70kDPrL3eNAwCoO+5fZAAA YpEzPeTM+std4wAA6o77FxkAgFjkTE8d5Ez3oxsAAKA+sQsVAMgDOdNTVFS09YT+mxaSMwEAQONm FyoAkAdypif9fuaSTWVl5EwAANCo2YUKAOSBnOlJvZ9ZVLSpqGj9eeTMhu+GG27o3bu362STc0Le Tj/99BtvvNF1GqCjDueqGerVYRb+bNbc+VCNYnbyww8/HDRoUElJifesWTfgqvVbHT4XOc/qwifU Js7q+q8Wzqi812AXKgCQB3Kmh9/PPHKsXbu2VatWjz32mOtnyDkhiu54xx13nHrqqTHXN1qtVq6Z rt/Q2KEFXDVDtRzmc8891zpNC65UdXk/m4HC1xAv/pFMKH4nr7jiCtuKcdUGeEWe9TD79dOB7Bk9 2nXNqFGp4rnnuq5n+fLlOt4gwLzyyivXXHPNSSed1LZtW51vXbp00SP25ptv2mgg51ld+ISECn+y 4k+YwqVPKM7qSLV2yuWUcw3hhzG8bBcqAJAHcqaHnHnkuOSSS44++ugvvvjC9TPknBDFfgYHXPVw Wm3Hjh0vvPBC12+wYo5RCj/MDRs2dOrUqVu3bt27d9fCO++84waqKO9nM1D4GuLFP5IJxe+khrSJ pUuXun6GatmHWpD1MHWF3KrVntat96xf7ypaUEXtjTdcxVNWVqbjXbhwoXXt8D0lJSWLFi2yCSbn WV34hHg6/FWrVmlBu6dbLV922WXpkSrjrK5btm+emjjlcsq5Btu3zGW7UAGAPJAzPenPzZ6w6fiy 9QPJmQ3Zpk2bWrVqFXNxlnNCjNLS0ltvvXXt2rXhH8aZLr/8cm1CG3L9hin+GKWQw/z4449/8IMf dOnSRXeXzp07q6uiG05M98372TSFryGnnI9kTjl3Mucmck6oD2IO86qrdAh7fv5z19WCusOHu67H XqF6tbr+nj2nnnrqhAkTVq5caZFGC2eddZbmnHTSSTYhkPOsLnxCjNmzZx977LHl5eXaN91qWRU3 VhU5T5jCpc4nzupotXnK5RS/hvDDGF62CxUAyAM508P7mUeI8ePH68dkzMVZzglJpH8WR17faOUa 1UWG61e3YOsKvUcffXT79u0nTpxoQ6KzWfXu3bu3bt26pKTkwgsv3LBhgxtLW7Zs2eDBg3UJqwnt 2rU777zzXnnlFTcWEmwlSiGHee655x5zzDHBe5j23qaK1k2u8Gczag2pg08fviYcd9xxeqy6du0a fpwl/pG0NWTlZiQWv5OZ3HBIVF30756OQmeRjkK3WvauR3NOkGD9Wc/JhGKeza1b97Rrp63oMd+z dGlqoaQkVcxq6NChWs/MmTNdPxv9g685uvjW68WV0nKe1YVPiKefQT179tQaFFQyP2aZEGd1/Tmr AzV3yuUUvwYNSeayXagAQB7ImR5y5hHi/PPP14/JmI9a5ZyQRPpncfbrG9GFmka1IdfPEH93iZ9g o5MmTbIFY0NffPGF/a95mCLcu+++axPEVUN0pbV48WI3XMmGXCebnIcZ5dprr9Uu2ecDA+qqeM01 17h+MoU/m1FrSB38UUfp+tIWAuH04koh4UfSlbKxCcnF72QmNxwSVd+8ebMShY0GVFE94QRj9azn ZHLxz+btt2sre049NdW0oG5WOtV1Ka/45PoRPv74Y9vJjz76yJXScp7VhU+It2HDBsuZuvX+hyi5 +BOGs7o2z+pAzZ1yOcWvIbVPlccVXrYLFQDIAznTQ848QnTs2FE/Jj///HPXz5BzQhLpn8WRFxxa uUa1IdfPEH93iZ9go7oMnTdvnoKlrlpGjRplQ3fccYeGTj311JUrV6qry6ZLLrlEleGhjxj26dNn 7ty59gjovvZlGz/60Y9sNJDaRuxO5jzMWlD4sxm1htTBH3VUjx49dImmrh6oX/ziF6qcfvrpNkGq 65HMKedh5txE1ASdOaqXlpa+kf5NR91ayLn22msTTjCqSNZzMrn4w1S5SxdtKNW0EPVgjB49WivJ +b6T9l/TFC1cv5K2rnrMWV34hBizZ8/u3LnzY489pjXoVruX+XZfElGPpIrCWV2bZ3Wg5k65nPJb g12oAEAeyJkecuYRolWrVvqB6jrZ5JyQhNYQvxKNtm7d2nUyJLl7zAQbvffee10/RFdOGgq/DaJr I1V08er6GXT2a0JJSYnrV0ptI9cDpQkxh1kLCn82o9aQOvijjnrhhRdcv/Jjb23btnX9DIU8kvFy HmbOTURN6N69u+rh95S0rEq3bt2sm3OCUUWynpPJ5TzMmTO1oVSL+kisznY9/p06dYpJL3L77bfb Ds+ZM8eVQlSPP6sLnxDlkksuseSjNehWy6qkR6qGs1r1enJWm5o+5XLKYw12oQIAeSBnesiZRwj9 KNUPVNfJJn6ChsJcNUP8qGi0wMuCGLZ1XVK7fogdXabwzsyePfunP/1pu3bt7DrPaNkNV7K660TQ hJo7zCTin80kotaQOviMulesxkcyXs7DzLmJqAm2ZvuqEqNlVdq0aWPdnBOMKpL1nEwuybOp8Zgp 9olQ/Yvt+hn0b/3gwYPTO3vU3Xff7aqH05D2xHWyKXxCTlqDW8pL1COpYmbdK3JWB1SRAs/q2jnl cspjDXahAgB5IGd6yJlHiJyfxYqfoKEwV80QP2ofUjrmmGNcv7rFbN2un7KyCcF/q2eyCYGsxbCa Pswkcj7dOUWtIXXwsY9JNT6SOeU8zJybiJqQ84I75wSjirhOvpI8m9pI1HZ0x06dOpWUlEQFg82b N59++unahDZUXl7uqofTSjQh5qwufEIt4KxWvT6c1bVzyuWU3xrsQgUA8kDO9JAzjxD23RLhD4Z5 ck5IQmsQ18lgH8Eq5Gsb4sVs/eSTT9al0meffeb6Gdq3b6/7Tpo0Kbi8+/TTT7OuMPNSzFPTh5lE 4c9m1BpUFNepFC4mfySzFqsk52Hm3ETUs1m9nzB0nXwleTa1kajt3HPPPbp71G/QLV++vHPnzppw 2WWXeV/3EpbzrC58Qi2IeiRVFNepFC5yVlvXqCKuU3W1dsrllN8a7EIFAPJAzvSQM48QEydO1A/U mC/PyDkhCa1BXCfDzJkzNRrzNfTxd5f4CTGj9qcCfvSjH+nqzS6/3nvvvenTp/fu3dsmKIVqwmOP PWajq1at6tevX3p9/gpPOukkFXXF6foZch5mLSj82Yxag4riOpXCxeSPZKdOnVScOnVq5gVxQjkP M73Z7KeEiXo27QtRNGq/FqijOPnkk1XxvjElZoJRRVwnX0meTW0k63b02Nof6gh/tXJgxowZer56 9uypS39XipDzrC58Qi3grFa9bs/q2jzlcspvDXahAgB5IGd6cuTMMFfNCzmzpulJbBX7t79zToiR uujIxg1XuvDCC7UJbcj1M2S9V1j8hPjRc8891yZ4bNS+PTLMLrnEJgR0UWJ146ohOQ+zFhTybJqo NWQ96nAx+SOpf1KsHnADieU8zJyrjXo2N0f8gYf33nsv4QRjddfJV5JnUxvJuh27kh46dKjrH852 L6vgjTuT86wufEItiHok7ZBdp1K4yFltE4zVXaeK7L5ZVfspl1N+a7ALFQDIAznTw/uZR45LLrnk 6KOPjvlf9pwTorjLhAxuOE2r1cr1c931s8m8lyd+Qvyo3Hvvvaeffnrbtm11bXHcccfp4tv+jIHo XP/1r3+tKyoNde7c+fb0XyGMWqHOfHvXInM0yWHWjryfzUDWNWQ96nAx+SP58ccf62K9S5cumpl1 QhLxh5lktVHPpq6tBw8erJW3bt1at4MGDfLeEsw5QTJXm5+cz6Y2knU79k3L9vZUJtu9rMIX/TnP 6sIn1BrO6ro9q+2+WVXvKZdT3muwCxUAyAM501NUVLS16IRNkxaSMxu89evX69Jn7ty5rp8h54RC zJs3Tytfu3at6x+h6s9hFv5s1uj5UF0axE4WLr/DXLBggS7fC/kFNpPzrC58Qq3hrG4QauGMynsN dqECAHkgZ3rS72cu2VR2/PrzyJkN30033ZT5h8XDck7I21lnnTVmzBjXOXLVq8Ms/NmsufOhGjWI nSxcHoeps7FNmzY5fxEup5xndeETahNndf1XC2dU3muwCxUAyAM50+M+N7tw9Pqe55EzAQBA42UX KgCQB3Kmh5wJAACQYhcqAJAHcqYnlTOX3L/peD43CwAAGje7UAGAPJAzPXwPEAAAQIpdqABAHsiZ Hv6uCQAAQIpdqABAHsiZHnImAABAil2oAEAeyJmeOsiZAAAAAHAkIWd6yJkAAAAAUBBypoecCQAA AAAFIWd6yJk15txz/VbD9CS2aNGiZ8+erl9NTkhznQZOD07z5s03btzo+gAAAEB1IGd6yJk1xguZ ajXp4MGDXbt2LSoqmjt3ritVk2rMmXmvSsclrpONTchUXFzsZqSVl5erqAdKD5crAQAAAAUjZ3rI mTWvVnLmuHHjlKBatmxZ7Qkq73CYKe9VpTNjPjnz7LPPdjPS9ODoIVJdD5crAQAAAAUjZ3rImTWv 5nPm/v37W7Vqpfh00UUXuVL1yTscZsp7VenMGJczM3Xr1k13WbhwoetX6t+/v+pt2rTZt2+fKwEA AACFIWd6GnfOXL++4s47K84/v6Jfv9Ttb39b8dprbkiCfPi3v1WMGJGa86tfVaxc6UYl5wQTTMs0 cmSqPmiQ68o116QqV13lusnMmDEjHcSK5syZ40ohixYtGjlyZK9evU488cTS0tJzzz137Nixb775 po1mzX7hoi3v3bv3t7/9re7+r//6r6NGjdq2bZuNmiSbyMom5GRH5zoJrFy5UvPbt2/v+iGzZ8+2 tU2fPt2VAAAAgMKQMz263t5adMKmSQsbZc4MEmC4vfGGP3rppf9c/ulPK957L+kEEwxlWrTIDf31 r6nugQOpu6v74IPp4aT69etn2WnZsmWuVOmee+5xkS6DTQgvB8JFW/71r39tC6Z3796fffaZTUi4 iaxsQk52dK6TwJAhQzT/xhtvdP2QFStW2NrKyspcCQAAACgMOdOTfj9zyaay49ef1whz5g03VLz8 cirdySuvuMh3xx3psVA+/OMfKw4dqrj3XtedMCHpBBNMy7RvX+pdUA3NnJnqvvaam2mxM7H27dtb dtq/f78rVSotLVWcmzlzpp5sq3z88cdPPvnkwIEDrZs174WLtty/f//30vn5/fff//nPf67K+PHj bULOTQTSa0qaLcPs6Fwnl7179zZr1kzztauuFKKHyNbWrl07VwIAAAAKQ870uM/NLhy9vud5jf73 My3jnX/+YV21Dz5IdT/80HUvuyw9nGCCCaZl9Yc/pIbso7OzZ6eWL788PVAFxcXFlp1cP+Tss89W tLvmmmtuuOGGcePGKf6tPPyTvVmzX7hoy+vWrbOuaFmVcyuPKOcmAuk11XjOnKxzraiod+/erp/B 1takSRPXBwAAAApDzvQ04px56FBFeXnqNyR/9jP3aVVr/fq5CUElYN3g85Y5J5jMaWFvvulG//rX 1C+IamHaNDeUmCKTZSfXD1mzZk3fvn0t4AX69ev36aef2gSr2HIgXLTl8NfYalmVE0880bo5NxGw Idepiqijy6pHjx6aHPP3XWxt5EwAAABUF3KmJ5Uzl9y/6fhG+LlZxTkLeJnNeF3lUutG5czMCcab lumXv0yNzpjhPkO7dq2rJ9ahQwfLTpmfmzUbNmxYtGjR9OnTR40a9X//7/9V2LvmmmtsKDP7WYwM iracmTNLS0tdPy1mE4H0mmo2Zyr0amabNm3COxzG52YBAABQ7ciZHl1vN9bvAVIatPj3xhupiPj1 166rZoJugZ+btfSopq1k9cgjqdELLkjdDhjgilVhf6tDMr8HKNPOnTsV9oKU+K//+q/q6lSwrtjH YsW6thzzudlM3iYC6TXVbM60bwAaOXKk62dYvny5rU0PmisBAAAAhSFnehrx3zUJcuZ776US4MyZ rhvEp6BrX/MzaZLr3n130gnG/lSJmvJk1qj56af//ODuH/7gilUxffp0y04z7fuEQn7xi1/MnTv3 3Xfftff3Pvvss8mTJyvsKV7ahMsvv1zdG264YdeuXeoqQ/br1y+dBw/LmT/72c90nqj7/vvvn3/+ +ar8/ve/twk5NxHo3bu36uXl5VFvNkaxo3OdaPv372/evLlmbty40ZUyBH/XZMaMGa4EAAAAFIac 6WnEOXPiRBftrP3iF/9cNkG3wL9r8tRT/xwNmuemm1x9xQpXqQrlqzZt2ig7Zb5Hl8qI2Uyr/C3Q BQsWuFKlqVOn2oJNsOXrr7/eFswZZ5yxc+fO8IRMwSYCd955pxur5AZysWSYlZuRpi2q0rNnT9fP xt771cMV9RljAAAAoKrImZ5GnDP37auYOjX1OVUlw9GjU+HQC4FBd8uWihEjUh9/vfLKivA3qeac EHjiiYpf/eqwbxvyPPlkqlhWlvr4bl7GjRun+NSiRQvvrcJ33nnnd7/73fnnn19aWvr9739fGWzE iBHPP/+8G0576KGHfvzjH2v07LPP1rIq4RBoy3v37v3tb3+rlfzrv/6rMuf27dttVJJswmglmnnW WWdpmq3WDeSSCpQR3Iy0E088UZXp06e7fgY9OC1bttQcPVyuBAAAABSMnOlpxDkzp6hMGMg5Iblf /zq1nv/4D9etOiWorl27KkHFfM8qysvL9RDpgarqB3cBAACAGORMDzkzWs4YmXNCQqtXu/W88IKr 5GXjxo2tWrU65ZRTXB8ZTjvtND1EMb+9CQAAAOSBnOkhZ0bLGSNzTkgiWMmll+b9oVkAAAAAdYic 6SFnRisrcy1KzglJ2Bp++cuKDRtcBQAAAECDQs70kDMBAAAAoCDkTA85EwAAAAAKQs70kDMBAAAA oCDkTE9RUdHWE/pvWkjOBAAAAIC8kDM96fczl2wqKyNnAgAAAEA+yJme1PuZRUWbiorWn0fOBAAA AICqI2d6+P1MAAAAACgIOdPTeHNm0aDJ1lwfAAAAAPJCzvSkPzd7wqbjy9YPJGfWYyekuQ4AAACA +oSc6eH9THImAAAAgIKQMz3kTHImAAAAgIKQMz3kzMnrt+3scev8JkOmdr3p0afWbXbDFRUn3lau 0Y6/nuP6FRXdb56vSrex81w/gTfffHPs2LFnnHHGiSee2LNnzxEjRmzYsMGNRaTHcNGWs7IJ8umn n2oTvXr10iZ0q2VV3BgAAACAmkfO9JAzJ7cbNStYLh48Zc3Wz2zC5KVvWfHV9z5Rd/+BgxpV94Y/ v2YTknChMERpcOXKleFRWw6Ei7aclU3YuXOnQqwrVVJFdZsAAAAAoKaRMz3kzMkDZ75w8NChQbOW WnfA/c/ahN1fftVkyFRVrpv/iroL1my2CRY7ExoyZMiSJUu++uorLe/Zs+e2225TDrz88stt1GKh LQeSF+V3v/ud6v3793/vvffU1e3Pf/5zVcaPH28TAAAAANQ0cqaHnDn57Y8+V3fj9r9bt/11s22C XDzjOVXso7PXl7+q5Q6jH7Sh/Hz99dcKgf/3//5f66ayY2E5s2/fvqqvW7fO9SsqtKzKueee6/oA AAAAahg500PO/OdeWbfp0GmuX1Hx/MZtVnz1vU963/2kFoY/8pIbS2bhwoVXXnllz549v//976ej YoqWbdS6thxIXpQTTzxR9YMHD7p+RYWWVSktLXV9AAAAADWMnOkhZ7q9OnjokHXDOVM6Xf+QiiPn rbDP0D674UM3kMD06dPT8TALmxBeNpYSvaJkLQo5EwAAAKhz5EwPOdP/3Gy7UbNsghn75Osqthz+ J922umqGqybTq1cvRb758+fb72fKvn37UnmxMjH+67/+q5b1NFhX7FOvwYRA1qLwuVkAAACgzjWs nPlEp07xTXNcgkzGsmUYOdN9D9CQB1+0bvA9QGbLzt32NbNqF894zlWTKS0tVeR7/vnn7f1GPc56 kFN5sTIxXn755Vq+4YYbdu3apa4iYr9+/cITAr1791axvLw8/Nal2PcA/exnP7PvAdImzj//fFX4 HiAAAACg1pAzPTlyZpir5qU+58yov2sSOGPCUzZavjqV5ZKzb5cNs1goNmHBggXWDUydOtUWbELg zjvvtHrA6lF/1+Szz/yjAAAAAFBDyJke3s+cvHrLjh63zm8yZGrn3zzy1LrNbjhkwpJ1mtZ06LQD h7+XmNPXX3/9hz/8Qanv+9///plnnjl9+nQVLQraBHnooYd+/OMfa8LZZ5+tZVW8CWbv3r3KqGed dVbwfUJuoKJCkXLs2LGnnHLKiSeeqNubbrrp448/dmMAAAAAah4509N4c2ZyPe98XDmz/9RnXB8A AAAAQsiZHnJmDovWb7W3PWev+KsrAQAAAEAIOdNDzoxjCVOt3ahZVf3QLAAAAIBGgpzpIWfGaTp0 mlqn6x9avmm7KwEAAADA4ciZHnImAAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABA QciZnjrJme/Tjpi2Z88GGo1GozX0VlRUEd/8fmbL+AFBo9Fojaqlc6ZfrLfNS5WZTQfjEmQyLlyG kDNpBTXvSoVGo9FoDbEpJ3qVcEulyCBPRrWMHxA0Go3WqBo500POpBXUvGsRGo1GozXEppzoVcIt lSKDPBnVMn5A0Gg0WqNq5ExPYTlzzRsbp0zcMHLY25f+LNVGDts49Y8qutGQBpcziwZN9po3oXZa 3W49SfOuRRpPu+GG4b179/KK4Vb4hLzb6af/8MYbr/KKDagddThvNGi1cJj16pGsuROmGlvMTn74 4WuDBg0oKfmO97RaNxDU63Orw+ci5zmZ9wTlRK8SbqkUGeTJqJbxA4JGo9EaVSNnevLPme8sKN8w eMDmf7/y4wm3fDbtbjUtqLth8M815CZVImfm1+p260lacBUSvkYMLx+Rbe3ap1u1avXYY1O8etAK nxDVdMc77vj1qaeeHPMga7VauWZ69YbS7NAC3mjQkhzmc8890rr1f1PTQrj+yitPXHPNoJNOOqFt 229rtEuXY6+44pI331wcnqNWLY9k1D5UqeV9wiRs8Q91wha/k3qEbSsmqLt+paBeb1vWw+zXb4f2 ffToj8LFUaM+UvHcc3eEi0Fbvrxcxxvk1eo6J/OeoJxoC+EnIlhOpcggT0a1jB8QNBqN1qgaOdOT Z85Uktw46Pztd9+8Y8rvvKaihryo2eByZtDqNunV7daTNLsWCV+OeMtHZLvkkvOOPrr9F1+85dWD VviEqGaPbcAbtabVduzY4cIL+3n1BtdijlEt52Fu2PB8p07/vVu3/929e1ctvPPOC8GQrdlTUvKd RYseDOaoFf5IxuxDlVreJ0zCZo+AV6xqi99JDWkTS5fO9+pBq5Z9qIWW9TDXrt3UqtWe1q13r1// rlW0oIraG29sCqaFW1nZj3W8CxfOtK4dviePczLvCcqJtmCb9pZTKTLIk1Et4wcEjUajNapGzvTk lTPXvPH2Ly/46K7ffPrH262l02NF0NXQhl9e8Nc3Vrv55Mx8W91uPUmza5Hw5Yi3fOS1TZuWtWrV 6rLLzvfqQSt8QkwrLe1x663XrV37dPyDfPnlF2gT2pBXb1gt/hjVYg7z449X/eAHx3fpcqxG1Tp3 PlZdFW301FNPnjDhppUrn7K0oIWzzjpN2zrppBNsQtAKeSTj9yF5033zPmEStpwPdc6WcydzbiLn hPrQYg7zqqu2a/d//vNPrasFdYcP3x5MCDd7CevlHFSq8ZzMb4Jyoi2knwf3RATLqRQZ5MmolvED gkaj0RpVI2d68smZG6f+8b1rB318901Bqzh4UC1c0YSNUya6O9TXnLn0ndVlkx9vceW0JkOm6Lb3 3fMWrHnNmxOf9CYseeHE2x5uNiy1hpJrZwy4f8HyTW+EJ+zc+9er5/6l7Yg/aYJuRzy6SJXwhPgW bH39tjd73TW36dCp2s9hcxbu++pvwZz4o+jy29m6+zl/LA8qfSY+porqQWXXvne1Y9p/raHNNX8a NOs/t+96JxiNb3YtEr4c8ZaPvDZ+/I06utmz/+DVg1b4hCQt9RBHP8hauUZ12erVq6sFW1foPfro 9u3bt5s4cWww+ve/v6l69+5dW7f+byUl37nwwn4bNjwfjKotW/bY4MEXHnvs/9CEdu1KzjvvJ6+8 8kR4grVgK1Et5jDPPfdHxxzzveD9Q3tfUcVggte2bn1Fq9LFt3Y+XC/kkazqPkS1qBNGRdGCJhx3 XGc9mF27dgk/EWrxD7WtIatgTsIWv5OZvGlqUXU1JSIdhU4zHYVutexlpJwT1IL1Zz1pE7aYF+/W re+0a/eFtrBs2aalS/+mhZKS3Sp606wNHfoLrWfmzN979XDL+5zMb4Jyoi1oSLzlVIoM8mRUy/gB QaPRaI2qkTM9fs5UtoxiiVHeHjnsg99evX3c9UH7eueOrz//LFzRhA0jh7k71NecGaS4cFv81utZ 54SL1pTNgtFwCybs3b+p601zvNFuY+eEU2J8C+7V/roHgmU1bTpzTrgFRzFy3tPqKgkfPPSeurpV WFXluvmLbYJ2UrsU3NFau1EzduxJFDXtWiR8OeIt15Nmu5SVNzNnO//8c3WvmI//FT4hSUvtevTO K11oVBvy6kGLv7ta/AQbnTTpdlswNvTFF2/Z+zBhylfvvrvUu3uY4sHixXOCCeFpXjHcog7z2mt/ qS2uWrUwXFRXxWuuGRQuBu3jj1fZ5j766PVwPecjGdXy2IeoFnXCpPf3KKUmWwiE04srhYQfalfK JlhDwha/k5m8aWpR9c2bVygn22hAFdUTTrBm9awnbfIWdZjWbr99m1Z56qk71bSgrjfBml4LSo9d u3bx6l7L+5zMb4Jyoi2kNln5yATLqRQZ5MmolvEDgkaj0RpVI2d6suRMS4aew3LmpT/bdtM128aO CNqX77795aaN4YomvH1pmbtDfc2Zp/zHo/NXvbL/QCqAPf7Gqxax+k36c3hOEL3CRWsW2NSWvrNa 3QMH/6Z0d/Y9/3zncMyCZ2zCoFn/qYA35MH/tK7qwZz4ZvPVhj/yF61h9oqXrdt2xJ+COfFH8fzG 1VaxN1qXveu6qtuEYCeVSNW9a9Hz1g1H2Zhm1yL1v9nVUlbezJytY8cOutfnnx/2DkO4FT4hSUvt evTOa+Ua1Ya8etDi764WP8FGe/Y8ad68yQqWug4eNWqIDd1xx681dOqpJ69c+ZS6uta/5JLzVBk+ /DKboNanT++5c++zR0D3tW+I+dGPTg0mWEttI3Yncx5m8qZYqFUpnHj1atxE3i3qhFFRevT4P4oN 6uqR/MUvylQ5/fQfBnOq66HO2XKe1Tk3ETVBp5bqpaU93njjL+rqVieeKnrKEk6wpopkPWmTt/jD /PzzjV26/F0HoaYFdb0J1kaPHqaV5Hw3Ne9zMr8JyonhrtdSKTLIk1Et4wcEjUajNapGzvTkmTM/ +PdffXDDFUHbs2LpnldeDFe2/vuv3r68v7tDA/n9TMtXLa6clllUCxettRs1w4b63lf+8Gsrtv19 ozcheDNz4/a31NWtdcOfWY1vNl/NPm2rqGnd4sFTwtPCzSYER6G7aFkVBUh1x/3lWS23HH6/jaoF O7n7y3dtvnU7XT8rmBPTvGuRxtBatWqlSzSvGG6FT0jStIb4lWi0dev/5hWDluTuMRNs9N57b/Pq arrc11D4g7K6oFelc+djg4rX/v731FVvScl3vHpqG7keKE2IOcyE7fbbR9u25syZ6A2pVcsmCmlR J0x6l4964YVHg4p90rJt228HFa8V8lDHt5xndc5NRE3o3r2r6uG3ELWsSrdu/zvhBGuqSNaTNnnL eZgzZ27RuJoWvCFrejno8e/U6b/HZHK1As/JPCYoJ4a7XkulyCBPRrWMHxA0Go3WqBo505NXzhw5 7P2rL90y6pdBU6pUC1c0YcOoev25WQUqRS/77UrFNgtXak2GHBbhgnq4aE3ZMnxHNQXIyUtfDCZo VVYPKtZtOnRqUIlvNj9zDUElyVH0n/q4KvYrmrrV8gXTnghGg530mvc4RDXvWqQxNF2c6RLNK4Zb gRM0FOaNBi1+VE2j8ReahTTbuq6YvbqaHV2m8M7Mnv2Hn/70rHbtSuyq3Wg5mGDN6l7Ra5pQyGEq dw0efKFt6O67x3ij1grcROHNHlKvqJbea7/uFavxoY5vUTsZtJybiJpga7Zvx7GmZVXatGmdcII1 VSTrSZu85TxMNY2npmTUrdnnnG++eaRXD1q1nJN5TFBODHe9lkqRQZ6Mahk/IGg0Gq1RNXKmJ3vO 1G1YUDcbp/7xr788X0kyaPs2rlcLVzShnn8P0PBH/uIlq6CFp2UtBu39HRvGPrmk733lLYffH8y8 8Qn3sVgvZwZvFVZjzkxyFMrD6iqIHjj4N91qWZVgNCpnqgVzYpp3LVJvW+qSLYI3M2fL+fnAAiek 9inEGw1a/Kh9Lu6YY77n1aurxWzdLsSzsgnBGzWZgpVYy1oMtwIPc/PmFaef/kOtQc9Iefk0b9Ra TT+SSVrUCaOixBSr8aHO2XKe9jk3ETXBzqjqypnhSh4t52GqaSOp7WTU1XTHTp3+e0nJd6LibrWc k/lNUE4Md72WSpFBnoxqGT8gaDQarVE1cqYnn/cz//rG6rcHnf+3YQPeu/Iia+n0WBF0NaQJ9fzv mgS/Xbn4rdeVAJXBsuarIIZpTrie2Ra+udJmBp9ZrcbPzUZVkhzF7i/ftbc6Jyx5Qbdato/IWgt2 cte+fxaTN+9apN42XVRF8WbmbPZFIOEPK3qt8AlJWmrXo3fePjcY80UgBbaYrZ988g90ff/ZZ2u9 etDat2+n+06adHtwsf7pp29kXWFmfvBaIYe5fHl5587H6u6XXXa+94Ux4VbTj2SSFnXCqCgxxeQP ddZilVrOszrnJqKe7ur93Gy4kkfLeZhq2khqOxl1tXvuuUV3j/q90Oo6J/OboJwY7notlSKDPBnV Mn5A0Gg0WqNqDStnuiwYTQfjEmQy7m4heeXMv/71nQXlGy75/zYNuUCR0msqakgT3NS0+pwz12x9 UwntuvmLrasWntb95oesOPbJJV7U7Hnn3OkvvbRl5wYta+ipda/ZzODtyvD3AKkbfA+QVmUTcjab rxZVSXgUp/zHo6ocN+ZB3Wo5PBTsZL9Jf7Zj2X/gvfLVr572u8OmRTXvWiS+6cpGvGK4FT6hFtrE iWO1D7Oj/ypJ4ROStNQDEf1QzJz5e43G/GGD+LurxU+IGbU//PCjH52qa3HLDO+9t3z69PG9e/ey CUqhmvDYY1NsdNWqhf369Umvz1/hSSedoKJiklcPWs7DjGozZvxOu9Gz50m6sveGvJb3JqqxRZ0w KkpMMflD3anTf1dx6tQ7Y1J9fMt5Vqc3m/2csRb1dNvX/GjUvuZHR3HyyT9QxfseoJgJ1lSRcCWP luTFq42ktpNR12Nrf34m/N3LQavGczK/CcqJ4a7XUikyyJNRLeMHBI1GozWqRs705Jkz5Z0nHnv7 8vPfuazs3V/2V7ZU04K6qeLhIVPqYc689IEnLV9ZazviT8FyeNrEZ5cG9aDZkFcM2rA5C23Cvq/+ FsTUoKmSx981iaokPIrxi923yKrd/cwL4SHtTOm4h4PRcAtPi2retUh805WNeMVwK3xCLbRNuf4e feETYpo9Apm8aRde2E+byPwTgkHLeq9wi58QP3ruuT+yCR4bta88DbOcIMEarOk62OrGG1XLeZhR za0xm+CtP2t5b6IaW9QJYzscU0z+UF911eVWD3gTcracZ3XO1UY93Zsj/mzJe+8tTzjBmtXDlTxa zsNU00ZS28moW7obOvQXXt2a7V5WVT0n85ugnBjuei2VIoM8GdUyfkDQaDRao2rkTE+WnBnFEuNh 1ryxccrEDSOHvn3J//f2wPM2XPerDVPvUdGNhtTDnLn7y3eveOgvra6aXjx4ysl3PLJm65tR+UrB rMtvZ4e/ZcfqusuIRxcppNmbis2GTet119wJSw5LcTv3/lVzSq6d0WTIFN1q2b45NmHztphZSXgU b3+0PqhrOTykpqh5y1PPKgDblwl1GP3ARdOftL+DkrN51yLxza6ZvGK4FT6hdtoll5x39NHtY975 KXxCVLNHIFN4jlarletSMlz0Wua9vBY/IX5U7d57bzv99B+2bfttXc4ed1xnXVvb395Q+/vf3/z1 r69QDNBQ587H3n77aBWjVnjzzSPtrbbM0SSHGdVshVmFr+kL2UT1tqwnjO1wuOIVkz/UH3+8ShG0 S5djNTPrhCQt/qxOstqop1uJcfDgC7Xy1q3/m24HDRrgvSWYc4Ja5mrzazlfvNpIajsZdfsqZnvT NbPZ7mVVpXMy7wnKiV4l3FIpMsiTUS3jBwSNRqM1qkbO9Pg5Myx7tsxLPcyZtGpp3rVII2nr1y/R 5fjcufd59aAVPqGQNm/eZK187dqnvfoR1mrhMOvPI1mjJ0x1tQaxk4W3/A5zwYI/KTHG/M5kwpbz nMx7gnKiVwm3VIoM8mRUy/gBQaPRaI2qkTM95ExaQc27Fmk87aabRmT+sftwK3xC3u2ss04bM+Ya r3jktVo4zHr1SNbcCVONrUHsZOEtj8PUudSmTeucv3uZs+U8J/OeoJzoVcItlSKDPBnVMn5A0Gg0 WqNq5EwPOZNWUPOuRWg0Go3WEJtyolcJt1SKDPJkVMv4AUGj0WiNqpEzPeRMWkHNuxah0Wg0WkNs yoleJdxSKTLIk1Et4wcEjUajNapGzvQ00pz5fFrdLidplX8mtS6X45t3LUKj0Wi0htiUE71KuKVS ZJAno1rGDwgajUZrVI2c6SkqKtp6Qv9NCxvl+5nh1FdXy1EtKvXV5nKS5l2L0Gg0Gq0hNuVErxJu qRQZ5MmolvEDgkaj0RpVI2d60u9nLtlUVsbnZmn5NO9ahEaj0WgNsSknepVwS6XIIE9GtYwfEDQa jdaoGjnTk3o/s6hoU1HR+vPImbSqN+9ahEaj0WgNsXmZMbNVfPlOjpbxA4JGo9EaVSNneurk9zMB AAAA4MiRzpkNhsuC0TTHJchk3N1CyJkAAAAAUBBypif9udkTNh1ftn4gORMAAAAAqo6c6eH9TAAA AAAoCDnTQ84EAAAAgIKQMz3kTAAAAAAoCDnTQ84EAAAAgIKQMz2NOmfu3Pvl1XOXtx0xs8mQqbod 8ejLqrixtPgJRYMmW1u9ZUePW+drTpffPvLUus1uOG3CknUn3lbebNj9Gi25dtaA+59dvmm7GwMA AABwRCBnehpvzty7/0DXmx4NsqK1bmPn7fvq64QTgmK7UbOC5eLBU9Zs/cwmKJcG9XCzUQAAAABH BnKmp/HmzDELVlrqGzRr6cFDh4Y8+KJ1VU84wbpqA2e+oAmaZt2Lpj9nE5oOnWaVpe98pO6BgwcX v/XB2ff8xUYBAAAAHBnImZ7GmzOD9yo3bk89jrq1bpffPpJwgnXV3v7o8/CE9tfNtgnB+5x971v0 8Gvvbvv7XqsDAAAAOJKQMz2NN2c2GTLVQqDrV+bGpkOnWTfnBOvGTFC2LB48JZimpow6eelbNgoA AADgyEDO9JAz3V4dPHTIulE5M3OCdWMmyPs7do998vW+9y1qOfxPwfwbn3jNDQMAAABo+MiZHj43 W4Ofm/UsfHOLTWhx5XRXAgAAANDwkTM9fA9Q6mt+1A2+5mfsk68nnGBdNfseoGDCgPuftQk973x8 +ksbtuzcrWVNeGrdZpsQfsMTAAAAQENHzvTkyJlhrpqXepgz9331dfeb51vwC5oqwZ8tyTkhKEb9 XZOg6LVhc5bZBAAAAABHAHKmJy5nVqN6mDNl594vRzz6csm1s5oMmapbLavixtLiJwS5cf22nT1u na85x42Z+9S6zW64okKBU3cpHVfeNP0HTpoNu7/XXU9MWLLODQMAAAA4IpAzPY06ZxYoyJmuDwAA AKBRImd6yJn5I2cCAAAAEHKmh5yZP3ImAAAAACFnesiZ+Ws6dJo11wcAAADQKJEzPeRMAAAAACjI kZcz3VK+yJkAAAAAUBBypoecCQAAAAAFIWd6yJkAAAAAUBBypoecCQAAAAAFIWd6yJkAAAAAUBBy poecCQAAAAAFIWd6jpycWTR5kDXXBwAAAIBaQc70kDMBAAAAoCDkTA85EwAAAAAKQs70kDMBAAAA oCDkTE+d5cxd+/eNePnRklnXNpk6pM0D1wxaOmv7P3a5sVBoXPPZ1l5P3NV02tAW068ctmzOvq+/ cjMqKp7avK7rozfp7j3m37p+57bgLm4YAAAAAGoFOdPj58ybo1lizI+XM/ce2N9t3tggGVprN2vU jn17bEK4GCyrKZrahNU7thRPGRzUw9NsAgAAAADUDnKmJ0vOtGToqd6cOWblAsuEI1fMU/euNYus G8RI66oNf+mRg4cOzf7rCuuWzLrWJlz03HSrDFo668DBg7q1rppNAAAAAIDaQc701E3O7ProTZYJ d3/1pbpKktbt9ND1NsG6aju/3BueUDxlsE1Q4LTKxr9vV1e31lWzCQAAAABQO8iZnrrJmU2mDgli YbipbhOCinXFqwQfmrWueBMAAAAAoHaQMz3Zc6Zuw4J63hLmTDWb4HXFq3g5M3jDM6gAAAAAQO0g Z3rq+HOzu/bvc6XDZYZGr9J+9nXW5XOzAAAAAOoWOdNTx98D1O/pSVt271Rl/8ED5e+tPm3B72xC Zmj0KuHvAVJ34AszvQkAAAAAUDvImZ66yZn7vv6qtHxckAzDzSZ4XfEqaz7bGv67JsHbm2o2AQAA AABqBznTkyVnRrHEmB8vZ4qi5i2rnuo+/+Zm9w9TYuzw4OiLnpu+fPsmG80MjZmVpzav6/LIb5tM HdJj/q3rPvswcwIAAAAA1AJypsfPmWEFZsuwzJwJAAAAAEcGcqaHnAkAAAAABSFnesiZAAAAAFAQ cqanqKho6wn9Ny0kZwIAAABAXsiZnvT7mUs2lZWRMwEAAAAgH+RMT+r9zKKiTUVF688jZwIAAABA 1ZEzPfx+JgAAAAAUhJzpIWcCAAAAQEHImZ7052ZP2HR82fqB5EwAAAAAqLojO2defPHFbqlSZsXD +5kAAAAAUJAjPmeGg6XXzYqcCQAAAAAFaQw5U7zlGORMAAAAACjIEf/7mS5cVnLVaORMAAAAAChI Y/geIBcxE4RMIWcCAAAAQEEaQ86UhCFTyJkAAAAAUJBGkjOTI2cCAAAAQEHImR5yJgAAAAAUhJzp IWcCAAAAQEHImR5yJgAAAAAUhJzpKSoq2npC/00L0zlzRa2wYwMAAAAA1D4XzKqVy5eV0u9nLtlU VlZ7OdNtGQAAAABQ61wwq1Zu1ZVS72cWFW0qKlp/HjkTAAAAAI50LphVK7fqSof9fqabUsPclgEA AAAAtc4Fs2rlVl2JnAkAAAAAjYgLZtXKrbpS+nOzJ2w6vmz9wLrOmRdXcn0AAAAAQBW5WBUdrFww q1Zu1ZXqy/uZ7pEgZAIAAABAYVy4iohXLphVK7fqSvUiZ7rHgJAJAAAAANXBRaxsIcsFs2rlVl2p 7nOmO3pCJgAAAABUHxe0MqKWC2bVyq26Eu9nAgAAAMCRxkWsRvt+pnGPAVETAAAAAArjwlVEvHLB rFq5VVeqLzlT3CNB1AQAAACAfLlYFR2sXDCrVm7VlepRzgQAAAAA1DQXzKqVW3UlciYAAAAANCIu mFUrt+pK5EwAAAAAaERcMKtWbtWVyJkAAAAA0Ii4YFat3KorFRUVbT2h/6aF5EwAAAAAaARcMKtW btWV0u9nLtlUVpbKma4GAAAAAEC+Uu9nFhVtKipafx45EwAAAABQsMN+P9PVAAAAAADIFzkTAAAA AFCd0p+bPWHT8WXrB5IzAQAAAAAF4/1MAAAAAEB1ImcCAAAAAKoTORMAAAAAUJ3ImQAAAACA6kTO BAAAAABUJ3ImAAAAAKA6kTMBAAAAANWJnAkAAAAAqE7kTAAAAABAdSJnAgAAAACqEzkTAAAAAFCd yJkAAACoS/MbPnck9caj8xfQGkRzT1glb7SeN7fTEciZAAAAqEvKaZsbsvqZMytQ72VGtQb0xJEz AQAAUK+RM6sdObNBIGcCAAAANYWcWe3ImQ0CORMAAKAG9UjGzT6yuGPLxc0+QpEzqx05s0EgZwIA ANQg5Sh35RKt2rPWvHnzvv3tb3/rW99y/TpSJ8deiKKiIrdUfWo6Z2qf3VLNqJ2cWaVHnpzZIJAz AQAAalAeWUvX3NK0adOTTz555cqVrloV/+t//a+nn37adSLEX9nHjyaUX87csWPHv/zLvxx11FFa cKUM1bJ7maJWW8jmqpQztSG3lOZ1s4qak+S+SWTNmStWrDjppJN0in7rW9/63//7f7tqAar0CJMz G4T4nLlr166SkhLXqajYtm1baWlpkyZNevbsuX379qwVnYrt2rXTvbSQvlNF7969ly9fbsvVi5wJ AADqu5istWXLlh/96Ed/+ctfMnOmbnfu3Pn73//+//yf/2PFKtHFmVuKFn9lX6Xr/ih5HLs89NBD P/7xj3/yk588+OCDrpShWnYvU9RqC9ncEZkzO3fuHPPs5KFKjzA5s67oaYrhJlWKz5neXS699NKx Y8dqQbdDhgzJWmnVqtUHaS1btlR3xYoVp512mhZqAjkTAADUd1FZy4LWsGHD/vGPf2TNmcYSoyrv v/9++/bttawLG81XXbdazlpJX8KlaDkwZcqU73znO02bNu3Xr5+6bkblnHbt2mkN3/72tydOnOiN vvvuu2eccYbu2LFjRyXD9PREtD/uaA8Xc+xywQUX3HnnnePGjRswYIBVbDeMLad3LUXLmYcfsAnG lnX7q1/9SsfSoUOHF198URUd3f/7f/9Pdz/++OOD+dX4aBSeM3V7+eWXf/Ob39QJsHDhQlVWrVr1 wx/+8Bvf+EbXrl2Du3z3u99VpXXr1nr01FXdaFnzdUWuNeioq7Q/kjVn6vB1QrpOWtaHJfNhzDyN e/bsaUPXXXfdv/zLv2jyjBkzUneufMoykTPrUOqUysYNh8TnTAnfq23btnv37tXC7t27dYZkrbRo 0UIhU/96aEFdndKKmlqoCeRMAABQ32XNWuGgpa6XtXT5pdudO3def/31ikBWmTdvXnrw7//2b/92 ++23a0G3NppZsTV4/st/+S+6KNJqFeHUzTrnjTfe0DQthEfLysrmzp2rhWeffbZz585WTCKPY9fu /df/+l91+agQqAV1VQzvjC2HK5mHH8h6x4ceekgLv//970tLS7Wgo9OFojakpBSeL9XyaFRLzpw2 bZoWdIA/+MEPtHDOOecMGTLkvffeU4D07qLHTfushXBd8xXetPDEE08cc8wxVkwoa87UKaQ8eeWV Vyq0b9++XZWYhyX8MAansc4Bnd62LBq677779Cw8/fTT3/nOd4KiLXjImXVLz4vHDRyuSjmzuLjY LVVUNGnSRLeZFb0KlDBbtmyphbzfzHzllVfcUkhmkZwJAADqO+Wov/zlL7qqVr6yKxgvaElmzpSm TZuee+65Cj9WsSFR3dKXbrWctRKeHzj++ON/8pOfTJ8+/cMPP1Q3PEdbufzyy//H//gf3/rWt6zu bVFdo4s/V00gj2N/6qmnWrdubctHHXXUggWpqz1t1ypiy+FK5uEHYu4YfvSCXwS10ep9NKolZ1pX wfKb3/ymFnSrS1wr2qgC50UXXfS9733P9jmoG81X12ifXTWZrDlTFGjHjBlz4403XnDBBepmPiw5 H0Z71kx4KLycFTmzzuk5CrhShirlTEuSxpYzK2H2ZqZOTu83NuPt2rVrwIAB3mR1VdSQ66eRMwEA QH2nHKVMpWRlcSszaElmznRLlcKV4AI9nJS8SuYaRPFSIbNfv372xS3hObrMuvPOO//2t79pDVbP usWqyuPYBw8erE0H1FVRCzYqthyuZB5+IOaOypb2Jlv46Gy0eh8NXcW6xJaAAqHCpC1rQQlNC9q6 VXRZa+9VhqfZ6M9+9rOxY8e+8cYbqlsluJeE51eV9t8dSTZ6KLSTWsh8WKr0MIaHwstZkTPrAz1N 4jrZVClnKi7u3r1bC8p7Ws5aCShhnnHGGVrwfmMzCS9qZg2ZQs4EAAD1nXKUrlqCuJUZtKRKOfPf /u3fbr31Vi3cfPPNwedmvUrmGmT06NGKmhs2bAjyla6RbOgnP/nJypUrdd0/Y8YMu2949Nxzz1Vg 0Kgyw8UXX2zFJPI49vbt29vv8sl9992n60stfOc733n66ae1A3/84x8zdy/z8AOZd9StHgFVrrzy yrKyMlV69er1u9/9TgsPP/ywzaneR6NKOfO0004bM2aMLd94440//OEPtaB9eO211xQUf/nLX55z zjmqnHzyyTpkLUyfPl2jWjjzzDOfe+45zbn33nutomz58ssva0H69OmjFKpRBdELLrjAignF58xZ s2bZV1VlPiyZD6PdGj3sOlLXOXwoWA4Xw8iZDUKVcuall156yy23aEFnxaBBg7JWAnqZ6NTSgvcb mwkFUVOyhkwhZwIAgPrOspZY3MoMWlKlnKkLmx/84AdNmjTRrYWfzErWC/T+/fsrL33729+eMmWK uk899ZQSgmXOZ599VgFPoyNGjLD7hkffffddpQiNirKEKglV9dhffPFFbT34Uy4KRepq35SmtNv/ 8i//csMNN2TuXubhBzLvqNvjjz9ek5Vz7DPJK1as6Ny5syr2Vqoq1fto6FrWJbYElCd79+7dMk0L 6qqofejates3vvENxctVq1ap8swzzxxzzDGq6Fpco6o88cQTyuTKlr/61a+s8sgjjxx33HHaZy3r XoqaGhUFTlWS0/67IwnRnnzrW98qLi7Wg6kHUJXMhyXzYbRboydXD6kedq1K3fBQsBwuhpEzG4T4 nKkn11h3+/btOhPsfLC/YpJZMcuXL7c3MyX8G5tWSciiZlTIFHImAACo74KsFcPLmUeMenjsuq51 S7WlSjkzK+2zW6oLWXNm3SJnNgjxObPOKWFGhUwhZwIAgPqOnBmvlo+96eG/wFkLCs+Z30x/909d IWciP/U8Z8YjZwIAgPpOOSoJN/vI4o4tFzf7CFV4zqxb5Ezkh5wJAAAA1BRyZrUjZzYI5EwAAACg ppAzqx05s0EgZwIAAAA1hZxZ7ciZDULWnNmAmtvpCORMAAAA1CXltIbOHUm94eUBWr1t7gk7EpEz AQAAAADViZwJAAAAAKhO5EwAAAAAQHUiZwIAAAAAqhM5EwAAAABQnciZAAAAAIDqdFjO/Gs1cX8R BgAAAADQALm8mC9yJgAAAADgMC4v5oucCQAAAAA4jMuL+WoUOXPnzp2XXnpp8+bNi9Jctequv/76 nj17uk5D06tXrxtuuMF1AAAAACCay4v5UuzaekL/TQuP6Jw5ZMgQS5jGVato48aNxcXFjz/+uOtX USGbNgWuQXuu/ddRuD4AAAAARHB5MV/p9zOXbCorO5JzZqtWrZTQVqxY4fp5GTBggNZz8OBB16+i AlOiFLgG7XmbNm369+/v+gAAAAAQweXFfCm5bC0q2lRUtP68IzdnFpjQZNu2bcXFxRdddJHrV13h +1D4Gi6++GIdhY7F9QEAAAAgG5cXD6dA4ZZyqanfz7RQtHv3bu1K06ZNmzVrVlZWtmXLFtvpgE3T wi233NKqVauWLVtOnDjRhkSJaODAgSo2adJEt1r2MlL8BFt5JjdcFePHj9cd58yZ4/ohDz/8cL9+ /WwfdKTHHnusduPVV1+1UdtiVjZBNFl3adeundbQokWLvn37rl692o0lW8OBAwf0AHbu3FlraN68 ef/+/d9//303FqL9170mTJjg+gAAAACQjcuLIUp2xvVj1WzOvOCCC2zBlJSUfPLJJ7bfxuqTJ0+2 BWNDmqno5UqVVAnWkHOCK2Ww0SpRktQdMz95e/3119s6M9kE18nGJojrhyguPv/881GjAZtw8ODB 0047zZUqtW3b9oMPPrAJAQVaDelYXB8AAAAAsnF5sZKLmJVcNZpyx9aiEzYdX7Z+YA3kzG7dur39 9tvqbty4sUePHqqMHDkyvduOTdNQeXm58tKuXbtGjBhhQ1rQULAG3doarr766oQTAiqK6+SlTZs2 WsP+/ftdv1LTpk1Vv+uuu3bs2GEVpbuZM2f26tXLuoH0LmTfh969e8+fP99WrkfAvrXolFNOsdFA 1BrGjRunemlp6bp169RVzB4wYIAqw4YNswkBbUJ1HYvrAwAAAEA2Li+muXCZjpduKVfUrNn3M8Nv AGpZlWOPPdb102zafffd5/ohnTt31lDMGnJOCKgorpOX4uLirGvo1KmT6uecc46inXKdEmbwPqQn vQuJ9uHAgQOa2bx5c9evFLUGJW3Vwx+UVVhVpX379q4fonqTJk1cBwAAAACycXkxzQuWXjerms2Z 4W9n1bIqTZs2df00m6Zc5PohikMaillDzgkBFcV18mLbcp2Q5cuXW9wN69KlS+Z37diQ6xxuzpw5 ffr0adGihaVZo2U3XMnqrhNi+5Ypa56MqgMAAABAwOXFtMxUWe9yphdybJrrHM7iU0yMzDkhoKK4 Tl6iPjdrVq9e/fDDD992221lZWXNmzfXzHPOOceNVUrvQpZ90L1sKJObUSlrUexxyMrNqGSfmy0p KXF9AAAAAMjG5cV81fbnZjt16uT6aTbNdQ5Xrz43a98DtHz5cteP9sknn2hm8qzbsmVL1SdPnhyE 2L1792adnLUo3bt31+b27dvn+tHs8eF7gAAAAADEc3kxXzWbM7t27ao1q7tx40bFIVWCr/kxNs11 Dmdf86M12Nf8aD22Bu97gGImBFQU18nLxIkTtYbMv2tSWlr6xz/+cd26dfa26vbt28eMGaOZzZo1 swmBtm3bqj5t2rTwG7CiiKj6448/bnUdxdlnn62K2IRA1Brsb66ccsopisHBbsyYMaNnz542ITB7 9mzN5O+aAAAAAIjn8mK+ajZnlpWV2YIpKSlRBLL9NlZ3ncNF/dmSYA05JwRsyHXysm3btuLi4osu usj1K9maM91yyy1uRqUrrrjCjVWyun27bJjlZ7EJgag1yJlnnulKh3PDlfr376+jyPzdUQAAAAAI c3kxXzWbM3fv3n3xxRc3bdq0WbNmF1xwwZYtW2ynAzbNdTIoMQ4cOLBVq1ZNmjTR7aWXXur9Tcic E0z8VhIaMGCANuG9l7hmzRrFQvvkqiJcixYt+vbt+/jjj7vhED0UmtmhQ4fgy36sfuDAgeuuu07x WPX27dvfdtttKoYnBKLWYO67775evXrpcdZox44dBw0a9Oqrr7qxNO259l9R0/UBAAAAIILLi/mq 2Zxpu3hk0KOkCDd//nzXb2jKy8u1/xs3bnR9AAAAAIjwelW4cBlCzqyCMWPGnHLKKa7T0Jx22mk3 3nij6wAAAABANJcgk3HhMoScCQAAAAA4jEuQybhwGVJTObNpmu0iAAAAAKABcQkyGRcuQ2oqZwIA AAAAGiiXIJNx4TKEnAkAAAAAOIxLkMm4cBlCzgQAAAAAHMYlyGRcuAwhZwIAAAAADuMSZDIuXIaQ MwEAAAAAh3EJMhkXLkPImQAAAACAw7gEmYwLlyHkTAAAAADAYVyCTMaFy5A6y5lFaa6TS5UmAwAA AAAK4RJkMi5chtR4zoyKiFH1rKo0GQAAAABQCJcgk3HhMqRh5EwAAAAAQK1xCTIZFy5DyJkAAAAA gMO4BJmMC5chNZUzLUZmZfsdLI8fP75jx45NmjTp1KnTxIkTbdTYnICrhjz88MP9+vVr2bKl7t60 adNjjz124MCBr776qhsGAAAAAFSdS5DJuHAZ4ufMm6NZhkxCu+WiYTa237Z8yy232EJg9uzZNkFc qZKrVrr++uvdQAY3o1LWIgAAAAAgK5cgk3HhMiRLzrSs6KlqzgxEZTyrd+nSxd5+3LVr1wUXXKBK r169bEKYTXadSk2bNlXxrrvu2rFjh1U++OCDmTNnZq4h690BAAAAAFm5BJmMC5chdZwzly9f7voV FYqLqjRr1sz1Q2yy61Tq1KmTiuecc86AAQOGDRumhPn888+7scNlvTsAAAAAICuXIJNx4TKkjnOm 61TKWpSsdWXUzp0721CgS5cu27ZtczMAAAAAAFXnEmQyLlyGZM+Zug0L6gm5XUuz+Oc6IVnrWYsS VZfVq1c//PDDt912W1lZWfPmzTXtnHPOcWMAAAAAgKpzCTIZFy5DGvD7mZk++eQTTWvatKnrAwAA AACqziXIZFy4DKnxnNm2bVtlv2nTph08eNCV0tLJsaCcWVpa+sc//nHdunW25u3bt48ZM0bTMn/D M+vdAQAAAABZuQSZjAuXITWeM6+44gqLeQGrh5cDXtG6meJHb7nlFpsQsLrrAAAAAABiuQSZjAuX IVlyZhTLkEm4XUvbvXv3iBEjOnToUFxcHM574eWAV7RuJhtds2aN1ty9e/emTZtq5S1atOjbt+/j jz9uo2HhewEAAAAA4rkEmYwLlyF+zgyrUrYMc7sGAAAAAGiAXIJMxoXLEHImAAAAAOAwLkEm48Jl CDkTAAAAAHAYlyCTceEyhJwJAAAAADiMS5DJuHAZQs4EAAAAABzGJchkXLgMIWcCAAAAAA7jEmQy LlyGkDMBAAAAAIdxCTIZFy5DyJkAAAAAgMO4BJmMC5ch5EwAAAAAwGFcgkzGhcsQciYAAAAA4DAu QSbjwmVIUVHR1hP6b1pIzkQuM2fO3Llzp+sgXwsWLOA1gpyOgJdbIz/VC3wG+YcCAFDnXIJMxoXL kPT7mUs2lZXV95x5/fXX9+zZ03VqV69evW644QbXacQuuuiipUuXug7yNWzYsKeeesp16givJlOH j0NOR8DLrT6c6nWowGcw6tHj5xEAoNa4BJmMC5chqfczi4o2FRWtP68e58yNGzcWFxc//vjjrl99 tOZx48aVlpbqgRBXPZy2q61rpuvnZdmyZU3StOBKtS7mGJPIetl09tlabcXIka5rRoxIFc8803Wr auXKldrP5AFg9erVw4cP79q1a7NmzfQId+jQYciQIXmfh/k9RMn3oc4vvnk1mZp7HEzMg5DEEfBy K/BUL+TRqxbpJ7Can8HCH71qeQUBAJCES5DJuHAZ0jB+P3PAgAGtWrU6ePCg61cfu5IIuOrhtN02 bdr079/f9avu/fffb9u27bHHHtu5c2ctbNmyxQ3UrphjTCLrZZOudoqLK5o0qdi0yVW0oIra22+7 SlWdc8452s/Fixe7fi52XJ7mzZs/++yzbkYCOsf0KtCC7qtbLet40yOJ2EY9WfehznMmryZTc4+D iXkQkjgCXm75neoFvhKrkR2a61Rd1mfQ1ump0qNX+CsIAICEXIJMxoXLkAaQM7dt21ZcXFxDlxrd unW75ZZbNm7caD/vXTXDxRdfrH3Qnrh+Vezevfu4447r0KGD7i7t27dXV0U3XIvijzGnrJdNcsUV WnNFWZnrakHdYcNct6rsudDz4voJlJaWTpgwYd26dZYZtHDaaadpJV27drUJScyZM6ddu3YLFizQ HXWrZVXcWALJ96Fuc6bOQF5NovvW3ONg4h+EnI6Al1t+p3qBr8RqlHr+qvsZrJZHr5BXEAAAybkE mYwLlyH6Abe16IRNx5etH1hfc+b48eO1lzV9qZG6oIi+pNDWNarrA9evijPPPLOkpCR418XejVHR ujkFO6bHoWPHjk2aNOnUqdPEiRNt1Lz66qsDBw7UBZlGW7Ro0bdv39WrV7uxyjVk5WYkE3Xhu2NH RYsWqYvdV1+tWLEitdC8eaqYn0GDBmnHZs+e7fp52bFjh1aiS7EDBw64UgKbNm3q0aOH7qhrwcJP 46h9qNuc2chfTYGoxyG947zcqqbaT/VCXompB7p+P4OePB69Ql5BAAAk5xJkMi5chjSA9zP79eun n6krdElVk1IXEdGXEbou0aj2xPUTu/rqq3UdbB8DC6ir4vDhw10/lu3YLbfcYguB8KWhK4Xo+un5 55+PGg3YhIRiLptuu01bqSgtTTUtqJufDz74QNdbui50/Xzt3r3bDnDXrl2ulIBCi13d6lbLrpqv qH3I4+Lb1pOVm5FYI381BaIeh/SO83Krmmo81U0hr0Tbk3r+DIbl8ejl/QoCAKBKXIJMxoXLkAaQ M9u0aaOfqfv373f9mpH+QR95GaGta1R74vq1yHasS5cuurZQV9ciF1xwgSq9evWyCdK7d+/58+fb Q6QJQ4YM0YRTTjnFRgPpNVU5mQRiLpu05Q4dtP5U00Lez9XIkSO1h96bD3lQINF62rVr5/oJzJkz p3379o8//rjuqNvCP60XtQ91mzMb+aspEPU4pHecl1vVVOOpLgW+ElMPer1/BsPyePTqwysIANAY uASZjAuXIQ0gZxYXFxfywz6h1AVF7FY02qRJE9epRbZjy5cvd/3Kz1k1a9bM9TMcOHBAE5o3b+76 ldJrqqnLptmztf5Uy/sjeLrg0z63bds28+q/Sm677TY70ocfftiVEhgwYMDb6a9SsYdIy6qkR/IR sw95v8lTLRr5qykQ9Tikd5yXWxVU+6le4CvRdqb+P4Mm70dPd6nbVxAAoDFwCTIZFy5DGkDO1E9T /Ux1nQzpn9H/5KpVl/PuGq3DnOk6lbzinDlz+vTp06JFC7t6Nlp2w5Ws7jpVl/OySesuYPUV9lG3 sWPHun7V6Xpx4MCBdph33323q1aR7uuW8pJzH+o2ZzbyV1Mg6nFI77hf94q83ExNn+parVuqCtsf 16nkFevDM1jgo6d71e0rCADQGPz/7b0PkFVVmuD5AshIICMjIwn+bUZG6jASNGyzmUKHooFUhhK4 KASNVQiyGahEWg7FKINgYSkFtLBoLa0jgf+oFhoxCx0cVAZbcBSosqsdy64putpl3dzarHGFdh2a ptqhXctmLPfL9x1OnTz3vntPvn/5Hvn7xS+Ie79z7rnnnnvfzfPx3rvPZJBhmOTSoeo/N5v9M/17 TLT/JG+un1MaP368WS8jsR1zg/Z/xKNoBUtsMJySTnxlhMeOHVtXV/dZf75R6XLmzJlZs2bJAcoF c+jQIRMtLyF9yGPynT1v8ZgawQzyV5Ml1zhkO+733A3yclNKdKkXTuywu8FKOIMFjl4lvIIAAGAw YDLIMExy6VA1zwFyPwdVCnonFLmnFO+9956UDshzF2I75gYbGhpkeefOnXbS/Pnnn7sVLLHBcEo6 8X3qqaekb2vWrDHr/eTnP/95c3OztCCdlDmciZaXwD4MbJ45yF9NllzjkO140guHl5tQuku9cLKj XtFnsPDRq4RXEAAADAZMBhmGSS4dqiDP3LFjh/xN7dejIPKgd0KRe0rR1dUlpQPyHPnYjrnB2tpa WT548KD+IJucyvnz57sVLGPHjpXgc889pzX7S+kmvtIf/QWC06dPm1B/2Lt3rwzC9OnTZQJnQmUn vA8DMvm2DPJXkyXXOGQ7zsstiQq/1GPPhRsc2DNYlNGrhFcQAAAMBkwGGYZJLh1S8kwXEw3AdK1I lPQX1bOzixhM8UWWLFkifRiQ38WO7Y8b1IcluqxZs0YXtILlnnvu0bjFFIRRuomvTpu+/e1vm/V+ oscSi33LotSY/cXh9WFg88xB/mqy5BqH2A67QV5ueiyxVMKlrj0xKxdxgwN7Bk1DcYSPXiW8ggAA YDBgMsgwTHLpkJRn5o3pWvHo6OhobGzM7z+VkzF/4SOY4iyyX9m7/Gk36+Ul2h/BDV64cGHdunVN TU0y82hubt6a/TU9t4Ll/PnzMqNqaWmRmrEVkindxLe1tVU6ow+ZzAM9lljIM6MM5leTS+w4RDss uEFebnossVRFnjmwZ1DbiSVw9CrnFQQAAJc8JoMMwySXDtWRZ0oP5S/9gQMHzHp5efXVV2Xv3d3d Zn2wkjrxzY/Dhw/LHGvwfNdowPNMXk3KwI5DKpfAy23AL/WBpcAzmGv0+HsEAABlw2SQYZjk0kGm HKemLek5XNl5prBp06bo72iXh+uvv37Dhg1mZRBToomvDG9tbe0AfrWyzFTC5JtXkzKA45DKJfBy I88sRZ7J3yMAACgbJoMMwySXDtn3M4/2LFpU6XkmDDglmvgONgb55BsCuQRebuSZpcgzAQAAyobJ IMMwyaVD7/uZmUxPJnNyMXkmJEKeWRSYPkII5JnVDnkmAABUOyaDDMMklw7V8f1MqAQ2bdrU3Nx8 eZYJEyZ8/PHHpgDS2LFjh46b0NTUdOLECVMAkIMqfblxqVvyOIOMHgAAVBQmgwzDJJcO5JkAAAAA AADQB5NBhmGSS4fs52an9bQtOtlJngkAAAAAAAC8nwkAAAAAAADFxWSQYZjk0oE8EwAAAAAAAPpg MsgwTHLpQJ4JAAAAAAAAfTAZZBgmuXQgzwQAAAAAAIA+mAwyDJNcOpBnAgAAAAAAQB9MBhmGSS4d yDMBAAAAAACgDyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaUDeSYAAAAA AAD0wWSQYZjk0oE8EwAAAAAAAPpgMsgwTHLpkMlkTmWm9Tx7mDwTAAAAAAAAejEZZBgmuXTIvp95 tGdR28nF5JkAAAAAAABQrM/NHn7g5MzF5JkAAAAAAABAngkAAAAAAABFxWSQYZjk0qE3zzy6q6eN z80CAAAAAABAFpNBhmGSSweeAwQAAAAAAAB9MBlkGCa5dOB3TQAAAAAAAKAPJoMMwySXDuSZAAAA AAAA0AeTQYZhkksH8kwAAAAAAADog8kgwzDJpQN5JgAAAAAAAPTBZJBhmOTSgTwTAAAAAAAA+mAy yDBMculAngkAAAAAAAB9MBlkGCa5dCDPBAAAAAAAgD6YDDIMk1w6kGcCAAAAAABAH0wGGYZJLh3I MwEAAAAAAKAPJoMMwySXDuSZAAAAAAAA0AeTQYZhkkuHTCZzKjOt59nD5JkAAAAAAADQi8kgwzDJ pUP2/cyjPYvaTi4mzwQAAAAAAIBifW728AMnZy4mzwQAAAAAAIBBnGdmvr3T1UQL4MEHH5w5c6ZZ qRgyWczKAKF9sJhohFmzZq1fv96sAAAAAABA1WIyyDBMcunQm2ce3dXTVoWfmy1untnd3T106NCD Bw+a9YtI/NFHH50xY0ZyilU6Bmq/LtoHi4lGkNGTMZQRM+sAAAAAAFCdmAwyDJNcOkjWUPXPASpK ntnR0dHY2PjVV1+Z9YtoZmUx0TIyUPuNJbkzMnqjR49esmSJWQcAAAAAgOrEZJBhmOTS4VL4XZPC 88xPPvlk6NChy5YtM+sOra2tW7Zs6e7uTk6xSsdA7TeW1M7ccccdMpIynmYdAAAAAACqEJNBhmGS S4cS5pmnf/NPS587OmLlrtrvPLds9/Hzv/1nLyH85B8/79z7k4ZVf16z4s/kX1mWiCnL8v5/OSPB pu++IBXq79298Jk3T3x81pQ5FJ5nPvbYY5I+7du3z6zHkZpi5eKll1765je/2dDQUFNTU1tbO3Hi xM7Ozvfff19LY5t1g7p8/vx5SeFk8xEjRixatOijjz7SUuX06dNLly6VIqkg2bJU1q1McTaRlp1q H+RfWfZSQemPBJuamqRCfX39woULT5w4YcocvGajyBhKhe3bt5t1AAAAAACoQkwGGYZJLh1KlWee +/y3LQ/8SDNAVXJOXdB+n/lvX0gCaUtViUhcKwheqSgJ54+7/ffKtMis5IXkgZIdvffee2Y9jmyG 1e8888EHH9QNo2gFd9niBnV5yZIluqCMHTv2008/1Qrnzp1raWkxBVkk59QFrXDmzBlJIDVikYjE tYJgog6ScP74xz82xRfRIrMSh+SrUkHG06xHSG0BAAAAAAAGHJNBhmGSS4dS5ZnrDvxMcr+pf/Ly yU/OyeqH/+9vpv+vB9yEcM3L/0mWWx/+91LkVli9/12tIMz+t68f+MWvv7zQ+53Jz774csWP/lIq tP/pIS21uM3mx+jRoyX5+fLLL816HPklSLW1tbLVtm3bzp4178SePn167969s2bN0tXYZt2gLre2 tn744Yey2t3dPX36dImsXr1aK6xbt05Wp06dKidRVqWaVhC0wpo1a2TZtmAr2BaE2bNnHzhwQEfg s88+W7FihVRob2/XUktvo4mDIC1IBRlPsx4htQUAAAAAABhwTAYZhkkuHUqVZ07e+O8k93u3x7zn Jrz36//qJoSTvt9bQYK6KmiFietfMusRLnz1lVSou2eXWb+I22x+DB06NDX5yS9BmjBhgmy1YMGC jo6OlStXSobpvUkY26wb1GX3vVZZlsjEiRN1dfLkybL67ru/z8+1gqCrkyZNkuWEFqJcuHBBKtTV 1Zn1i/Q2GjBQNTU1ZiVCSAsAAAAAADCwmAwyDJNcOpQqz6xZ8WeS+331u99pLwVZdhPCXBVqv/Oc Wf/6633v/+rmHYfr79099F/9ULcVZdkUX0TjZiUvJC9KTX7yS5Ak/dM0z0UyQ/v1SI3ossUN6rL7 IFxZlojN5bTz0QqCruaqUFtba9az36u8+eab6+vrNeVWZNkUX0TjZiUHUiEhzwQAAAAAgMrHZJBh mOTSoXLzzK1vnND6UbWCJTbYL0r3uVnlxIkTL7300tatWxctWlRXVyftLFiwQIuizXpZoi4nZImF 55nSsWz1GLSCJTboop+bHT9+vFkHAAAAAIAqxGSQYZjk0qFUeaZ+LLaQz802rPpzWd35zv+h388U Pv/ygtuCJZqy9hd9DpD70dMo2QwrKcUK5MyZM9KOzfFGjBghq/bbm4L3qVddTvjUq75fWsjnZhsa GmR1586dNtP+/PPPe7ePHG80ZfXQlhOeAwQAAAAAAJWPySDDMMmlQ2mfAzR547/T5wD1/P1nsc8B mvonL+tzgKTalZv7PAeo9jvPyerBv/lIE0ipMP/JI24LFmlEgpKRmvX+s2PHDsmOSvG7JjNmzHjq qac++OADzc0+/fTTTZs2STuSXmqF9vZ2We3o6Dh3rnegJE/T71sKWkGX7WN+uru7r7zySoncf//9 WkGfAyRbaQU5m7HPAZIW9DlAUk1bsM8B0ocVHTx4UDspFebPn9+7feR4pREJSkZq1iN0dXVJhYTf Ncm22u9hBAAAAACAcmIyyDBMculQqjzz3Oe/bV7XpWmhuvz5H+uC9jvX75p8+tn/pxX06bKumpqK WsGy/egHtk60NIRPPvlk6NChy5YtM+sOmhdFMcVpmNoRtmzZohX27NljQhd5+OGHdUEr6LL9qRLF /VUSSVCbm5tNQZbly5frglbI9bsm9pdR9OmyLpqaClrBIgmkxhUTdViyZImMpPfjnC65NgQAAAAA gMrBZJBhmOTSQeb8pzLTep49XOQ8Uzj9m39a+tzRESt31X7nuTv2HD//23+WJNB9zI+klJ17f9L4 b/bUrPgz+VcSUdnElGWfLrvuwM8k8xz6r34oKevWN05IMFcm+fDr/3nsmr1555lCR0dHY2Nj9BOh mhdFMcVp/PKXv5Sc7corr6ytrZUErL6+fuHChQcPHjTFWSR5u/zyy6V0woQJ+k6guwtdPn/+/B13 3CGNjBgxQnLOjz/+WEuV06dPS1CKpIJUk8qyif1oriApZWdnpxxgTU2N/CuJqGxiyrJPl123bp1k ntIHSVm3bt0qQd2vVnCRNHjs2LGxpTJ60rikmmY9jtgNAQAAAACgojAZZBgmuXTIvp95tGdR28nF xc4zPbo//UdJAhN+tmRg6enpkSzrwIEDZr2a6e7ullwu4WdLSsSrr74qYyh7N+sAAAAAAFCdmAwy DJNcOpjPzR5+4OTMxUXOM2dt+w8HfvFrfYrPB3/3DzP/t4OSZ6478DMtrUA2bdrU3t5uVqqKWbNm SYasT/H54IMPZs6cKXnmunXrtLRsXH/99Rs2bDArAAAAAABQtZgMMgyTXDqUMM/UT7G6Xv69fWf/ 6QsthSKS/SxqHy6//HL3GbYAAAAAAADhmAwyDJNcOvTmmUd39bSV4HOz7/Z82rHrWMOqP6/9znMt D/xo9f53z/w3ksyS8O6773Z0dDQ0NNTW1ra0tKxevdo+JQgAAAAAAKC/mAwyDJNcOmRK9xwgAAAA AAAAqEZMBhmGSS4dSvW7JgAAAAAAAFClmAwyDJNcOpBnAgAAAAAAQB9MBhmGSS4dyDMBAAAAAACg DyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaUDeSYAAAAAAAD0wWSQYZjk 0oE8EwAAAAAAAPpgMsgwTHLpMJB5Znd396OPPjpjxoxMFhMtHvPnfy2t3n+/WVXWrOkNzp1rVktN JfQBAAAAAACgX5gMMgyTXDoMZJ6p6aXFRItHd/fXQ4d+XVPzdU+PiciCRMQPPzSRUlMJfQAAAAAA AOgXJoMMwySXDgOZZ7a2tm7ZsqW7u7tEeaZwzz297xwuWmRWZUFWV640q+WhEvoAAAAAAAAQjskg wzDJpYPkd6cy03qePTyQ388sXZ559uzX9fW9ed3773/93nu9C3V1vcFyUgl9AAAAAAAACMdkkGGY 5NIh+37m0Z5FbScXX4p5prB1a29qN2NGr7Igq+Fox2IxNcIopA8AAAAAAABlxmSQYZjk0sF8bvbw AydnLr4088wvv/y6paU3uxNlQVbD0Y7FYmqEUUgfAAAAAAAAyozJIMMwyaXDpZ9nCl1dJseThYGi EvoAAAAAAAAQgskgwzDJpUNvnnl0V0/bpfu5WUVzvIGlEvoAAAAAAACQiskgwzDJpYPkd5fyc4As +eV42rFYTI3+kF8fAAAAAAAAyozJIMMwyaXDQP6uiSXvzC2c/HI87VgspkZ/yK8PAAAAAAAAZcZk kGGY5NKhCvLM5NJAKiHHq4Q+AAAAAAAApGIyyDBMcukwkHmmJpBRTPFFYoP9pRJyvEroAwAAAAAA QComgwzDJJcO5JnloxL6AAAAAAAAkIrJIMMwyaVDRXxuFgAAAAAAACoHk0GGYZJLB/JMAAAAAAAA 6IPJIMMwyaUDeSYAAAAAAAD0wWSQYZjk0oE8EwAAAAAAAPpgMsgwTHLpkPmjTeSZAAAAAAAA8HtM BhmGSS4dyDMBAAAAAACgDyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaVD afLMn/wEERERERERq1LyTERERERERCym5JmIiIiIiIhYTAvPMzOZU5lMT6aNPLNQZSgFL2g99/rr y2+6qW748IRqCUVlc8D7EDJQqcZuq0GLV5q3xW0tVd2dxSstiqVrOWpRTjcWoo68xSutZKuuw4iI iNVk4XnmqVMleT9TZwC56HMMl4rJh7ZiwQKtoHilakJRUQxpP6ROSQ0ZqFRjt9WgxSvN2+K2pn60 f//KhQtbxo2rGTZsRG3tzddc89bjj2uR7s5iNymipWs5auGnO+8NK0f3ENzl8qh7tHilVrfUXR5A 8+iGu4m7fMnoHpS7jIiI2G/JM6vFxvp6OfD3nnnGi5fTqhj8MgxUccehuK2Jx554on7kSG3WxasW GyyKpWs5auGnu5y9LZHuIbjLZTZ5126puzyA5tENdxN3+ZLRPSh3GRERsd9WbJ7pyl87sRIGoRL6 kGoZOlncXRS3tbOHDmnqtfymm7q7uiRy4dixtx5/fP6117rVxOLu17V0LUctfF+FtzDguofgLpfZ 5F27pe7yAJpHN9xN3OUyePL5571IKXQPyl1GRETst9WbZ177h38owa71623k8LZtEpk+aZKuZjfK nD9y5I65c2trakbU1i5qb//45ZdtfVGm4Fs6Oye1tNQMG1Y3fPiSG274aP9+t0KyuouEoF1+bOXK y8ePl71MaGrasWqVlrp1LG5RtNSSUMctUr86fnzbihUyMjIIMhSzWlsPPfKIW+H9nTs7581rGj1a elg/cuTC6647sWuXLTXtxpGrjo1bP3nlFdlFQ12d7EL+lWWJ2FK7VcJAJastRHHrJB+maLa5iFvk mlCaekXJFShBKZITIVemXJ8JreXhw8uXS2vf/MY3vHjUhP2mDtRLGzfKLvRsyoFMbG6W+rKVltqW 8z6bYsgFE8VWSNVsEIdWKM8dJnkkA9WeRJetNiidaayvl925pyO1k6nXg2r3Eqtb6i4HmtwH22DC JVeUl567ibtcBuXQ3KuxRLoH5S4jIiL22+rNM3c/8IAEZ06daiMyyZPI9nvv1dXsRpmls2frgjJ+ 1KgzBw9qBcm+rp82zRRcZGxj4+kDB7RCqrpJQlCXZQ6nCxZ3umBCF7Hx2FJLQh23SIw9TMGtY0IO MlH78fbtuUotuVqwcVXGXCaIpuwiErHnQiPJA5Ws2SBCch33MKMVbNwzV2nqFSXHK1egKcgiOYYu 2EbU2GCIs1pbZcNjTzzhxaMm7EKLXNyBerCjw0QjuJsXcjYDL5gotoVUzQZxaIUy3GFSRzJQdxN3 2arBnWvX6oKiRSG3QRN18F44bjUvaHVL3eVAdROX6D0q4ZILf+kl627iLpdBOVNzr77609de8+LF 1T0odxkREbHfVm+eeeHYsdENDRLXTxOde/11mXaIZw8d0gq6VesVV3z4wguy2t3VNX3SJIncf9tt WuHRu++W1RlTpnywZ4+sykSkY84ciaxcuFArpNq7g0jH3KAuT77sMn2D4rM33tBZqSQDWsFVK3tB a3KpGltHD1Mmji9t3CiDJhEZkGU33ujWmT19+oHNm798+21Zlk7qs1Xa29rcOmK2+Xz6sGbxYgna cyH/6rlYfeutWiG7UehAJatNeUE18DDFhEbEXKWpV5SOgxz7r/btk1UZBxmT3rYircUGQxxRWysb ypTUi0dN2EXyQNXW1MjqthUr7GtNcpK9Dz1kT1a24YLOZuoFY+3dU14DZc3VQhnuMKkjWSxlL4J0 79UtW+TakDMiI6xFIbfBIt4f8ja5D7rrhEsu/KU3gH7+5ptyJST4y9275YjkHHkbIiIiVqJV/f1M mc9JXCYcsrxj1SpZXjBzpi3NbtTnASGyLJGJzc26qvMM9xNiMjuRSPOYMTaSbO8OIh1zg7r87tNP 21KZK0hEkgEbsWplL2hNLlVj6+hhyvzSiycoM2zZpG74cC+ebT6fPkxqaZFgwrnIbhQ6UMlqU14w 1lyHKSY3kqs09YqS45XV6DgINqLGBkMM3zC8pjdQE5qaZFVea5KQSDYieZH31la24YLOZuoFY+3d U14DZU1oodR3mNSRLJayF+GZ++7z4mIet8FC7g/F0uuD7jrhkgt/6Q2gq2+9ddmNN6YqKfc7O3Z4 2yIiIlacVZ1nytxI4jKTOH/kyFWTJ8vywa1bbWl2oz5v7MiyRGpranS1ZtgwreMhcbtJslo/Iegu W2ODYq64mlyqxtbRw0x+g2vfhg03X3NN/ciRQ4cM0UYEWfaqadwLesbWifbBOxfZjfytYoOpJmwV eJiiFnlBa67S1Csq1zgINlKg8nKQ1mQW7sWjJuw3eaBkNq95oMvkyy6z35/UiC5bY4O5TL1grNlW Cxq9hBZKfYdJHcliqS1LAunFxdROikW8P+Rtch901VaOBnNdUbZCFfnFW29tuP32+ddeq+9Oe6WI iIiVYlXnmeKNV10lRSsXLpR/Rzc0uH90sxvFTCzs/CnXBEuwmyQbrezNXdxla2xQzBVXk0vV2DrR CZbn1rvu0g2jeDVjg56xdXJN8sqZZ4YfppgrruYqTb2idIocHQdboXBnTJkirRXy/czAgTqxa9dL GzdK5UXt7XXDh0upfa8vWjlXMJepF4w122pBo5fcQhnuMAkjWSyjO7WmdrK494f8TO2Du2x1g2V4 6ZXTw9u2tbe1PdjR4X6NFhERsbKs9jzz0COPaKlwzy23uEUajH5QakJTk65eOXGiTFu/eOstW6G/ 6ntHZy9+t0r0PovlLltjg2KuuJpcqsbW0c/FHdi82YtbG+rqpMLOtWv1u0/i52++mW0ptOeusXUC PzdrSxOCqebaKvwwxVxxNZoFqalXVK5xEGykQDfcfru0tvC667x41FxH0a+BUs8cPCilRfxfgwr5 3KxY5juMN5LFMtvT+GNM7WT49ZDriirc1D64y1Y3WIaXXuH+xQ9+8NLGjaneMXfuls7OkM8sICIi DqSF55mZzKlpS3oOD1CeKbaMG6cVfvrkk25cg1MnTNDHeHR3dcmMSiL2ARiPrVwpq+1tbe8+/bTO jT597bU93/ue+4TJZGVbaaFjzpxzr78uqzJxmXzZZb17DZ79uOaKq8mlamydbStWSHBsY2PX+vU6 NfnwhRdkpmIryCxTKhzculUHQYZr/rXXZlvym5JGJPjcd7+bMJWM3VAfwiHnQp+YIrvQc+E9B0iX rbHBVHNtFX6YYq64KgcipTLr9eKpV5R9GIn+sqX0QZsStII1NhjiWef3M3W0pSdvPf549C2yXEeR OlAzpkx5avXqD/bssce46c47pdR+F86tbI0N5jL1grFmW81noKypV3Xp7jCpI1ksezuaY5RSOxn+ wsl1RRVuah/cZasbDH/pDaBygHsfeihBGdvLx4/3rkNERMQKtTjvZx7tWbRowPJMfZZ90+jRXly3 0p8isIwfNUpmUbbO3KuvNgV9sRWSldmY2eAi+uuFglZwl61eUFej2ApuNS+oalEULZWZWfLvmuiT G110TibYOuo9t9yicYstMusRtPRMjp+psOdCI7psjQ2mmmurkMPU1Si2grr93ntNQRa3KPmKkiTQ G4clN9ygC7YFNTYY6Jt/+qf1I0dqCy5etVxHkTpQuhxFXoluBV22xgZzmXrBWLXIC/bLhKtaLd0d xqxEsCNZLLVZL2hN7mT4/SHhdVGggdekrR8Nhr/0Ktmls2fzBCBERKwai/J+ZibTk8mcXDxAeeb6 ZcukdNW3vuXFdSv3V9Tlj7T3K+riM/fdN6u1VUqHDhly+fjx354/X5+MH6hMrWQr2XZCU5P+sJ7u V0vdZasX1NUotoJbzQuqWhTFVpBU87GVK6+aPFnGQWxvazv0yCO29MKxY+uWLpVJmBxF85gxW++6 S4JeC6oMpkzvWsaN0y87uRV0NYqtIJPvznnzGuvra4YNk3+X33RT9Af67GpCMNVcW4Ucpq5GsRWs Dy9fru+DRUuTryi5AjvmzJFSOREJPxYfGwy358UXVy5cqGdKdiSJhCSfXh0x9ihSB+qXu3fLZaCf t5Q6ktMuvO66g5EH5NjVhGCCyReMtb/NRk24qtXS3WFSR7JYale9oGtCJ8PvD2LC66IQU/vgLlu9 YOBLr2J9dcuWDbff7gUREREr16r4fmay+tsA0f/lra45BCJWptxhsBI89sQThTxNABERsdxWe565 c+1ameo1x/3UG7NARCxQ7jCIiIiI+Vicz81O62lbdLKz7HmmzvOEh5cv94pELfKCiIiB6j1E4A6D yerFEItXc0A0XYnDq4mIiFg0q/r9TP1OVOe8efoQQk8pFb0gImKg3GEwUL0YYvVqDohel1y9moiI iEXzEvh+JiIiIiIiIlaQ5JmIiIiIiIhYTMkzERERERERsZiSZyIiIiIiImIxJc9ERERERETEYkqe iYiIiIiIiMWUPBMRERERERGLKXkmIiIiIiIiFlPyTERERERERCymheeZmcypaUt6DpNnIiIiIiIi olic9zOP9ixaRJ6JiIiIiIiIRXo/M5PpyWROLibPRERERERERL6fiYiIiIiIiMWUPBMRERERERGL aXE+Nzutp23RyU7yTEREREREROT9TERERERERCym5JmIiIiIiIhYTMkzERERERERsZgWM8/sJM9E REREREQc9PJ+JiIiIiIiIhZT8kxEREREREQspuSZiIiIiIiIWEzJMxEREREREbGYkmciIiIiIiJi MSXPRERERERExGJaeJ6ZyZzKZHoWPUueiYiIiIiIiLyfiYiIiIiIiMWVPBMRERERERGLKXkmIiIi IiIiFtOi5JlHv9/TljnZSZ6JiIiIiIiIxXkO0LSeZw/zfiYiIiIiIiLyuVlEREREREQsruSZ6JrJ 4gWrQu25xSv1DKlTaiuhD6lWRSfLYOw4xAZdtYLFK8VkGTRERMTqtmLzTJ1k5KLPMWDxrN7h1Z5b vFLPkDqFGNJ+SJ0Btyo6WaAhxxhbJzboqhUsXikmm9+g5bcVIiIiFl/yTLzErIQrpBL6gIHmfbLC Nwyvidb8Bi2/rRAREbH4VsXnZpk6YLiVcLVUQh8w0LxPVviG4TXRmt+g5bcVIiIiFt/qzTOv/cM/ lGDX+vU2cnjbNolMnzRJV7MbZc4fOXLH3Lm1NTUjamsXtbd//PLLtr544dixLZ2dk1paaoYNqxs+ fMkNN3y0f79bIdWQFrQnsiA1G+vrG+rqdqxaFV7hk1de6Zw3T4KyC/lXliViS9XkFlLVzS2xpbLw 2MqVl48fL92Y0NTUr/bF93fulJ43jR4tm9ePHLnwuutO7NplS3UXCScrtYJVa3pBVYssXqn41fHj 21askEtI2pe9zGptPfTII26FkKOIJVcdG7cmn267VSHnIlXdiyW2VBYS+pA6kiGHeWDzZhnkKydO /PS11x5evlyamnzZZT0vvmgrJF8PpT5ZGvT6EHsD0ZpeUC38FhQykoXfBrUdWYi9w4QMtSwkXDDS Jdmv7F06KV2VDtutQtTKsWiFCvl7gYiIOIis3jxz9wMPSHDm1Kk2ItMCiWy/915dzW6UWTp7ti4o 40eNOnPwoFaQqfD106aZgouMbWw8feCAVkg1sAWN71y7VheUwArSW5m9mdBFJGKPQtV4wi6SNRtc JLZUJli6YHEnbamabRxkrvbj7dvd0oSTpZGEClYt8oKqFlm80tizKbh1TMghehSx5GrBxtXU062R kHOhcS8YqG5riS1N6EPqSAYepuQzuuC21jFnjq2QfD2YqENxT5YGJdnQBUVe/pIVx9b0gmLht6DA kSz8NqjxXHcYs+4QHeqEC0Y6I10y0Szf/MY3dEErpKqVY9EKlfD3AhERcXBZvXnmhWPHRjc0SPzk 88/L6rnXX5eZjXj20CGtoFu1XnHFhy+8IKvdXV3TJ02SyP233aYVHr37blmdMWXKB3v2yKrMJ2QK K5GVCxdqhVQDW5CIIHt/dcsWmax89sYbaxYvDqwgC1Jkj0L+1aNYfeutWkHNNpC0i0C1ndjg5Msu e3/nTlmVxnU2Nqu11a2W7Ozp0w9s3vzl22/LsrSwYsECaaG9rU1Ls3tIOlmpFaxa0wt6xtbRsykT x5c2bpSrSyKyr2U33ujWST4Ka7b5fPqQerqzGwWdC63pBftrbCMaTOhD6kgGHuaxJ5746ZNP6vJb jz/+3jPPyELLuHG2QvL1UOqTpcFoH7zXpqg1vaBY+C0ocCQTBqooN7GQV3fCBaNHIY3/at8+WZWu SoezG/X7As61VSX8vUBERBxcVvX3M2UGIHGZ08jyjlWrZHnBzJm2NLtRRuamNqLz1InNzbqqUxn3 g08yAZJI85gxNpJsYAsSEZ657z436JpQYVJLixQlHIWabSBpF4FqO7HBd59+2kZkciaREbW1NtJf ZdonLdQNH66r2T0kHWZqBavW9IKesXX0bMo02osn6B2FNdt8Pn1IPd3ZjYLOhdb0gv01thENJvQh dSQDD1PyGdFb1r1oMKGFqEU/WRoM6YPW9IJi4begwJFMqFCsm5hr7Ks74YKRzshqtJOCjQSasNWA /71AREQcXFZ1nil/8iUuk5XzR45cNXmyLB/cutWWZjfqnZ7aiM5Ta2tqdLVm2DCt4yFxu0mygS1o UCYlbtA1oYLuIuEo1GwDSbsIVNvJO5jgvg0bbr7mmvqRI4cOGaLbCrKspbqacJipFaxa0wt6xtaJ DnXU5KOwatwLesbWST3d2Y38rWKDRTG25dRg6kj26zC9ZR1tDSa0IJb6ZGkw2gc5OhtRtaYXFHUc okRbyGXgSCZUCOyDBnPdYUJe3bZyNJjrKGyFcBO2GvC/F4iIiIPLr782+WK+yN/ZU5lpPQ8cHoA8 U7zxqqukaOXChfLv6IYGd5aQ3ShpFphr3iDYTZINbCEa8UyooLtImP2o2QZCu51gbDvhwVxuvesu rR9FK+hywslKrWDVml7QM7ZOdKg9U4/CGhv0jK2TerqzG+Wzu/yMbTk1mDqS/TrM2GVdiLZgr4cy nCwNJhyFVWt6QVHHIRavZi4DRzJawQ5UYB+iEWvgq9vWjwY1O4120lYIN3mrgf17gYiIOLgsPM/U 9zMfaDu5eCDyzEOPPKKlwj233OIWaTD6OagJTU26euXEiTIb++Ktt2yF/hrYgvbEC7omVOjX52bd SH7GthMezGVDXZ1U3rl2rX6DS/z8zTfdFnQ54WSlVrBGZ95Rs435ndfPxR3YvNmLW1OPwhob9Iyt E/gxSFuaECyKsS2nBlNHsl+HGbusC9EW7PVQhpOlwYSjsOa6Jgu/BeX9udn+3ga1HS+oBr66ddnq BnMdha0QbvJWA/v3AhERcXBZrDzz8AMnZy4egDxTbBk3Tiv89Mkn3bgGp06YoA9+6O7qkomCROzj Kx5buVJW29va3n36aZ0Cfvraa3u+9z33mYTJBrbQ24/ECVNCBX1ChhyFPp1CjkWPIvY5QG4kP2Pb CQ/mUuZnUvng1q06SnIU86+91m1BlxNOVmoFq9SRuMx6vbhrtjG/89tWrJDg2MbGrvXrL1x8es0d c+faCqlHYZVGJPjcd78bTS2ssRumnu7sRv5W4cH+GttIajB1JPt1mLHLupBwPZThZGkw2gf3WURq rmuy8FtQ4EgmDFThN7HAV7cuW92gHsX0SZOke7IqLeiI2Qrhpp7NAfx7gYiIOLi8BPJMfVx+0+jR Xly30ofXW8aPGiWTA1tn7tVXm4K+2AqphrQQjXgmVDiT43cL3KMQNe5G+qVuHsUttZUTgrnU50+6 6MxS0Aq6nHCyNJJ8NtXt995rirO4RSYUQUtl7pj8axypR2G955ZbNG6xRWY9gpamnm6N6LI1PBio bhvFLbWVo8HUkezXYcYu60LC9VCGk6XL3i9hyFHI0dkW1IRrssBbUOBIFn4bjEasga9uWz8aPHvo kHcU9tdibP1AE86mOrB/LxAREQeR1f65WXH9smVSuupb3/LiupX7u9syI4z+sv8z9903q7VVSocO GXL5+PHfnj9fH74fbmoL2hM34plcQSY6nfPmNdbX1wwbJv8uv+mm6C+2JbeQqm4exS21lROCubxw 7Ni6pUtlbidD1DxmzNa77pKg24IuJ5ys1AquDy9frm9rCG5cI1FsBUmQHlu58qrJk2UXYntb26FH HrGlqUdhlX7KVLtl3Dj94plbQVej2ArJp9ur3N9goLptFLfUVo4NJo+kGH6Yscu6kHA9lOFk6XKB 16RY4C0oZCRTO1nITSzw1a3LVi8oXeqYM0c6IJ2UrkqHvQqBJpxNdcD/XiAiIg4Wi/UcoGdL+Ryg ZCc0NUkn3tmxw4tnpw39nqbggJh6slIr4KCS6yFQBsqTvxeIiIhlsljvZ5b0d00S3Ll2rUwOYn/B jHlDFZl6slIr4KCS6yFQBsqVvxeIiIjls6rzTJ0ZCA8vX+4ViVrkBbEyTT1ZqRVwUMn1ECgDZdWh EPh7gYiIWA6rOs/Ub9F0zpunT//zlFLRC2JlmnqyOJvoyvUQKANllXHg7wUiImL5rPbPzSIiIiIi ImJlSZ6JiIiIiIiIxZQ8ExEREREREYspeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiIiFhMyTMR ERERERGxmBYlz9y1pCeTOfk/TCXPREREREREHPQW6/3MZxedvKmTPBMREREREXHQW3iemfmjU0d7 eha1nezkc7OIiIiIiIhYeJ6593859f3v97Qt4vuZiIiIiIiIWJTPze49NW1az6JnyTMRERERERGx SN/PXJLpeeAweSYiIiIiIiIW7zlA/K4JIiIiIiIi9kqeiYiIiIiIiMWUPBMRERERERGLaTHzTH4/ ExEREREREXk/ExEREREREYspeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiIiFhMyTMRERERERGx mJJnIiIiIiIiYjEtPM/MZE5lMj2LniXPRERERERERN7PRERERERExOJKnomIiIiIiIjFlDwTERER ERERi2lR8syj3+9py5zsJM9ERERERETE4jwHaFrPs4d5PxMRERERERH53CwiIiIiIiIWV/JMRERE RERELKbkmYiIiIiIiFhMyTPR88GOjplTp3rBEGe1tq5ftswLDk7zHsPKMZPFC5ZB3a/FK3U99/rr y2+6qW748NSal5h6vBav1Fqxr8fkbhdF3YXFK0VERMRyWMl55vkjR9YsXjx+1KiaYcPkX1mWyO+7 XkleMrOZ7q6uoUOGHNy61YuHKFvJttKCFx9s5hrD//pnP//Jko9+9Afn9v7L3/z7Pzrzt2s/7G8F 657L/1H0gsU1+ZJOLi1EbdnilbquWLDAVMrilV7CmgO+iFdqrdjXY3K3i6LuwuKVIiIiYjms5Dxz 5tSpZppwkVmtrb/veiWp3fOC1WjHnDmN9fVfHT/uxUOUrUY3NCy54QYvPtjMNYaaHIovXHFOF/7m vv+zXxWsWuoFy2kZLvjUXcggS4X3nnnGiw8ek4eoYl+Pyd0uruXcFyIiIvaxYvPMlzZulPlB0+jR v9y9W1Y/2LOnecwYiUj8972vGLOTmaqfzXzyyitDhwxZduONXjzcO+bOlRakHS8+eEwYw7f/+OO/ e+oXvzveu/wPL7wvieJL/9PZflWwkmeKqRXy8+Tzz3uRijV1BEr0eixwiFK7XUTLuS9ERETsY8Xm md/8xjdkfrD7gQdsX2VZIva/57Pzh8z5I0dkLlVbUzOitnZRe/vHL79s64sXjh3b0tk5qaWlZtiw uuHDZduP9u93K4jajixIzcb6+oa6uh2rVtnS93fu7Jw3T9JdaaF+5MiF1113YtcuW6rbxmLryCRP WpBmpQX5V5aj0z67SWwfyuZjK1dKN/Zt2ODFw5VtpYXt997rxQePgWP4+WvvSqL4whXnvLg1uUKu PPPv9/z1X93+6/1Xnt37L3/zoz84d+yb/4/kq16dZHsvRIfkUhdb56WNG+XFqxe8vDAnNjfLNS+v I1sh5FUpes1aNR7Fq5a3cga71q/3gv3Vdin2FZ06Asm3HavdSy5L9HoscIi0296t2xuB1NtmyH1V 1H15QURERCyHFZtntowbJ/MDd+ogyxJpHjNGV7Pzh8zS2bN1QRk/atSZgwe1wlfHj18/bZopuMjY xsbTBw5oBVXjO9eu1QXFK3WRac2Pt2/PVWrRCtIZmSya0EUkYjupajxXH9w6XrC4am4f/SCi7joW r6bMjyUo7XjxCjG2z66pFVLNNYauX7z+V/9h1qeSKL5z23/xitTUCrnyTI27SsL56c6fe9US1BGw JJe6aIUHOzrMegStEPiqFLXIC4oaj+JVy1vp4dyrr/70tde8eL/ULsW+okNGwEQd3NuOV80Lupbo 9VjgEGm3JbvWBUVGwDaYetsMvK+KWuQFERERsRxWbJ4p8ypvfiCTG4mMqK3V1ez8IdN6xRUfvvCC rHZ3dU2fNEki9992m1Z49O67ZXXGlCkf7NkjqzIF6ZgzRyIrFy7UCmpvK5mMbPvqli2yi8/eeGPN 4sW2dPb06Qc2b/7y7bdlWYr00SPtbW22gqqNeEFRmpK47aT8q51cfeutbrXs1jn74NbxgsV1dEOD 7EIP1lV3HYtXU7aVoLTjxSvE2D67plZINdcYWi/8x7/UHFL+/e1f/JVXKqZWSPDNm0599NjffHX0 HVn+5yN/+Z+W/9/SzpH/+bRbJ9DkochVWltTI/FtK1acPXRII5I+7X3oIfvN6sBXpdi7g9KcrM/f fFO6l+Avd++WDkeTlnC1b7Gv6JARKPC2Y8379VjSIdJuR2/d9q6YetsMvK+KEhS8ICIiIpbDis0z Y+cHEpH80y4L7htHsiyRic3NuiqzEFl1P44lMzaJ2HdE1d5WMpln7rvPDebywrFjUrlu+HAvro14 QXFSS4vEEzqpZrdO6YPW8YLFdeiQIYXvQlqw56jSzA5h0gGmVkg1dQz/esWvJPd79dqcOWRqhXB/ d/wdaaprUs5P5yaYPBS5Sic0NUl8wcyZkjtJ4iQZpvcuXOCrUuzdQWlOlmQjy268MVVJ9t7ZscPb NlDtW+wrOnwErP297bhKhTxejyUdIu12wl0x9bYZeF8VJSh4QURERCyH1f5+pgS9CrU1NbqqLUTx Zl0alKmeG7Tu27Dh5muuqR85UvMHRZa9ahr3gqL2IaGTanbrnH0om9Exz0NpwRvhQWXqGO6/8qzk fue6fubFrakVEvz1D/727T/++Ed/cO75Cb+RRlRZ9qqF2HtF5j6QXKXvPv205gAuky+7zH4AXscn SvSa0bgXdE2tUKBfvPXWhttvn3/ttfqepFearPYt9hUdMgIF3nZcpUJ0bItlfkOk3Y7eFW0/dYii Fbx7e0IFqwQFL4iIiIjlsMK/n+l+Zyn2+5nRqYY3WYnFbiJGI9atd92lpVG8mrFBMXA+lN164CdD xfrc7PhRo7z44DH1c7OaAXpB19QKufzbtR/a3NLTqxli9vTmvCaTS0/s2vXSxo3y8lnU3l43fLjU XDBzphYFvirF2KBraoXCPbxtW3tb24MdHdGvjyab0LfUESj8tmMtw+sxjyHSbifcFVNvm4H3VVGC ghdERETEclixeaY+TyX1ebPRj05NaGrS1SsnTpRpxxdvvWUrxKrteEG1oa5OinauXWvThs/ffDO2 fmxQ7NfnZt3IgKhj/u7TT3tx7V4sXk09uop9DlAZzDWG1tTEL+/McN/kf5ANu//kf9fvZ4oX/mPv 52bzay17enNek8mlrmcOHpSaNgEIfFWK0VzCM9uFfF41f/GDH0ganOodc+du6ey8cOyYt3mICX1L HYHw207qEOX9eizpEGUPpUyfm00dIkRERCyVFZtnyiRG5gfNY8bo72fKv7IsEfuLEbIsTJ0wQX/M rburSyZwErHP29BfmGhva5NJv84zPn3ttT3f+97MqVO1gpptJn5GKNNBKTq4datuLjuaf+21sfXH NjZK8Lnvfteb0OjzKqST+rwKaUE76T2vorfFtBlzSJ0C3bFqlewi9Tc5Euxav15aqNjfNckOYdIY plZItfAxzNsXrjgnKeXHT5zQX+D8zb6fHf3jj0uUZ+a64GdMmfLU6tUf7NljX3Gb7rxTatqPuwe+ KkV51UhNSbe8uFVKBS8Yoryi9z70UIKy08vHj//pk096G4ab0LfUEQi/7aQOUd6vx5IOUfZQYm7d 9hFuqbfNwPuqmDpEiIiIWCorNs8UZeIlUwQX+9RKUSOL2tt1QRk/apR9OL449+qrTUFfbAUxGrHq Yx5ddH4jeDXvueUWjVs0fibH8/fdTooadyNRQ+oU6CevvDJ0yJBlN97oxcNdcsMN0oL7azThSkLS Mm5cz4sv2shH+/fLXHbD7bfbiCirEnSrhZs6hqkVUk0dw9TEL+/MUJ8u66qPFBK9mgnqCETxquW6 4M1KhC2dnXbbkFelKNmRKcjilYq54oW7dPbsvJ8ApCb3LXkEwm87qUNUyOsx2UKGSHvr/SRVyM+W 2Ntm4H1VTB0iRERELJWVnGeeP3JEJliSOtYMGyZziNW33ioR23WdN7g/9i0Tl49fftlWUJ+57z7J TqVU5luSn3x7/nz3J+NFbceNWC8cO7Zu6VLZtWzbPGbM1rvukmBsfe2qpElS06sgU5/OefMa6+vl KOTf5TfdFP0ik7dJrCF1CrdjzhzppPcmVaCylWxrP9jcXxded50coPuJU/0s3I1XXWUjYrRauL0j mDiGqRVCTB7D1MSvv5mh9XfH3/n5yv9r/5Vnn5/wm/1X/v3frv1Qgv1tTUcgilct1wX/y927JX5l 9qOhUlQ/cqScr4Nbt9oN1dRXpfrw8uX6xqlt3zVXvEBf3bLF+6+NPEztW8IIhN92xIQhKvD1mGCB Q6S9Tb51p942Q+6ravJVhIiIiKWykvPMZJk3lMKeF1+U2e2BzZu9eIgy+5Rtu7u6vHigMu/UXxR0 Pfn885+/+aYbia1WURYyhjjgHnviiZCvj1a+Bb4eE7xkhggRERFLKHkmem668872yC/Ch3j9tGmF vxF0aZj3GCIWS16PiIiIOJCSZyIiIiIiImIxrd48s7amRvSCiIiIiIiIOMBWb56JiIiIiIiIlSh5 JiIiIiIiIhZT8kxEREREREQspoXnmX+0iTwTERERERERL8r7mYiIiIiIiFhMeT8Tq8VDjzwyc+rU mmHD6keO7Jw378zBg14FRERERESsCMkzsVq8+Zpr3nr88a+OH79w7Nj6ZcuunzbNq3DJu/ehh869 /roXrC4PPfLIr/bt84KIiIiIeKlJnll+M1m8YOX4YEfHzKlTvWB5nNXaKgmkF8zl0CFDvMgl77Ib b3xnxw4vWF2uXLjwL37wAy84GNRXvcUrRURERLzUrOQ88/yRI2sWLx4/alTNsGHyryxL5Pddr1or eaLZ3dUl+dvBrVu9eOFKy4/effeMKVMSDl/2K3uXml486rEnnph82WVeMNmfPvmkXEiiLHhFZTPh 2EOMzTPnX3tWmrz/tlNucM3iUxKce/U/uMFwf/7DH0o/w/+74cSuXau+9a2pEyaMqK2VEW4ZN27F ggWx71uSZypeKSIiIuKlZiXnmTLNNZOyi8xqbf1916tWPRYvWCF2zJnTWF//1fHjXrxw9agtXqkq +x3d0LDkhhu8uKckMONHjXrr8ce9eIIf7d8/trFxYnPzpJYWWfj45Ze9CuUx4dhDjM0zu7veHzrk dzXDftfz4s80IgsSET984a9ttX65YOZM6Wf4COtxedQNH37siSe8moM2z7Tq4HhBRERExEvNwvPM TOZUJtOTyZxcXNQ886WNG6XpptGjf7l7t6x+sGdP85gxEpH473tfnfZOMytyovnJK68MHTJEkhkv XhRbr7hiS2dnd1dX8uHfMXeu9EF64sWtP//hDyXJ3PvQQ148wfNHjvyP/+JftIwbJ82KciHJ6oC8 N5587Knm+tzsPbecllYXtZ/RVVmQ1ZUL/85W6Jd6juR8efEEZ0yZsv3ee+VFqv9DIQvXT5smjUyd MMGtJpJnZi8B8kxERES81C08zyzR75p88xvfkNnY7gcesH2VZYnYN7uys7WMZAuSmdTW1IyorV3U 3u69T3Xh2DHJbSa1tNQMG1Y3fLhs+9H+/W4FUduRBanZWF/fUFe3Y9UqW/r+zp2d8+ZJuist1I8c ufC6607s2mVL7baPrVx5+fjxUmdCU5O7uShdkv3K3qWT0lXpsN2q0pSjkI7t27DBixfX5MOXvUup JC1eXD28bVt/38kU5159tWxlrw19b1OCtkKytsMJZznkOonF1gkxV5559tC79SP/uzT2/s5fvPfM L2Shbvh/l6BXLdBvz58vHetav96L98uzhw5JI0OHDJHXoBuv5Dwze0J6z0jsrSD1ZpJ8DVjtXhAR EREvZSs2z2wZN05mY+77WrIskeYxY3Q1O1vLLJ09WxcUSSfsz118dfy4vqniIgnG6QMHtIKq8Z1r 1+qC4pW6yCTyx9u3u6Uy+9QFi52jS2ekSyaaRfNnQStYY4NlVvv23jPPePHimnykMlmXUumJFxfl HMlg6vvb4a6+9VY56Seff94NyqoEV33rW24wl9rhhLNs67hEr5NYbAsh5sozxa13/VoamzHlM1EW ZNWrEKi8OiQ5lETai/dX+/8pn73xhhsvJM/UBr2ga2qFZHXz2FtByM3ERB3ca8Cr5gURERERLzUr Ns+UKZo3G5OpnkRG1Nbqana21vvpvg9feEFWu7u6pk+aJJH7b7tNKzx6992yOmPKlA/27JFVSfk6 5syRiMx0tYLa20omI9u+umWL7EKmxWsWL7als6dPP7B585dvvy3LUrRiwQKp3N7WpqW67eTLLpPs SCto3mu/RypNyao0rs9Eka5Kh7Mb+RPN2GCZHd3QIH3Qgy2dyUcqe5dS6YkXF3VDl1J3VdV9JZxl Mfk6sWZbyv8sJ+SZX779Tsu430rboizIqlchUHn5SA+9d2vzUNJ7aadp9GgvXvl5ZuytIORmUp5r ABEREbE6rNg8M3Y2JhHJP+2y4L75JssSmdjcrKua0bmfbZPJn0TsO6JqbyuZzDP33ecGc3nh2DGp XDd8uK7qtu8+/bStoB8XtMmwdEZWo50UbESNDZbZoUOGlKEPqUcqpfYsV4La4YSzHNW7TqzZlvIf 4YQ8U+xa/6G0LcqCVxSovECkz2MbGwtM4LfedZceafTb1JWfZ8beCgJvJq4lugYQERERq8Nqfz9T gl6F2poaXdUWong5jAZl1ugGrfs2bLj5mmvqR47UHEyRZS3VVVs5GtQ+RDtpK1SU0TF31W5bvNJw UzeXUu8cDayxHfaCydeJVeNeMNzkPFOUtkUvGK5+Nvjh5cu9eLiSXHXOm6eH+W//9b/2SsVC8sxS q92OvRWE3EzKcw0gIiIiVocV/v1M9+tPsd/PjKZwduaXa2oo2E3EaMRq35aJohXcZasb1BlnteSZ yZ+b1W5bvNJwkzeXvUvp+FGjvPgAGtthN5h6nVhjg+GWNM+UkR/b2Fg3fHiu/3NJ9czBg7NaW+UA 5UI69MgjXqla+XmmF1RTbyZluwYQERERq8OKzTMDnzcb/UiqfYTJlRMn1tbUfPHWW7ZCrNqOF1Qb 6uqkaOfatTb1+vzNN9367rLVDU5qaZHlkM/NVoI65u4HREth8uHr+MQ+B2igjO2wG0y9TqyxwXBL mmc+tXq19M39cnK//PkPf9ic/eUh6aR9FlfUKs0zU28m4deApqzu/z0hIiIiXoJWbJ6pv58pM1d9 vqj8q7NY+6sbvTO47A/06aNEu7u6ZC4oETtR1l/paG9rk8RJZ3Wfvvbanu99b+bUqVpBzTYTP7mU maUUHdy6VTeXHc2/9lq3vrtsdYP2OUDSPVmVFqTDbgVrbLDM7li1SvpgR7hEJh9p1/r1Uprrd00G xNgOu8HU68Q6trFRgs9997v5pRmlyzOlP/qTLd7TmAPd+9BDMghynUu26RV5Vv73M72gmnozCb8G 9A4gGakXR0RERLykrNg8U5Q5nE7ULO4TPjWyqL1dF5Txo0bJ/M/WmXv11aagL7aCGI1Y9YmRLpo3 ClrBXba6wbOHDjWNHq0RZckNN+iCra/GBsvsJ6+8MnTIEElmvHhR1AOM4lWT8ZE+uL9nM+DG9tMN pl4n1ntuuUXjFq9CsqXLMzW9//b8+V48UD2WWOz7e2qV5pli8s0k/BrYfu+9Gle8UkRERMRLxErO M88fOSJzNUkda4YNk2xt9a23SsR2XWdpErlj7tzampoRtbVLZ8+2v8Vvfea++yQ7lVLJXi4fP15m 0vrrFFZtx41YLxw7tm7pUtm1bNs8ZszWu+6SoFvfXbZ6QelSx5w50gHppHTV/q6graDGBsuvdLWx vj6/d9uS1QOM4taR/cre7UejK8RoP71g6nVi1Uu6Zdw4qRlbIdnS5Zn6PFX9iaA81GOJ5ZLJM8WE m0n4NSA+vHy5vrMdW4qIiIh4KVjJeWayzNJKYc+LL8pE+cDmzV68PL66ZYvsXT9jjFFT88z8PLxt m7yUyvOd2Er+fiYiIiIiFk3yTPTcdOed0R+XL4/XT5u24fbbvSBaS5RnyrDX1tSkfrWyKJJnIiIi Ig4KyTMRq8US5ZnllDwTERERcVBYvXlmbU2N6AURL2HJMxERERGxOqzePBNxsLnpzjubx4y5fPx4 cUJTU/SpV5XpjlWrtM9i0+jRJ3bt8iogIiIi4qUmeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiI iFhM++aZd9xxh1m6SDTiQZ6JiIiIiIiIjpE8000svdVYyDMRERERERHRMS7PFLzlBMgzERERERER 0THy/UyTXF7ERHNDnomIiIiIiIiOcc8BMilmQJIpkGciIiIiIiKiY1yeKQQmmQJ5JiIiIiIiIjrm yDPDIc9ERERERERER/JMRERERERELKaF55mZzKkl3yfPRERERERExKxFeT9z15KeRc+SZyIiIiIi ImLBeeY//uP/Dw+CSmQLzZQLAAAAAElFTkSuQmCC --000000000000a29a6f0581fa3781 Content-Type: image/png; name="query_19_02_16a.png" Content-Disposition: inline; filename="query_19_02_16a.png" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: ii_js6vdll60 iVBORw0KGgoAAAANSUhEUgAABM8AAANSCAIAAAD9Kn6KAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7N0JQFT3vS/wvGes11iTZzWWeo3X 0uR6fV6ftbaJ11prUmsWm8VYE5smaUyMUYmi4hZjjPu+7ysq4IYgKm6IoiLihrggCiqKiIobLoC4 RH3fmd+f42GWM2eGAUG/n55O/tv5n3NmDjPn6wzDMw+JiIiIiIiIvI1pk4iIiIiIiLyPaZOIiIiI iIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvM+NtBkXF6dKRERERERE RIbMps3Ro0ePGDFCVYiIiIiIiIgMuZE24+LiVkd8sG9Xq9RjfJOTiIiIiIiIjJhKmzt27MDtti0L bt2q+fDB/9od8m9LFr0bEz1eep1Y3/GZjutV2RhGNpl0QlWc04YZjUefeDSioKnQOpZG3e45HANo t4zCf2x6CrcUrA6FW23nK10su23iTtDYDdCO2+g4bbZiYjuOYKXSfWcSEREREVFhrtPm36DV31CY O6bt1YON7x2qd2R4hbTUCvl55aKCW8sYRxAPSjxtnpg0SW1SP1h2Q2s5MakJ4k9H3e45mxkjHbaD rgXFR72WyXUdNmuVHnZ3gqXB5o6ygfbCAxzc2zbs72q37hT9WHfWIyIiIiKiUsBF2ty5c+eYMWNQ WL5s7ZIZXy8e8b+ygp49OvSFwK/qZq0tH9qpsgxzBPHgUcYwZDJIaMPMjC8Iirq9KGgSjjt0rdZ2 VbHfotZiCVSFjvNRg/1apc2jw9XfOfryI7q7xm6A4zUK6NZE2Y27RH8Hlv47k4iIiIiICnGRNnfs 2BEXF7c4JHTf3tNbo7dP/fGl3Vsqj//i5W0NG8Z/+b9X+VU9tT9RDbWlZQxL/BJaCFNUBrEGifVq 1KNI4WA96dQFD9sxGrX1QjFItQl9RRtVaARaCyq6LSoFLZYdeLSKlX42m7VMsExo0WTSJAfHqy8X jNTfPx07oq1JE/0+Ge0F+tRAbadtyppCjY/WE7b1wnS9lmJHmw/Sok2xnbOApR1Vm5PEcvyP1rD2 qzIREREREZUCRmmz1Tut5Dc2+wT8MGrIkoljglKS6z988L9yT1Sc++tfrGtbLqz1/0T913/JYDuW YGHJAgX/tWPNB5bAgUJB9rAkCK3xURyxlvTjnY1RtA7nGalQxbpdC12TfgDK9qwTF9qA0FKQthfm WTYkW7Xukayun0cr6xof3T8FTSgW7LuuaK/wON2Wte1pCh1o4UlRsx+vY7OVR/tYeC37afQtljVV zVK0ToiCbmLdHhERERER0ePn+vc2lyxeNX1q0OQxa3t06n8hrvbDzL/8FFJ+dO0XRv3uvxNbfxj1 s5+pcbYKrv91sUmxBgcrLT086lerWdd6xNKkDSsoOBgDhcKS84ykq+gGPWotFF+1TWv0+/BoUitt Ovu1CljWKrTTiu3u2s+j366OZRqbYTKz8SdXtWEWBVNa3iC1X8l219R6lpWMtmCh24p+g7p9tG4X bGZCh9bisKybwtVOEBERERFRCXOdNqPWJe5PSOvSuXfIgsVHVv7vW1ueyZv5vwc1/X8jf/e7Da+8 vKric2qcLS0JWEiSsdQtJWnX8os+SBR0Pxqm0WcMa8HBGG3OArq9KNz3qKNQu2q2mUfbtEZrsduJ Rw32a7liuytS0c9TULbbrM3mZKZC8zmAVWwmsXDZWjCtq+kV3Zr6qaX86EDsZ8MIrcVxWdYxuR9E RERERFSSXKfNSaNXjRu+dOniqIMHzkz8vvmpFeVWfv4fe998c/CLv1zY8HcZ1o/aOqIPFhYqEmhJ wRIzpIQmXXpQa+kaFW1NfaHwGDQU2qbNhPqxuqG6HlXEWoXmsVkXCq/zaKuWis1k7ng0l2XH1eqP jkE3vX5DovDmsJLjNyn1sEqh47QoPM0j9veko7Ud0Y/TZi+YrlCDlLQmreC8bOowiYiIiIjoMXCd Nvv1nDqw3/xB/edPHr/8xRdf+7J2je0ftt77y+pHBg1WIxxDJLBmDPxXkchhSRUWj0KCJTxYv97G 4lF+KRhoUSiXFA4baoRljL4GalDBDjya2QKtjjZlbUPVbrBNnincUrAJ0K2oa7VNhs4VrKT7liDd TJav2ClodHr/KJaVCh+GHQzRRjzahtN1CobICMf3tgP6rehWU20F9cLng0ymNmgZ+aixcNk6xvku ExERERHR4+I6bSYmHho+eLpfx0EjBy37xS/+3KnB74KbNt3688rxo0apEU+aUvJLgIUylQew/tOQ wp6SwyQiIiIiKnNcp02BzDllwuLp0xaivDlwwfy/fyTtVGyKljZP6H+X0fL+n46ZdFYyqxRZocMk IiIiIqJSxGzapBLncdqUz6Y+8SHsKTlMIiIiIqKyimmTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiI iIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOI iIiIiIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvM82bT6jIy1169bd sGGDdM2bN08azZOphGrSQaPMqW3FpMzMzHbt2lWqVKlixYoBAQGqtWi0nTEDgxs2bKgqBcaOHWty Ere25RbMrFFNjqDXfge0RncfDgPVqlX78ssvVeXhQ39//ypVqty/f9+LmwCbw3F4dPZnssN9KPqO Yf6inBvehY1CuXLlXnnllZCQEK3R3T3xyuNlv12DPfFgJ4mIiIioVHGQNr178We8ln3vG2+8sXDh QlVxrkGDBs2aNbty5cq9e/eGDRumWovGrQPEYATd2NhYVbeqXbt2+fLlzUzi2Z1phsmZHQ4rjr3q 2LEj7hZVefiwTp06fn5+quI9NnuuVR2eTvaHafKsMwnzF+Xc8C7tYCXuJiUl6RtLmP12Dfbkce0k EREREXlLqUubJrdSrly5gQMHqoqXuHWAGNyuXbsWLVqo+sOHERERjRo1QswwM4lb23KLyZkdDiuO vYqJicG0x44dQ/nEiRMo28Qwr7DZc63q8IjsGx0O8xhmK8q54V3aod2/fx/lwMBAfWMJs9+uwZ48 rp0kIiIiIm9xnTa1Fq1w6dKlN954o3z58k2aNEHZOsop+wnPnz//6quv4sp7xIgRNpPjViODnenQ oUPlypWXLFmi6o72qmnTpthKhQoVWrdunZ+fjxZM27t372rVqqGMlq5du1aqVAkDsCfSO378+Dff fBOTvP3223fu3EGjMxiMHX7llVcOHTokLc2aNVu4cKG0o2q8dW3Y559/Lp8Ett9//fjp06djV6tX r46yMW1mDWZr06YN9gSrz5w5Uxq1YQYPhxTGjh2L4IQde//995FY0JiZmSmrmPl0KFbRtovbGjVq SLu2os2B169fH48L2rOzs9G4bds2lD/99NMGDRpYVnPCZjekiluN1mhfsHQX0PfaPyImHwWZwa1z w+HZqD36Dh9Bt3YGBUmb8mFarVEr6MsOH199wf6UcHdnNFqL/b1ts0Xch9glf39/y2pEREREVBY4 SJsarcXmcvOTTz7BVSbCWN26dXFBbB3llHUmRVratm1br149ZInw8HA02kyuFVwaNmwYAmejRo3k w4HO9urYsWOYMzQ0FGUUECPl+hgX93Xq1ElLS7OOskCvfDp33bp12irOyH5Onjy5Xbt2qB44cAA5 Si7o9fvvbOsybNSoUbI62O+/fjySxoABA6wDXcBaGmnBzIhwOTk5QUFBaJQIhILsp8uHw/4+wT7b r2Kgc+fOODQUcNujRw9p1Fa0OfBBgwbJLz1OnToVYzp27IgyoqbxW9k2u6FV9e32jcbD7B8Rk4+C zODWueHwbNQefYePoFs7gwJukdaQJPWNWkFfdvj46gv2p4T5nbEn0zo8/7UtItzi8BGVUY6Li7PM RURERESlnoO0KVd4Gv01nxRwZYmyaNOmjXWUUxhjMyFW15KD1mtfMAOXvK1bt0bmTE9Pt9+r+Ph4 FKpUqYIWbXKEGeuqDytVqmQTYNCL+KeVjXdDBuTl5WHrCAkdOnSQmbUVjbeOMva8cePG8tYW2O8/ Ctr4pk2b+vr67t27V6oGsJbNnmPmIUOGoCCBR35BURvm8uGwv08QWrRooTUa2LZtG1ZBkChfvrx2 CNqKNgeODFauXDlECyTML774AncgVkSL/JuCM1h39uzZqmKt2n9kVCsbFPRl+0fE5KOA8ZjBrXPD 4dmoPfoOH0HzOyOQZrWv+UFVtqsV9GWHj6++YH9KuHXPqIqV1mJ/b6OgbXHs2LEo6A+fiIiIiEo/ D9OmmfcxhP2EiBzyWUH9uz32BZMQRbAKooX9XtWqVev9999HInU4OcbbX99rvS53QxsQEBCAOIEL 9KysLH278dZRxlq1a9fGAGmx33/9eKSvzp07o8XlGzv6tQRm1meVoKAglLVh5h8O41WM+fj49OjR 45VXXlF13Wz2B45chKCFdjy4NWvW7N27N5KM6nMC8+P+lDICPCbX3k+233+Dgr5sv2MmHwVtBvPn BrZlcDY6fATd3Rk9rRExfvz48SjoH0oPTgmPd0Zrsb+3tS4Upk6dioL8sMvhExEREVHp50nafPPN N3H1f/78eWu/C/YTNmvWrGHDhrg8lY8F2kyOi075tT1jGCM7gFCBdaOjo+33ClP17dt39+7d9luB du3a4aLf5rOLWq++7JA2ID09HeUvvvjCpt1461LGhf4bb7whLfb7rx8PuMfQ4vKNHZu1oE2bNtrn MJEuUlNT0agNM3449LNp5aZNm9qvYgyPV5UqVfRxQlvR/sAxrFq1anKX9u/f/4UXXsA9KV3OINdh kuzsbJTHjh2LbWH3UNafTvYHpRUcDnN4npt5FLQZzJ8bxmejw0cQ3NoZPa0RB9ikSROkOPmQqjQ6 fHztCzZlz3ZGazE4/1HAj0l+fr78Hql2+ERERERUynmSNjMyMho3boyrXkQCm8H2sJZGWpKTk3FZ WblyZf0FrlYYMWIErsXRax3r1JAhQ+RPStSpU2fy5Mlosd8rBBUMQKKz3wpcunQJl/jYVsWKFadP n27Tqy87pB/QqlWrhIQEKWvtxlvXyu+//778RRD7/dePr1GjBrpatGihvRfqjH4tgSN9++23sTry THh4uDRqw4wfDv1sWvnAgQP2qxiLi4vDSGxL1XWz2R847kz0RkdHo4xVUEYws6zjnPYtO3g0MZv2 kU796aRt0b7gcJj9jpl8FLQZwOS5YXw2OnwEPdgZjdYYGRmJeZDn5V9tpNHh42tf0Jc93hmtxeD8 R2HgwIH4SccuyZ1DRERERGWCbdokMk/eu1u2bJmq05OllDy+WuwkIiIiorKlUNrEVZ0N1eEpNYuO 6igaNZeO6igpaqvOqXGlgNqhwlRf0WRnZ7///vuVKlWSX0p0Rm2yMNXnJWpSO6q71FO7q6M6ikxN V5jqc8Xk42ue2rwjaoQTGMC0SURERFQWlZkrcio9GjVqVNGqadOmsbGxqpWeFKXt8a1QoYJ8wzAR ERERlS1Mm0REREREROR9TJtERERERETkfZa/WEBERERERETkXXxvk4iIiIiIiLzvmetERERERERE 3sa0SURERGXeXStVISKi0oFpk4iIiMo8RM0zZ85s3LhR1YmIqBRg2iQiIqInAaIm0yYRUanCtElE RERERETex7RJREREZR5/b5OIqBTyStq8dv3aFcutp44eTQ5avGDBonmBi+Y6XKQrftdOtYI5gSsX /2PwrMbfjNWWt3pM6Dt5+qGj+9QI8raTRxbELSy5f8J4b87Psq5kqkoxW7wkaPzEMSkpx1S9sB1x 20eNGT5n3ixVNyfxwP6YrZvNLBip1vGGwYMHf6qDqup4smzcs+yjkXWa9q7QJODZPwY8++e+z3Wd 0fLMhTTV/Zjk3IjLu7E878YC3KKsWukJsmHDhh+tNm/efPjwYdX6mFy5khW2csa8RQEz53dZvHzU xUsZqqPEXb5yddfBE0kpZ655frHgAn9vk4ioFHIaDKI3b8LVs8tlzNih8+d+v36Vf9Sabnt2Lrxx /ZJa3x0rVi5Vf5DFuZs3byKRqhVMOH0mpWXAtE5ztgyPONx7edLE9Sd6L0/+amFip9GzPvl+/LZd m9Q4T5m8f/RL9OYotbK3xe3cEbFqpcGCAWpocUo/sQlRs4TTJpZzl9JVvdggTE6eOiE2bvuChfNU U2FTpk08nHRoyrRJy0KXqCYTNm+Jzjdn2/atah2PXLuWfflSFpbE/QldunRGwpw4ceikScOwoIAq Gvcn7JMxGKxW856QJUHjJoxGXC9Yxk6YNFZXfbSsCFum1nGH/fytB9T9Y0D5f055ZeLOz5akdw05 6Tdk4/stB1b5U++Kx04dUKuVuNwbq/NvDr6b8+W9nI9xi3LujTWqj4pfyTxvI2deuph1587tlJRj KO/bt++ak4CF9uxs7/+46SFnxiV12Jf26b5T/4g/2mH6vPaqo6TsSEj9dmT4n76c8fJ7o//vh+Pq th5b5/0xb3eZN2DquhPp59Ug7+HvbRIRlTZOgwFeZVXOc+7Bg7sP7hz86dqE/OwJt7JnZab452Wv v37tsprCiaSkpM5+nbp826WzX+fOfl16BPRYujwEs/30072fHJHPxmRnX122YrGawhVEzY6jZ3UO PvDX7+Y3D5jxx28nv/lDMKJmr2VH/BYnvTNo2V+7jdt7sEjvKpi5f2xgFbWytyFPYv77TqALA9TQ YiNR817WmyWcNsdk/L4EAueioMBjKUczMjIWLJi3M972zIlcuxoZ6ezZswcPHXQrLG2JsaRN6+cC jBaM2V6EtLlt9eze77/Q9a/PYunQ9o/9+wfMnDnGZvn++94dPmqKAd/+9dle772wddVstbKXjB47 AufhA1cwBllRreMOm/l7zm31l+9fmLr/05Xn+gWd+brfkf8IOFx98NH6QekdP5pY650ff6VW86qT aSc2bVlvsMTvmnYypcO1C81uX//LnRttcZuf3RKB8+Z1U29/YX4cplsLVlErm1DW5zejZJ63MzMz ETJv59/KuXlDAica7QNnWkbWkJlr+s4s0j8kuTR3Uffdx/+xJfnl6KTfxB57ffq8z1RH8bt85eoP 09YjXv6t24KR82Mitx9NP5+NZW3ssZGBMR/0WFivzfgl60rjR4227F/ZccqfrmZfUXVvWLJkyWN/ o5uI6LFwkTZPnTp15syZ9PR03OJSG3BJjZdSq7MXz+3JuTD81pUJeTfP3MrLuXllbf6VUTevJasp nPD37xqzNUZbli5fvH3HNmxr3769q9esjoxcE7l2jeXWssAaNMbu2I60uWR5sJrClRHz5kxcurTX 5Nm79lteyBOT4lv1nvDWwKDP5+zC8s8Z21sNXvp2wLjLVy7KeA+YuH8yzxVA2bOrFpMkbWIf9lmN GTNq7NjR+/fvT0xMzMrKQhcGOPvHda9QUTPzlXvn6pV82iyBwDll2qTLly/j8T2ZdnLe/EJJDD8I 4yaMPns2A6dBSmrKzNnTVYcJztLm1atXtAVycnK2botR67jp2rXs7z6sum3oy8sHNunVvcOXX7Yf P37Upk2rrMvq6GgsazZvXjNp0pivvvoSAzBs48Df9PuwqlrfS8aMG4nzUH+MDhcERc/Spn7+rfsj mvWu+Pextf7ct2LTXhW+nPN/g8983euwDwJn36Sawemdmn/33LKtU9Wa3oM8iX0wci/yYf43D2+9 8/DOyIf3luEWgfNuzpe5N1apKQwhfal5TMMqamUTyvr8ZhTr8zaeY0+cUPEY6yJkXrlkeYdT0qbN e5j7j2b8/mvLP7N+N33j16OL8b241ZGLpi94d+vRRlGHfrMr5fO5CwNURzFLTD79x39Nb9hu4sI1 Cecv3whZl9hv6ob3eiz6oGfwDzOil286fPFqzqLI/b9rN+nz75dkXfJOrpN/m1YVT4VsHv/JuPp/ 6vNvl65kqSZvmDBhwvTp03fudO8XgoiIngAu0ubp06fxSoyXZIGS5YVZvTSnXz6/JTdrYN7VoLzc nFt5eTevROdfHnQz28U/VXbv4b8mcs2gQT9iGTN2NDLkvXv3rl27isvinJwbeXm5eXm4ur558+aN mzcxHJeP2bm5N4+fOG7+k7RfDZ08K3Txhayzqo4LwR3r/vjt5Dbj1rWbsgVp84v5+/zHTp2+dL7q dp/N/bPeaoMjFy5cOH/+vFtXLe7S0iZMmTJp6tTJWKZNm4KoeenSJXRhwNWrV9Vob9Oi5q2zLe5l vYcylvjQ/9638ZO05BWXL3vzs1IXr54P3TcO2VJbEDUHpNUq7sA5d/7swAVzcX/iHl4TuXpD1HrV cf36kmUhO+N3yJkwa870HXHbVYcJWtpM0/Huh04vX8ryb/nszlH/2btHhytXr2B+P78un9tBIy6U MaCn/1dxI//z27/8L7W+l4wdPwrnoaRBZwueATxOm/r5242u2yTg2Rbf/yJ023Qsf+7znP+K349O bdrjwIv+CdVGHPljp5D6fx/xslrTe5A2Hzx4WPudkc6WbsP/uXVH48sXWuflBGNvETjv3Gh7L+fj vBum3g9H9ML8YxduNbnk5eW5mwbL9PxmFN/zNk7fdevWIVhiQmmJjo6+evmSljZtSNRMSEiIiIj4 eliYai0G2dlXJs9ut/1Y8w0HfxOb2DksYtY168+aLGqQt126fLXJv6a16hp4+lz28qhDf/h0WoOP Jzf657RXP5/R+ItZ/9N+dpMvZ7f0W7AuLjX9fPaHPYN7jDX1Dy4uIWriYfX4k7TZ17JHLOv4zfQ/ bjq64PXvnvd62ly0aNHMmTNxnhTrP/4SEZU2LtJmeno6kqUKnBnWqGkNmufOYTl78cLem1lTb10c lHdtw62cU1cyh+dfmXbz2lE1hRP9+vWNit4+1QpRMz39NBoPHkycN39uyJIQLIuttwuDFmJZumxJ fHzcjRvX4+JjV65eITO4NGr+rLUbwrp199OW3t992/ibsYia2tJp9NS/9/xeP2btuki1vgk29w/g 0kSgBVcqNsxftXhAS5tjx47WlnHjxmC5fPkyujAABTXaq7SoeTf9Z7cvfHw36707mb+7k/n768cb nTvw7r4NrQ9vei/zrONv1nHX9mPhiJRLV/51xrE/y1uaWIan/fa7Y7V67q1ZrIEzM/MsHj6cq3jE AalS2lNSjk2ZNhH3/KlTp/Yl7HPrjU2wf2/z6tUruMLGQ2b9QKgRjDETzCRtxo+s07lLB6xivSrO vnz5ks1ive68hgGdOnfYWQxpU3vvcdeueIdLfPzO7GzP06Z+fkTNP/X+t7i47TJz8Jrpr39XaXbq p112/qLzjirddtQcG9/mz32fU2t6jyVt3r+PFOFs6Tmp18bYNy9feP3mtSG3ckMeFLy3mXPd1Gcp LWnt/v3p4ftNLp6kwbI8vxnF97x96dIlpMqsC5l4pkUhPDwcW7hyKevu3TtTp0zU3vMU8sbmyZMn ETVRSMvwZqqBDRtXTp7z8cSZrSbNfHfCrL/NW/zPzUmN1iX+Zs+RAWOntxwzrcXoaX8ZPeWNkZP/ NHN+F7WOV30/Zd1v201Ckvx21Kr6H036cnD4uriUs1nXb9+5l5N3+3jGlSnLd7XwW/B658Ah87am n7/WsN2k6HgXn4oyyePf27x4+bzfjL/0XtRq3ZFZW48vLo60GRSEy5qFs2fPXrJkyZUr3vyYLhFR aeYibeIyGtkS8KqM1075tJHlM0bnz1/AciHjUlbC9ayQvItD7maP37u9883shBvXL6gpnOjZq8fa tWvnzp07fMTQRSGBFy9mHTiQsHff7j37du3duxvLvoQ91tvdCfsthfQz6Xv27pm3YE5C4l41hSsx Ozf07O13qzCbtPnFvL1oUX1WCJxqfRP0988Of/+QZ55xuIT94x+4ZLl48aL5qxYPSNrEYySPzrRp U7Bgo7juwUsaujBADfWqjLStEjVvnn4TUbNg+ez2hU9vX2h/O6Pp7cy/nt1Te//q3x1PjVXreGpH yiqEyTkn/zzxXNNByfX6H/EdcPQ3Pxx/uW/SS0ibnbZW7by9qgTOS1ddnIGeWbV65aQp43GXnj59 es+e3evWW/5tYvbcGUeSk9LS0nDnj5swGqFUBptk/97m8RPHvfuhU/u06WxB4MQAS9ocUYzvbco7 KvolO/sqFuvHhq96nDb18//lu+fnrhukn/+PAT8LPNr5q+gXvox6vv2G5+ce/OaPvX6m1vQepM2f fvoJD6gzt2/tuZs3/H7uuw9uvf3g1icPbr1z7UKz/JtDblw39f4/opfx/DY8SINlen4zbF7X5L1N hzx43l62bFnWhfM3b1y7evkicublixdkkbc3sTkZJlHz7t278m8QqEq7Fy1aPGRPSufNR/5r0+Hf bDz0mw0HfrNu/2/WJfwmcq/vmj2+q3b5RsT7hsf5rtpZf+Tk169Zfvy9aUdC6n99MDZ47f5lUQcR NX//6fTlmw7jnrSxfPORVj0Wv+UfvGn3iSUbDzb6ZNKFrGL5J1EzTmWmfDyyzuCwdhGHJgyL+nBz 6sI3f6zaJOBZ/fLOjz7mf5Nz5syZiJd6U6ZMQdqcM2cOAieuf+bNm3f+vPe/JImIqBRykTbln34R YCxvaRZETes/BF+4kGVx0fJqevrqxcQHd5KmTfvR+p20Ll66ps2YankbMyRk0pSJmDY5OSl8ZdjC oAULFy1YsChwwYJ5gQvm4XbBovnBixeGhS9PTz+FqLlvv9moCfsT9w8dPghBCxkS8UBI2vxg9BpJ m18tOogW6Uo5noJbrOLs71vY098/SJWn36hlv6T98d/RdckKg01etQwbNgyXWapiQmpqqqRNPDry u5qzZ89cvDgER4R7ANfa6MIADFMrmGBmH04dXSxR88bpFjnpb+vS5sc5Z/6WfeLPR7c9e/7wf187 0ejC4dcOxXS4csXzEHj83CHEyMnn/jwu8w+Il5blyEu9D9ZEoU9Kdf99L0ra1AKnmWsCd+9nmDBp XOyObenp6YiF8wPnbNu+NWRx0Emr1WtWRa5drcaZZv/eJh4y737oVEubnQrS5tKlS+wXQN7DALfS pvn70Nl7m3gS6Bng371H127d/Xr28o9YvbIo720uWBiI2d4K+A+/bh2+7fnV+OlD10aviNy0Amlz +r4vP1/z/KcRP/8kvNLMvV//sVf51PRDsqgpnDB/jEib93766bZEJVu3pf1O3oa7t4b/lNfhp9x2 9291PHHs65vXk9T6riB62c+PRv2iWi1uY7fRolY2AYNd7r+ON+dHV1HmN/8Y2byuCXmKdgiDzadN PAMjVBzYvxd3FhLmnTuWWxU4b+dL4JSoiR9e3MbsO6nWNMGt56sFwQN3HfsqClHz4G/WW6PmWmvU XL3bEjVX7rREzbBY3/DYOiMnNVfrmGByH/xGhH/QY+G5Szde+3z67z+b/sev5izbdHjjrhPfz9zS cVTkkk1HcK/Clet5f+8f1rrv8nYDVqDcrt/i5RsS1BTOGe+D9dc23f69zcTUuFaDa4zb8HXIvh/7 rXmj35rXo47N35y6KOZ48NbjIdtOLJHl9X6Vzb/biTMB2VKzqMBsq8DAQATO6dOn46VErUBE9ORy kTbDI8Ks2fK8JWhmSs5E0ARr0rxofUG+fEneQBs1Zpha2dCy5UtHjR6BbLlsRcjGzVs+7z1R/onX fmnaaREWm8bvx7v+rqDozZvmzp+NvcK+IXAiVcqiT5tfLkhES9Ouk3F7JuMMstm0GZPN/6UQ/f0j aRPV26mHE555BgsKqKb+vxfRhWRQcP94P23Gx+/8YeD3kjZx2SQPDC7id+/edfXqVfleCnRhAIZh MHZGVjRmch+0j9Eibeakt0DIvJj8O4RM/XI87tkb6e/sjmy6f7Pn37z/Q+Q7Ew82mnKueZ+kmgiZ 2tLrSPV+J37pF1dN/96myQ/TunU/i4T9+5BqLl26iHh59OjR5SuWbt+x/cSJE6dOpbn7GVpR+L3N k1iOH091Fsy0xa0PndqnTZtF3v27ehU/AZZr62JKm/YR+tDhg917+u9L2Hv8xMkjR1MPJaceSzm+ d++erv5+yclH1GqmjRg1tEfP7jLbgaTDmC1w7Tj9+xKz9nb6eOlzbRdX/Hvwv03f2UnfpaZwwvwx Im3iSjfvVh6WW7JgTdQsZbC2593Kzz2an7v2du6Ke7d3bd7qxocOEL1s57cuaJfF2vNoiyiYTGvC wfwFs1kmL9zi3fnl/rFpQcHk/OYfI5vXNfU+plXrAsgGqLr7vC3wbLBy5UoES4F5EDjlfU4c0IIF gXgJu337Nm5t3tJ0+czs1vOVJW0e/XoDomaiNWruU1EzQqLmDkvUXLHNd3nMr4dPbKLWMcHkPjT9 Yvq4oO0L1yQ0+ue0Jl/OfqPzglY9F3/QZ1nb78M++XGV3/iNuFfhek7+50PXfPJjBNrXx5+YtHTn 91PWqSmcM94HnGBn3Py9zai9y/826FfTNn87Y4df17CG/uG/7xnxP31WN0Ps7B/Z4od1bw5c9/aP 69+JTlngbtrUsqWYpTNz5sz58+fPmzdv6tSpSUlm/72JiKiMcpE2ETFxiwxz7jyiJsLMo/c0JWvK G2hXr1zFMJOvyps3R3/Xv9/iZUGpqSkjxoyPTjy7+UCmZTl4bvPB81sOXYg5nIVbKdgvH/V2/bcZ pk2fkpCw7+zZs9g9QJ78Yt5eLN8EH0babD1WfVfQpzN3fD47Hr0y7MCB/SsjzH5bg/7+kbQpCVOD qpY2cS2PFpP3j/mrComamBlh8ubNm/Lv9PbQhQHBwQslcEoENWZ+H7TAmZn4H8iWKNy78CcsOad/ n5VUM33Xc2f2Vbpw5L/SD3ywM7SuWsd9yJBjM3/fP7XWd0drjcv8w7jM1yafazbJukw898cusdW6 7a3m7u9tunX1plkUvAAnyenTp3FZuWpNRMzWLUieiJrm3xXX09JmgWych9790OmjtNnZwXubS5Ys Xrw4JCQkOCQk6OJFy2+pFfd7m7t370Jg3rhxvX+Pb4+fODFz+fYes3f2DTrQc0Gi/6y4+St3nDp1 Cl0nTrrxpy9SUlNktlmhsZitz6JEzNZ1euw3Ez5DmPwu9J2psZ3n7PL/YP7P3ptr+WapWXHdpsR8 82P435v0Kj9hZU81ixPmjxFp886dO7mQY10K/m9drP/Lkf8qGIxV1MomIHrZza8WdFnarQpac7Db 7qZBh/uPdlm0FuvitfmxWCYv3OLW/OYfI5vXNeuLmZKYmPjNN990tsLPF3783Hretoet7N27F5kT gfPC+czo7bv/2mM5DtCDqAlmjjEsYvaC4B9wOycwYGdyB0vUTLBEzTV7rFEz3hI1w3b4rtjuuyym Vkj0LxdtrDJ0QuPNWzauCJ+OgLopeq2ayAkz+3Dx0pXfvDt6067jfSavb/zFzObfzH/LPxhR8+MB 4Z8NWdNh1PrEVMvXpEPsobPfjI36cuQ6tM8I37dlX9o73zr+a8Z6LvfBrd/bXBA18v1htebs6DVy U9uvlvym47L/6hJav2vY77qHvxoQ0aT3qj/1Wf3nfmtex7Lx6Jzm/X7ubtpU4VIHORNmWM2ZMweZ E4EzLq5If4+NiKiUc5E2kVXkJdkSM1FAsSBnWoKmJWpiwYuyG6/KuNbs07dP0OIFiK/vdZ0eufvM 6JVHTS7BW0+9132Omsi5bt39zlu/9cG6j5cPH01o2nUy0uZ7I1d9MGq15Xb0GtwibaI94dBOGYbY bP5XN/X3j6TNhGeesbyEFkBVS5uAFpP3j8krJy1q3riejTDZrdu3337b2eEycsTQsBXLMjPP7tu3 RwKnmsI581dvgMAZG/Rz5MzjOyxpE+FTlvULfp64sW7a7spn9te4nPq3rYv/Q63gPiSESef+9MNx 33GXfjs5qR6q2jIhs4kHURPcOkYN7kakwdPpp44fP56SkhK5dvWmzZuWhy5V3W6StInTw/ppXDiR mur0vU08cAXiPHlvsyBtymLNrjjlceLjx9nykfgTJ1IwoLjf27RuN7tHgD/uwLFLd/ZccGBP6uWz l3NPX7y5fn9mwILE8Ut3IMljgFrTBJlt3NJ4mS1DZkvIROb8fPSHf+r9byPXff5Z0L9r58xnwf+O lmZ9nhux9Gs1hXPmjxHR8fbt/JtWN+Q/9nQdt2/fdjdtYn7cqvUNWQffNpnWhMwvq2u7iUb9olqt vDW/KhUug/n5zT9GNq9rsVYfffRRWFgYCrhFGVC2PGu787ztDE5mBM75q/YiZJ4+ffofP6xYunQJ GqUXm5CCS2aOceLs9/cd77bjQOcpc97fnfK17hc1fx2+s9aK2BrLtlVfvOUXQZueX7jx54Hrnwtc 93zQmlcHjvnvBavqL1jzX2OntFYTOWFmH3YkpP7fD8dduHLzvR5BTTvM+eu3i97ttbTt92GWqDl6 w75jln/SgjNZN/rO3tF96la/CdFo7zsj5vzlm//1gesnNPOPtUujQzt/Mq7u3LhevVc3+2TRLz8P rtl+8a87LH2l84p6fhH/3WXVf30T8RssfhF1e655dW3y9D/3reRW2ly4cKEEy+lWkjD1aRONyJ8I nCi79X4sEVHZ4iJtIrPhJRnx0vrafOHiRfXxWS2eWZJmdjYuIDHY5Kty+pn0jt98vWDR3ITEfX/v PnXN7nSbSGmwTA/f98mAJWoiJ1JSjvX9rjd27Zbulzb3HoyTdzgRMiVzImqiBe0yAIOxyo+DB5p8 k0p//xinzRs3bmA8WkzePyZfTSVqAuKKFIxZ/5XgYlJSElZUUzjn7iu69g6npE1pPHogZEdYnSNb Xjm155eXUt/cuNDnxrV0LNLrFiSESeeajb5Yr0/yL9stePFohvorO2iffM7y/bQouPtttB5ftURt 2jB34tiMjAykza3bYpZPn6I63FeQNi0BzOrqpcuX7D90qr2xaXVFCm6lzZ26tGn5Hc2CtzSDgxfh hzsr6/yFC5n7E/diAIbFFVvaxFEgKweHBC1dtiQwIq7ngv1HTl/JvJxz+fqtjEu5yRnXI3af7TF/ f8TmfUuWhpj8E6OboqOWhy6bvzIW2TLl7PXMSzkXr+VhtgMnLy7alNwjcH/7MW/+uU/FERs+/nvg CzhPcIty876V+s3/u5rCkPljRHS8lX/rxnXLz7sVigVl638LVa7fwEPvbtrE/Li1ZDDMLIsomF8W GYP5LSNNw2B397+I86NFZtBurQW35zf/GNm8rln+2fTSpU5WBw8exG0Xq6NHj7r7vG0vLSNL++M3 iJq5ubl/H7AyJHz9vXv3kD8zMzPxU6yGmmDmGCfOenPT4f8r3wkkv6gZEV8jdEeVpdt+vjimUsjm SkHRlRZFVVqwodL8dc/NW/vc3DWVFqz71eyIyjPCn5sR9ny/Yb5qIifM7AN+pOu2Hpt1NeeDXiHN v5n/tn/wh/1CPxm06quR69fsPIH7E9Kzbg4N2Tdgwe5+c3f2nL7Nb2L0gDmxF67k/PajiWoW54z3 4a6VqrjSJ/CDTyb815y4Ht3DX20zv3LbwP+DJ4ePQ174eGmlf6x47p8rK3266udYUPgktFJo0jB3 02ZgYKD1q/eVaVZa7AQtbaIQHh6u1iQieuK4TpuSUi7itTnr4qWLuBi+ZH0/0/qGpuUXAy1RE5ew GGz+Vblrt2/DVoZu275l5JyVq3eZTZuzNp4Yu3jnrl3xahYn4nbumDBxPPbw3Llzlt8GunULO6oP nDZRU8ZgMFbBiiZ/dVN//0jadPZJWvl3erSYvH9MXjlZQuO17FWrVl24cB6XLzt27MBh4hAsD0m2 5QOZ1n8ayMqyfLOipYBl7NhRMTGbiyNtIg+dOLraEjiz3sSt7AMcPxIeFfTiucN1zh/5w/r5/+f6 tTOWxX0ICVPPvbHoSrvW857bmbpGtVrbJWqevuD2B1ndPUbNwf79p/n7rY+0fCcQblFGi3S5S9Im 7qgTiuX9UpsPncq7mtobmxI1ceXqZtr8T0mb8kFcy280W9/StObMc+fPnz13LmPjxnUYUKxpE1vH s0dnv47Hj6d2nLQ1PD4jNfN6+sWcs5dzcHvw1NWpa4/3mrtrcPDe1NQUDFMrG3o0265Csx1IuzJp 9bGBiw9hti/HN3mjX+Uh69v8ff7zuP1L/+c7TTX75SjmjxHRMe9Wnpz5lqdFy78QWP+hQP1rgZRV J4p42nE3bWJ+iWRYrNPYzZ99TRuA+XGrVjYBg2V+7J3l9pplKpmwUFnXi0WtbAIG6+8fWR2Ltv+P WiwDLPcPymplQ+YfI5vXNTxP4odBEqaf1bcFUlNT3XretiFRs/eklSGbDk5aEiOBc+nqLdu3bz+b cQY/vAic+IFXo00wc4xT5ny889hHMUlvxBz4IObQX8PifrEsttKSrZUQNYMRNTdVWqhFzcjn5qx5 bvaqnwetrzs3otbMsP8zI+wXP4z6rZrICTP7gAfuP98fE7MvbcCM6Dc6L/hbz8Vtvw/7fGjkN2Oj zly8gfsTAqNSRi0/OHxp4qCgvQic3aduXbA+aXvi6Y/7uP5SBuN9cOv3Ni0nYWiXD0bUmr7t2/6R LfA68uHCCh8vrYh4+a+1lb/c+HyH6BcsX2S98fl/RVZedmRgUdKmTc4Uc+fOlU/SYofxU6DWJCJ6 4rhImysjwvGSfOnSJcutJWrixVlFTVw4Wi8JrE+RN9z7N+COHTuEhi/p1HvIwlXbF8WkjQo/OjI8 eWTY0ZFhuFUFXaMsyUFbT/WcuCb9jIu3sFZGhOG5+4I1ZeFWy5yQlJIggbNp18koSyMGQEbGmfT0 9NWrVy1dtlhNZEh//0jaRBUJM8HuW4JyrMzfPyavnBAak5KS8AKWk3Nz69at6emnrd+CeAfJE6+4 uIXb+fmy5N/Ku3H9ev/+fXHPeD1t4jTA+YDrttQjEYiaWKxvGFigMWZxraup/+/k3n9fP6eyxy+o uA4Yn/navCutUMg8l4J5BKoSNVFWQ01z6xjhwuHDez77bEOVKit/9rPjDX+7q8n/hJYrh1uU0YJ2 9GKMGm0O0ibOQAmQAj9qNh86lXxojYi4Oy+jFRfBuP3pp588SJv6j85mZSFnZu7fv2f79pgNG9au X78GA4o1bVqPwvJ59ZTjJ3oEJm5LunD49JXUzGtpF24cO3t9c+LZ6IMXvp8Whq6MjAz/Ht+qlQ1h mMy24+jlQ6eupJy9dvLctWMZ1zbuPR25+/SK2FMy2xsBL741oNrkLV+/OaDqP0b/t1rZBPPHaEmb uXnWQ7Q+ZJZby3+s/y14DC0F1YJp3U6buSptWiewsJlfajIG8+NWrWyCZRU397+I86MFC2q41aoe zG/+MbJ5XbN+kPbRB2g1//rXv4YOHXrq1CkMNv+6ptGiZtLpS0ErN89fn/jV99PRgoSJnCnfUutu 4DRzjKsjF02Z84+pc/45dkrrqH1vL9tuiZohWwqi5sZKgeufQ9Sci6i5GlHzuVkrfz4n9LfT5nSY t6Lx1JDacxf2VhM5YfJ+btlpzrRlO5dsPNTCb+F7vZZ+/MPK9sPXdpkQ3Xf2jsFBe0aHHpgQcWTy mqPjI46MWJr4w4LdATO3bz+YMSt8z6j5m9UUzrncB7zGgaq4gtMsZNPEt354cVxU+xHRbT5e/PNP wixREzmz0/YqfvG/6LLzF99sr/LVphdCj/3YrG+li5fNfrO6Pm1qUVM+Rmv9/U3LW5owZcqUnTt3 4pT34CWMiKiscJE2kdZwa7nI1X0h0FXJmdl4crQ8P96wcO/fgMePHzty1PDBkxeH7Tw9ZV3qoOVH LMsyLEk/Wm4thcG4VY2WZcra1MDNaf/oM1dN4dykKRMOHjyIgCcx0kZ8wjYEzj2JO1TdClEz4+wZ HEZiYuLc+a5/LxT09w8iZdof/x3Z0n5BF+JEbm6u+fvH5Cs6QuORI0fwMtand68ePbp16/Zt165+ uO3W1VLAon5v06+zX+dOMqBv395r1671YtqUPISzApdu562OHAhF2lR3q9X2JS9dP/nagS11oxa+ hJEYr1Y2DVvpsPiVsI3NEDiRLSV+4RZQPXkuWcruvlqbPEZxdNKk6Nq1j9SocfI//uPMr3+NJfTZ Z5E2cStVtKMXYzBSrWMC0ib2wXppDbh7LPek/kOnVnFWO2D//v3y+50InHfu3Bk3YbSayDmbtGn9 hyP10dnz589mZmZERIShXeDOLqa0OWbcyPv370tgRto8ffp0n4X7V+w4HX80C4HzcNrlLQcytx8+ uyP50oBpod3n7sVVuH+PrmplQ0ibltkWJETsOrsz+cKhU5cPnbwYvT9j28EzuI3Yecp/zh7Mho2+ P/g/mgQ8+5c+VXE/q5VNMH+MiI542rEcoQ3Lc6cDuTm57qZNzI9btb7G0fwYhvlNpjUh86v1C6BR v6hWK2/Nr+2/x/Obf4xsXtfkH8XkeQlPIHDs2LF+/foNHz4cIWHBggUYZv51TUjUHDZv/bGMq+Nn LUbOnL/x8Bd9J6MR56EETvmWWrcCp1vPVwuCB67b1VxFzWikzSrLY+qGrG8QtLZe0Ib/mLO60qyI 52aufG5G2M8HjKx37fq1DRsjVq1ZGBOzRa3vhMl96D9l3SffLz1/+ebfeoQgbbb7YeWXI9b5Tdyc dOryhat5F6/dWrD55NzotCmRx0aFHhy4aM+A+Tuzb+b/87ul67a7/tc6t+4HYzgB8AqFZ4/I7Uv+ OqDq4FV/nxb/VfvV1b5Y//zKtEFrzgxbd37E2nPDUYhIGxqeOqRZv0qnz6RhLbW+czidJG1qcC4t tELO1P7kJqImLjnwupmVlYVpsZZan4joyeIibeJJEC/GeB7EVaLlWrjgKh8vzRhjzZnWr3tw5707 WL582fcDvpsaGjsn6sR3wYfVEnIIt/0KCt+FFDRaq+NWp/iPW71ho+uLM1xWWt+z9JDJLwrS3z8b OnZEqnS4hDdvjgssvDp6cNViDKEREWTTpqiwFaHz5s0JnDdn/ry5WObNnTNz5vSxY0YNHvTj0KGD hg0bPHz4UCwjRw6fMH6MybRpEs4DnBS4E/CafebMGbxsn7Ky/DWPAjFhja+nt9wRVm3Lsia4yMPd hbXU+ibg+g/jR2z8eM6yqhPONka8xNlow3JmWt8OsZyXxfAvxKc2bFjn63uyVq1dvr5rq1dP/OUv 97344u4ePXZPn4pblNGCdvRiDEZivFrTFaRNnB4qaFpp720iU0s2K7gkvoheHB0G4xY/c/n5+R6k Tf1HZzMzz2RknA5fGYp23NMZGWeOHj3iVto0D2nz7t27ciyz587EqTtiyd6RyxJX7Di1ds/pbYfO btibvjs5c1fK5S5jVowJ3bd3797AhfPVyobmzp+NRD588Z7RKw4t33Ziza60LYnp6/ac3p18LuZA xvDgXaOXY7Y9gQvmZWZl9Jr//uDRP+CMVSt7lSVt3sxBmgdLqC9gTfiFSAOeNt1Om7r5ZRHoUiUr bX6TaU3YzK9Buyyq7u35cf/oJwfP5jfD5nVN3tu0sWrVqt69eyMPhIeHu/u8LVFzdviO0xeuD566 vF3XYYiavSet/GeP0WjPyMhITU21eYdzxIgR5t/hNAlpc83OPyFqBkVXCtr0wrLo363a9M3R1Ojk 1KiQVe8Erqk5I/y56SuemxZa6bvhddQ63nMi/XzdD8dFbE2O2HZUvbc5wvLe5sVrltdBWBB9HFFz QsSREcss723uPnphTWzKu90Ci/7kbfmtTXO/t4mnU8Q8vGalpKQcPnx447bVfxtYo+/St+Yn+neO qhl+YlDLwf9H+yNJsrw9oPrJtBNYy/glTF4WZ8yYgcCpN3nyZJxUs2fPxi0C58yZMw8dOoQdwFmB F1Cck/IMr2YhInqCmE6blot5XM1jKXg6tORMS9TEBUSOO+/d4TIiOjq6i1+nNXEpI1ce67HgYMFy AEt36y2WnrrGkSuPYmnbbZyawhDiIpJPoiP7HUnQwYoepE1rJCj0750SwnNzc5Ezb9++jRBr/v4x CaFx27ZtUZs2btywLjJy9YoVy1eELl+2bCmWJYtDlspft7B+DUxQ0MJFixYsWDA/MDAQ109Y0a28 54wkHxw+Xn1xvyFhyte0Jicn48Ubr6MHDx7cu23czlWvXD792YqZPvu2jcIYDDb/moph8sp98mwy cubY9Eafzvr3yP1zcLfbw55gZHEEzp2ff3bhlVf2VK26p2PHhL59j9WsubpCheTAQHQdXbAAZbSg Hb0Yg5EYLyu6tHlLtPyTjapbD1n/oVNr4MSRXcI9Ib1yauEWSRURTtYyYJM2z5/PPHfuLHLm0WNJ +/btWrdudVjYMrQjau7bt6djpw6rBzUsprSJeIwDwY9//K64CZPGH0o903NBYsjWk5G70xELI3am xSWd3ZBwFo2HU9MDevVYY/3NWJd279mlzbYwOmV1fFrMgTOrdp2OTz6HsszWM6D76jWrcG5YLu7H DDt16pTXTxJAdMTjYv3mbsvNBcuXeFvK1v9aWKrSYhmRhadPd9Omfn713wsX0C6L/fxupTWb+dUO W/+LLof776358X9VlRaP5jfD5PN2Zmbm6tWrt2zZ4tbz9v6jGYiUi9buzs65haj5RZ+J+qiZlHIK z37IFXhilMCZefbMv/71ubzDqabwEqTNiNjGQdbvBAqJ/tWKDW0vXzkvXUnH1s0K/Q9EzanLn5uy rFK/Ya9Iu3eFRO79w6dTLly5OWjutrbfh/1raGSncVEXs1XanLXu6OjQgyOWHRgUvDck+tjF7Nzf /2Ny8olCfxXGM4iaJn9vE09EZ8+eRc7HCxauDXbt2rUxeu3Hw/+7y5w/LjrYOyxlcLO+z0WsDo+K isLrLHoxBiMxHmvh5FGzOKK9LOIsSk9Pl1fGo0ePInAiZ+KVWD5Gi5dItKMXYzAS47EW1lWzEBE9 QVynTXlJtr6niSs0i+uWryq8YUmaCJqWv4uWm5frxnt3x44dW7x4cbt/tPObm1hombO/y5zELnP2 S0HfODQ0eVhgzMTZIdgJNYtzkjZ3796NF4bJkyfjmT04JGjVqlVr1qxByt28efPOnTvxRI+XELwA 2Nx6kDbl/lH/Kl4YoiZyJtImrrPN3z8mhYWvQG7EseDW5ILXuTFjR82ZMwshRs1SBDgT8NKI12xc P+H1Evc2ouaRI0cOHDiA3L5nz57du+N3rKp3LrlR8PTfbN0wAu146DMyMvCaauZxBNkE7l5sZfmu sQicI1Ibfrro39MzTuMlX09ereXhkDNVTeEN0U2aXKtbd2uVKsfCw9fXqJHh6xtVu7bl4tj6tZYo owXt6MUYjNz0P41N7kDigf2bt2zSL9Gbo/QfOpWoKY8XjgunkH6ZH+j6U99Im92saTPA/8tLly/h PLSHe1ofNb2eNnFv4KBwVa3p+12flREro/aeRBr8bu62zQfPBcWc/G7W5oAFiTsTDk+dPmXM2NH+ 3bu6/CVt0fe73ouXLHY5G84lbBpp8/Tp0949Q4RER2uisCyWP1Fs/TPFqqhjaTp/Hs+j7qZN3Mrq 2oJG/WKZVzc/WmRdM2SwrG6ZwTKJ5T+qqOP1+bU9F57NbwZ+anDCF9PzNiLl5CUx13PzZy5ebxM1 d+9Pit93CHElKSkJz43YigTOnJybWBFlk0+JJiFthm/9vXwn0KKNVZes/euFrFPStSdx4Yzl/26N mpa02WdobWn3unZ9gz/9ftmFKznrdp74cnjkV6PW+03cHDBj+3fzdv6wcPePi/YMDdm759iFS9fy /tl/2ZwVrv8ul0kmf2/TPm3iAmBj1IbO4/766YR6wYnfGaRN4xdQg7QZGBg4Y8aMJUuWHD58GC32 adO7pwERUSlhNm1afk3Ten0mSdPylmbOTflj3HnImu68d4cna7zWjhs39vdfh5hf3vObtGXLFqyr ZnFOS5vINtOmTZs5cybC7fLly8PCwjZt2rR9+/a4uDivp028wMjrhPWesXx0Vq5X7ty5U0zvbeLo ECA3bFiH/Ix7ZqvO5s2WUG0VvWnTRlnWrVu7YoUloO7btw97q2YpGhwyjh25C/fbqVOn8EqMvTp4 8OD+/ft3796+a2PLI3F/Wjr7t3t3BOGlGpdZqampeAQ9S5u4q6MPLkHg/GHD77st/0PMwXC8SGuw AyAv2FjFi1kCu7rupZfO/PrX+3/1q11Vqpz9zW821Ky5+dtvcYw4KNjStWvUSy+hHb0Yg5EYj73F FYlnu6H/0Kn2AVrADx6SEkI7bIqOwum0a4+L72cGLW1O6vqH7t2+RKR0tmwa+t8SNYvjvc0VYcuR HLBgt2X5tlvnSZMnnsi4OCPycL+FCQiKM9cmJZ/M9Pu288aNG4aPHNa7b0DPXt2PmfiLRKdOpeHH 1uFsXfw6yWy9+vTs1KXj4GE/4vzHGevZQ2MM0VEeKWE5feXGwlKwnNHXLf+z/Nd6erubNq1TKdap rTcWloL9/G6ltbI+vxk48YrveRupclX8ias3bw0eY/ldTS1qbtq6E69H8gdzd+zYgdcgvAKuX79+ 8uTJyJmIH158ThZIm8s3/9by9bNrn5u39ufzV70StnIm2q9czfpx9O+nh1axRk3L0nvwS7KK113I utxt1MpXP526Ni71Ynbuhl0nZ68+MHB+3NCgXcGbjm0/lJl9M3/dzuO//+cUL0ZN8/C8itcL7ZO0 CQkJeIDw0OBVc8jcLh8O9/1T7wpR0RvQgnb0YgxGYrzLZw+cUZgc59g5y1dCZGAVCZxIm7ggWbdu HS42MJVETZtP0qopiIieLC7SplvMvyrjiRVPskeOHMFr8C4TMAwX90gyWFFN4ZykzT179iAJ7NwZ J/ESSVLIhN5Km24xf/+YJG9vurUsWboE11hq/SLDiy4ukhAF8QKMGInUd/LkyaNH9x85tOHQvqVx m3+MWf897lg8cMiZ6MLLqlznmU+b8sqN1IUV4dipg/O29R+29qPl8RP2HI1JSUtKP2OJmphZ/2Ek rAhqliLAJNj6wV69dv7iFyk1ahz08Vn/3HNRH3ywadMmXJQg5KMAGz/4AO3oxRiM3Ovvj13C3WLy MG3oP3SanX0VIRNwKZybmzt6/EhEzbXr1uJcitocpVYwhEP47sMXowb6xo38z50jHi1asLRdRv7n 2u99+334olrfe3BP4mHC+YCfzZiYmLDwsB4B/iNGDJs6bSp+SPGEgEKPnv6rVq3q2s1vw4Z1o8eO wo/qt127qPUNIXD2699n3PgxM2fNxKU8ZpswcUJXf7+JEyfazIYLO+/+e4TmxMnjSI9uLSfT3PiF PcyP9OXW8lTNb0axPm8jWH47fBFy5rZDGZOXxEjUjNmxx/JLGgkJe61QQLYEvDwlJyfjRMWTpzxr qVmKDOf28rBpgyf8v4Hjag0YW/P70b/6bkSNcVM+O3HiRNKRvd36/6LHoJ93H/Sc/8AKWAaN/hN+ MD17pnIJP2tLVm//7UcT2g9aMW9Vwu6ks1dv3MKy50hm4JqEzwcsbdFh2tpN2/ECgZFqnaKx/tqm 2b+3iQPHdvEQIPjhsTh48CAeHbkmCVw58dNRv9u125Iz0Y5ejMFIvAaZeerA/YmXOQyWdzjxcoB1 g4KCcCmChCnQgnbtUzne/ecGIqJSxWna3BS9Ea+ybi0xW039NXY9PCnjSdYkkxeIiIt4LcfzuAfw SmMybXpw/2yJcf317u7CfYKLlZSUFLyMhYWFLViwYMaMGePGjZswYcL48eNxqT137tzVq1cjq+NC 33zMMwObhqtXr1y8mJmVddb6t2YyzmbgpTs25WBwavKW0ycPau86IouiG6+pWhpUsxgq2ITlVxgl fWEGHO+J9ORlu8bM2dZnafyYM2dPn808c87y9aqnz58/g1EY78XDxGzYbuLAgTHNm2/+859jBwzA SbJz507LP1rs2mX5otgdO1DY+t13m/70py1//vO+77/HBQT2E/ts8jBtIG1aPjxg/eVMVHGLnIn8 eevWrRFjhsu7mnv27pbBZsRHhXzX9lfd/voslq4tyhUs/9tuUV29P6i2btmUK1e89q8SGtwhuFvk OgyPI+6obdtigoIX+vf49ttunRcvCcblHcaEhoYiFu7btxfR1GTaFFgdk/QI6IbZgkIWbtu+Fad9 cHCwfjbLKVUMUZPKhGJ93k5IPiOBE4v8yZOtu4/sP2x5Qwzk69NACmjByan9A5m3nrJwbuP5KuPs mYOHt+3aExkbt3LL1uVR0YujN6+KiYnZvHlT5PoFGzYFb45Zti02LH535JFky7cVFEfawZP/gQMH tmzZsnRZWI8fp7/fcdQfPhrxm7+N/M93h//h74Pe/XJQ135j8PIUHh6OMRiJfVBrFgGiJg7HzCdp Be4u3P94IsLDIb8MgmcJZMsjR47gFmW0oB29eKTw3KVWMwd3qZY58fKHrQBeCqWAFsmZmNaLL1hE RKWQ07SpsV6bmaJWeNw2b45GYvR4QTBTE5mA1wm8tuFlCQkEL5mRkZGIditXroyIiFi7du3mzZsT EhJSU1Px0uJx9jADr1V4VZPL95MnT+IFEhuVl0m85MuVRPFtHTNjB7AJHKNkQsBG9dCCLnlZdXdP 9PPjMDGPthUNWtDl2fwuyQ7I0eFOxjWiJUBbyUUk7mTc8+jCAOwnYLxa2X1hK0PljR2bq96RY4aN HDt8YVAg9kQNdQfuPOx4auqxxMR9sbEx69evDg1dHBISGBoaEhm5csuWqD174pOSDqWlnUQS9Pp9 6IzcsfqHVQpRUVFdu/khHO6I26GGmuDd2ehJhZMEP7zF8bwtgVOW46fPyZOSQNn+zER7MT1lYWZs Bc+9iDQ4EHnWkn/+k3/7w/MVerFLxbEDAvuATR8/fjwxMTE2NnbdunXLly9ftmzZqlWroqOjcecn JSUheGM3vLgDJn9v0waetHFXyN2F+0e7i3Af4iiKsntYV56XQB50bAjlIr5MEBGVIa7TJhERERER EZG7mDaJiIiozHPr9zaJiKhkMG0SERFRmefu720SEVEJYNokIiKiJ4Fnv7dJRETFh2mTiIiIiIiI vI9pk4iIiIiIiLzvmRXhkVy4cOHChQsXLly4cOHChYtbi8qUTgwZOcmSNs8QERERERERmca0SURE RERERN7HtElERERERETex7RJRERERERE3se0+Xg888wzqmROnz592rZtqyqlUtWqVU+ePKkqnvLK JMXE431z9lh7fUI9GWNm0zivAgMDpUxERERE5EVup80tMZtHjRluv2yKjlIjSlZycvKLL76oKmfO 7Nq1q2HDhs8++2zjxo0TExNVa2H79u2TMX/4wx/279+PlpEjR9arV+9nP/tZ3bp1w8PDZZg9m23B wIEDceGOqVTdkP7S30xg0Bw+fLhmzZpHjx5Fefbs2b/85S+xGyhIb9OmTSMiIqQMNjNr1TFjxvz6 17/GruJ27Nix0ojeli1bShlat24t43GrhxaX233zzTcXLVokZVkL9+drr722detWaTQmW9FPYkMG mGF+pDA53mDfjDmb3/4eA6kaMzNMxjgbqd80zitfX185u4iIiIiIvMjttIlgedYRtKsRJctyha67 pEbIHD9+PApdu3b96KOPpNEG2gMCAlDA7WeffYZCq1atJBQhStWoUcMyyBGbbc2YMQOpVfKqGfp1 9WWXhgwZ8u2330r5hRde2GNVuXJlVFetWtWkSRPpEjYzSxW7ikSxefNmlHH78ssvo0V669evHxMT gzKCOsoy3n73XG73m2++QWiXsqx++vRpifHSaIZ+Ehv2u+SM+ZFuMdg3Y872x2ZC7x6gjDG5aZxd kydPVhUiIiIiIi/xPG2eO3fu/IXzkJl5zj5tJiYmIo08++yzCDDlypVDi/7CV8oY88Ybb/zsZz+r VauWvKOI9sOHDyPvJScnV6pUKSUlBY3Hjx9HwkGLZU1H9DPLtiAtLQ0zSNlG1apVZeajR4/+6le/ kkaBgPTcc8+piiP6beEAEbpUpQAmxFFjE2PGjFFNBbCukLK/vz/2ECMR/IyP9+23316xYoWUMQyR D8lQjs5+H2R+jVR/+9vf6t+zxWzIySigFwG7devWKCOBoKztnmWcjsvt4ijatGkjZf3q8sYvWuSR RRmTYH/QjluUpVdW0U+C/PPiiy/i9HjvvfdQlTEgZW02sLnPZRigbH+OoaV58+b2Z6b9SJsd0O+b dgiNGzfWV7Ujwmx//vOfZSvO5tdPCDIMbLYL9gfYuXNnmWrDhg1osZ9cZjO5aZwPcg4QEREREXmR J2kzMzPzYlbW5SuXr169cuXqlUuXL1+4cN4mbeLitWvXrghvuPjWX/gKKb///vsLFy5EYc2aNS+/ /LK0ax/wa9eunbz9givsL7/8Uhod0s/861//es6cOSjExMTgAl0abWiJFGzGDBkyRPukqEP6bf3b v/2bXMTXrFlTLuI1O3bssE+tNvfA+PHjcf9EREQgWqDF4Hh/+ctfYqSU0Yu8hziKgv0bjICZbaAR h6nNAChj51GQXl9f302bNsmbkNJiXU9BFVxuF3e4JFiQtbCVgIAAhC5p0R5ZhL2BAweigFvpBVlF PwnuQJw8mGTQoEGoansC+tk02n2uH2l/jiFlIaph2v3798tIubUfabMD+n1r0aKFvD0u7I8Is8lW kPScza+fELTdttmuRn+AOMkxAKfQH/7wB7Q4/FHSbl1uOi0trW7duqpCRERERORKZKSDb/axb/Qk bWZlZV29evXGzRs5Vhh05fIVm7SJDIarYSnrL3yFlDEGBWH//icizW9/+1sUcD1t/Lt/+rWQ+mrV qoVwhQAgl+b29AlTX543b15wcLCqOKHfFsq4akcBK2KjKCBafP7550i8yHL6kcJmXVUqKBscr00k 1sgbjIjH+t+otNmuVI3T5tChQzEDbrUWm0lsONwu5tTucKwOeHxbtWqF+0RapAu0cwO3KEujDNBP Ur9+/bfffnvatGnyK4X6GfRl+/vcZluoCjnH0KJ9QQ4atVv7kTY7oN837RCEVtWOCLeIcNZOp/Pr JwS0S8FmuwYHqN+cZV4r/Y+S3LrcNMj5QERERETkUnJy8kcffTR37lxVt0IVjTafSPUkbV66ePHa tWu5ubm38vNv3crPuXkT4dMmberjDa5xtVshZVwEa2OEfgzUrVt3zpw52ttfztisJdauXdu0aVNV KQwZSa7jcV+gLI2ITAiNUjag31blypW13CKBEPfvkCFDDh48iOOy3yt9i8Oys+PFTtrcUYC8JyNt fqPSZrtSRY7VPosLKEuylV7kIsQb2YS02Eyi52y7gDnlV0PtV9e3aI87biUsgTZAmwSPERLXe++9 J2+76WfQl+3vc4fb0jg7M+1H2uwAaPtmM9j+iPQDnM0P2oSg7bbNdg0OEA+cpET7yfUjXW6a720S ERERkVtsAqfDqAmepM3Lly/fvHHz9u3b9+//9NO9e7fybl27fs0mbTZu3Hj4cEvLokWL5JL3xRdf jIiIwFXv2LFjpaVVq1a4jEYLrqQ/+eQTtGiX0WLo0KGINMuXL1d1J2zWgsTEROzADOsX4djDHdGr Vy8UevToIdtdvHixvAXnkn5bmEe+vGfKlCnygUZktq1bt+KIsGltpFbARb/8Uh/o59HKzo4X09p8 UheaNGmCRI2CzW9U6mcGqSK9/PrXv960aRPKuEUZ+6z16kmLfbvG2XahTZs2cp87m1Y0b958wIAB KHz//fdatNYGaJPg0UHu2rdvn7wL5+zes7/P9SPtzzE8UmOsv/2Is1HGy639SJsdAG3fcCf069dP GsH+iDBAzv/AwEBn84M2IWgHZbNd+wPErYTPrl27vv/++2hx9qNkctP8vU0iIiIicpcWOJ1FTfAo bV66dOPGjfxbt+7dvXfn7p3cvLxr12zTZkxMjK+vL67733vvPbnkReCpWrUqkgmSnrQg4OE6GGMA V8NokXbN4cOH//M//1NVnMAqQtWtYaNGjRry8U6H9u/f36hRo2effRa38o2yaooCMsye6i4YgP1H qMA8DRs2lHizZs0abBo7gBSqDdMKiJH16tWTCKE1glZ2dryDBg3SvpNWIClpOU3/G5Wo6mcGrYqQ X6tWLVQRNfV/AUUKGmnBrZ50gcF2Afnqm2++QUG/itC34L7CPaa/30AboE2COIR7EueMfF2qs3vP /j7Xj7Q/xzZv3owzs1y5cphf3pGWtexH2uwAaPu2Y8cObAKrv/baa6jaHxG28vLLL6Plyy+/dDY/ 6O8xgbLNdu0PEDsvJzBOP0yLFvvJZaTcGm8aMLN2jEREREREJkngdBY1we206ezvbaJdjbAjl7we GDp0KK6JVeUp4Ox4te/pVfXSatGiRW+++aaquAOZHwcoZY8ncdeKFSvc/fio1/etxA7Wnrbpo0eP IhjjVtqJiIiIiMxDSDHIKW6nTQ/8rOB389z12muvab8YCfLmjJ7qMKSG6qgOQ2qojuooTjbHq9en T5+PnPz50NIDOy/fr+su3L3a260eT2Ler371K2wRESsiIkI1meP1fSuBg3VG23S7du3kG2uJiIiI iLyrJNImERERERERPW2YNomIiIiIiMj7mDaJiIiIiIjI+8ymTS5cuHDhwoULFy5cuHDhwsWtRcVK Jyxp80Sxmf3MbCwPiYiIiIiInjiDBqlCmaAioHNmxriFaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRp rHSlzWc6zpZF1YmIiIiIiEorpk1jjyFtGkRKgy4qeampqaNGjWrcuPEzVqpVZ+/eva1atapUqVKF ChVq1arVt2/fnJwc1WdOfn5+//79fXx8ypcvX6NGDZTv3Lmj+h4+PHDggL+/f/369StWrIgB2ETn zp1xXqluc1weBURFRb355pvYCg6kSZMmq1evVh1ERERERM4xbRpj2iSnJJ5pVGuBuLg4JEDVV6Bp 06aq2xyEVbVmAbSoPrsdEAi3MTExaoQJarUCqlVn/Pjxqk9H9REREREROce0aYxpk5xq0KDBsGHD UlNTHQawZs2aofHTTz/NyspCNT09vXXr1mgJCQmRAS5t2LAB46tXr757925UcYsyWtAuAxo3bjx5 8uSkpKT79++jisIbb7yBAfXr15cBZhgfxbFjx6T9k08+wSGgBeftF198Ib1ERERERAaekrSJy2NV clPJpU0tSdovMgC0luTz2c3GrqnQZV7lboF+S+Ly7/6kRjx8eCP/TsCKXT69gst3nlut56KOwbFZ N26pPqvsvNs9QuOrBwRhAG4xGC2qr4C2ofPX89rM2lTRbz4mnLk9GV2vjohAe+3vlshIaDg0HC0N hoSpugkZGRnt2rWTj5jiscnJyZFII736ssam8d69e8hIderUKV++PObBbJKF9LRVMLJKlSovvPDC 1KlTpatJkybo0gc/iXaNGjVSdXdYt2O7wzg0NObn56s6HpobN9DStm1bVXcFB4XxyJOq/vAh9h8t CH6qbufKlSsYUK5cOdw/qsk0rAiqUqBr165ofPXVV1Xdkb1793bo0KFGjRp4LCpXroxQfeDAAdVH RERERE+xpyFtIs4IVXeHSptDnZPc6BmP02bNviFaGQsSowzIu3MPqU/fhaVGn+AruSrzYED9wSts BmAVfV4FraveoFCtjAVds2OPSnnv6Uuo3rl3v1ynOagOWLXPuqprly5d8vHxkWwjJFaBDNCXNfrG +/fvy5t4etWrV8/MzJQBQtpn4z7Wka7AwECU9Z9rRQhEiz7amWed2HaH5WO09mmzZs2aqu5K7dq1 MR7niapb31dEi6+vr6rb0XI7tqWaTJMVVaVAgwYN0Lhs2TJVd0RW1MOxb9u2TXUTERER0dPqiU+b KmgWUK2mPUqblnRox4tpUyNZDouq62hd/st33n/wIGT3CalWDwiSAYMiE6Sld5jls5djow5JVYuj 2oCOwbGYofPiHVJFuwwQ0ojFt//S3acuoiU777bMmXP7bvnOc9HVN3wPqpGHzshICZ9mBAQEIJA0 atQI9wCqx44dQ1lSigzQlzX6xlGjRqHcuHHjpKQkVBFfP/30U7T4+fnJAGFdw7KhiIgIBFQEMGxa uu7du1etWjX0Jidb3rDNzs5GQIIrV67IALfIhlSlAKIsGrVP0qalpUmgrVixogxwCSMxXj4l28QK ZeMZevTogQE1atRQdXdgRVCVArIPiPGYuVKlSqjiuKKjo1W3VYsWLcLDw+Xri3And+7cGas0b95c eomIiIjoqfVkp00VMa0hU5XcDJylNG3KZ18RF6VartMcGaC9b4lMqB+A0GgzIDXLcmfhVqp1f1wu A4Q0YolPsyQlG18s3Iou+TBt/4i9KNfqt1i6zKhTpw7SiPwuokDZEnRMp015w03/0VmHbxta13hm 5syZql5Y79690YtohLJ8QvX999+XLndZt2O7w1FRUdKukU+lItOqEa7IWlJGtEbalEZnM4wYMUJW MX4r0hlZV1UKSKO/v78UNNrvjtpDkscARFNVJyIiIqKn1dOQNlXFrmpGKU2bqm7XIu862i9otxkg VZBqhS7zVN1KGrEgr6omnW2p56V37+lLLSauRcF/+U7VZ0K5cuWQRuQtOyFv2YFU9WWNvhFxS6o2 bGKYNDr7TCnCKnorVqyYk5Pz6quvouzxH/awbsd2hyE6OrpZs2YVKlTAVhDYMjIyMMzgnUkb8r6i /R1lPwMCXocOHSw78cwzEydOVK1uktVVpYD89mnr1q0l22dlZcnbyPoPIS9ZsqRVq1aVK1eWR1ag rLqJiIiI6Gn1xKdNVSpQpLSJWz2t3WMlljax2AyQqvbmp7O0qep2fPsvRW/vsN0yYUzKOdVhggdp 02aAs7QJMkDYt9h48803McDPzw+31apV0++SW6zbMdqQQCrDMPNfGGvy9zYvXbok33+LQ4iMjFSt 7sMMoCoFatasiUb9nwm9c+cOWrTEq72hak8GEBEREdFT62n4lqCiKGPvbWoflL2Rb/klOnvufpJW 1e0MWbsfvS/4L8Btle4LVas5r7zyCqKIwSdp5T09/a9Q2gxo2LBhhQoV9F/A45B+FYeQzWQMdO3a VbW6T2ZQFefkHVR/f39Vd8XMd9ImJCRIIPz8888RO1WrRzAJqEqBNm3aoFGfNuWLiLS0+cILL6A6 e/Zs+b1NyMvLs0xk4g4hIiIioicb06axx5A2K/rNl6R3IMP2G2ukHYuq27VoXwLUZtamjGxLQrhz 737EgdNvTFBveem/JQhV7VuCkB5lgJBGLKpuB5PLV9Fi+WLhVtVqjvYtQampqagmJycjPerzSfPm zVH+9NNPs7OzUUXUrFu3rn7A+PHjUcaw+Ph4eUMyKytr4cKF+o93gn4VZ2rVqiXD4uLiVJP7ZAZV 0fniiy/kGNPS0hARMaZcuXLHjh2TXpdc/r3NoKAgpG7ck8ic0lIUlmOwO4qQkBA0tm7dGoeAKu5n ORDtrpaP2q5evVoeCDya7777rmUiV/c8ERERET3xmDaNPYa0+cm8LVrYk0V1OAqBNi35d39qPMry 9zDtF22A/HlM/YIWZ38BRdUdeXPyOhmDNKuazEFisfkLKBJgQAYgN0pVM2TIECnIAHj77belxYbq trJvsTds2DCMKcqXuNpT3Y4GICerPnNatWql1iyAFtXnfAdAe6fRJbWCHdVd8OW6euXLl4+Ntfxr Bcg30OrJvyaADCAiIiKipxbTprFHadMZyY2ecZg2L93M7xgcW7NviLNv9DFuQW4cti4RAbKi3/xy nebU6rf488Ct+q+Wzc67HbBil0+vYMyPW5TlG2717Ke1N3lLEgZU6DLvnvu/7piRkdGuXbuKFStW qFDhiy++sP/s5eTJk2vXrl2uXDlfX1/5KKnNAJg5c2azZs0wCYZhcMeOHffu3av6rOxXsTdgwACM Mf/pVj2Z357qfvhw9erViGrYPewk4rHB97g6k5+f37dvX4RhBDzc9u/fXx8j1fYc8WLazMnJwT7U qlULB4LHC3E3Pj5e9Vm/oEj2EL01a9YcMWIEGm1mICIiIqKnE9OmMZU29YqYMPUcps2youmY1Uib 7eZuVvWieVz5BGkW29XeqSMiIiIiIm9h2jTGtOlYVPJZefMzZPejb0wtiseSNmfj7rf7K51ERERE ROQVTJvGmDYdkJyJpUafYA8+RutQyadN2SIMGTJENRVQHY6oEUWmpnNEjSgyNZ0jagQRERERUXFi 2jTGtOlAhS7zsPj2X6r/ddAiqmClKiUCm6tYsWKHDh3s/8ym7IxDakSRqekcUSOKTE3niBpBRERE RFScmDaNMW0SERERERF5gmnTGNMmERERERGRJ5g2jTFtEhEREREReYJp0xjTJhERERERkSeYNo0x bRIREREREXmCadMY0yYREREREZEnmDaNPZ60+czsjrKoOhERERERUVnDtGmMafMp9UxhqrUse2IO hIiIiIjKCqZNY0ybjpXAHqanp/v5+dWqVat8+fIVK1Zs1apVdHS06it+ks00qrVkyaabN2+u6g8f oiyNqu4Oj1ckIiIiIvIM06Yx/t6mY8WdNmNiYipXriwBSU91l6DHtV2QTZcrVy4vLw/VnJwclKVR BhARERERlWZMm8aYNh0r1rR55cqVKlWqIFN9+eWXqampaLl37150dPS7774rA0rSY0x3sumGDRuG hoaiumzZsgYNGkijDCAiIiIiKs2YNo2VaNrUIpy2qA4raZmevLXifL9Xlg3Ydj717fVTys/tXGf5 D4euntWPwXLgSkaj8OHorbv8x3VnkqRXZN/O6xEfWj0oAL24Ddi1Ai2qr4A2z/m86202zcIWfYJ7 zUzerrXbL2pNq8lJW16NGIG1sAms+GnM/PisNNVnwpAhQxCo2rRpo+qOnD9/vkOHDi+88EL58uVx izJaVF9BTgsPD69cuTLSWlZWFuasWLFi3bp109IseyIDcnJyvvjiiwoVKqCrbdu2GRkZsrqejFSV wpCBhw0bVqdOHexDpUqV2rVrl56ervoePsQuYcV69erl5+ejilvJimiXAS5Zt/zMwIEDP/nkE1Qx f//+/aVRBsDevXsxYY0aNbAPONjWrVsfOHBA9VnJeI1qLaA1jh8/vnbt2pjE19d36tSp0ktERERE VBRMm8ZKXdosN6eTFBDkpIAFgVA/BkuN4D5aGatocTTv3p36KwZrXbI0CBuS/9NdGSC0rnqhg7Sy 8aLWfPgQ8dWmSxbVbUKzZs0QgWJiYlTdzqVLl5CvJClp0IJ2GSAt8gYpvPHGG1KATz/9VBuAFCcF 4ePjo82gkS5V0bl//75+WlG9evXMzEwZYBMvbcKnGdYpn0GeRJzG5nAbFxcnjWpEwRg9JMZt27ap brsBqrWANCIzS0ETEhKiRhAREREReYpp01gp+pYgaUm6eu7AlQwpJ1xOP3btAgrVgwL0Y7B02B50 /8GDjrHBUv18a6AMGJQQKS3owoDOOxZLFe0yQEgjFt+l/XdfPIWW7Nt5vXeHSS9oA1Rdp8K8LtIV e+E4qvfu34/OPPruxmnSa0bFihUReJCvVN1OQEAABiDLHTt2DFXcNmrUCC09evSQAZbAZM2rWjyL jo7evXs3CrVq1dIGaDOkpqbKDL1797ZO8IiMVBWdUaNGob1x48ZJSZa3jhFTkWPR4ufnJwMAD7H8 9umXX36JW5Tlg8EmYRVAATF4yJAhSJv6RtGiRYvw8PA7d+6gfOPGjc6dO6NX/8VCGpsVhTTWrVsX mRZVzCAJHIFfBhAREREReYxp01ipS5sOywh4WlkWpFBUU69nSbVmSF8ZoL2xiS79gLrLf5QBQhqx OPsErDZA1XW0t1VbR81cdnLf+TzLo+IWiUCq4kidOnUwAOlR1R8+lCT5yiuvSNU6gSWvgk0ZUVYb YDCDRkaqio68b6n/6CyiGlpq1qyp6lZLliyxTmCBsmo1R9ZCAWG1WrVq7dq10zc6dO/ePfRWqlRJ 1XUcriiN8fHxqm79pVm0yL1ERERERFQUTJvGykbaLDenk1bWd4FUtTiqff5WqmAzQEgjlvsPHqim wrQBqq6DhKl93FcWRNnZR2NVtwny3iaCk6rbKV++PAYgPaq69XOtaKlQoYJUUQaH5XLlymmNBjNo ZKSq6Mg+2EO7GlHg888/R/sXX3yh6qbJhChERESgIGFVaxRobNWqVeXKlbWvqwU5RhvSpSoFzDcS EREREbmLadNY2UibNmWtiqwoVWdp036AkEZtmD3jAek5V4bsX9s6auYLC/y1kQP3rVHdrjRu3Bhp x+D3NouSNqUsBfsZ7LOijFQVHWdpE9QIq/z8fHkn9pVXXjH/G5vCfjbQN44YMUKq9mSAnsN2841E RERERO5i2jRWVtOmtz5Jq+p2XA7QbMg4IiMrB3ZTTa4MHDgQaad169aqbsfkJ2kNylKwn8HX11fV C9gnW9GwYUOEW5cB0t/f37opi65du6pWc2QtVSmgb3zhhRdQnj17tvzeJuTl5ekH6DlsN99IRERE ROQupk1jZTVtyrcEaV8C9GnMfBmg/5YgVLUBQ/avlQFCGrGoup2K8/1kwIErtn81pOnqMYEpOzNy slHGPqw7kyQjbd4+NaD/e5vyLT4Ie9HR0e+//74MkG8Jql+/vvQmJycj+6HF5luCDMpSwAxYF9XU 1FSZATNbBz6CMWhHolP1AuPHj0d78+bN4+PjJYtmZWUtXLiwadOmMgCwzxiDUBoZGYlblA3esLWH 8aAqBfSNMufq1atlB3As7777rn6AnsN2841ERERERO5i2jTmOG3qqVaP2KRNSWUOF61XP9JZGYuz v4CS/9PdhuFDtS5Z0OLsL6Coup1PtszTxtiMtGnXFr84N74jJyoqSr7N1Yb0OvsLKMh7MkBaDMpS aNu2rRSEj4+PNoNm8uTJqttKtVq9/fbbqrUw6c3Ozq5ZsyaqmAFVmQctaJcBLlknK7RF0DfKN9Dq SQ4HGQBStafvlbLGYSMRERERkbuYNo05SJteVHxpMzn7fKPw4eXndq4XOmjdGcuf6NBk384L2LXC J7gXenGLMlpUXwFtHlW3cyn/ZsfY4Johfe2/dgjJFnM2jhhVwfqnUCrO92u2ZuzkpC2q27S0tDQ/ P79atWqVK1euQoUKiHaIoKrP+kZihw4dqlSpUr58edx++eWX2h+6BH1ecliWQk5OzhdffIHJK1as +Mknn2Rk2L5PK4YMGVK9enVZRTUVmDlzZrNmzbA6drJ27dodO3aUPyUC8uVAb7zxhlShefPmaJE/ +GmGdYO2W9Q33rt3r2/fvojZ2Dpy7IgRI2wGgFTt6XulrHHYSERERETkLqZNYyWaNotOgp8++5FD DFRERERERMWNadMY0+aTiWmTiIiIiKi4MW0aY9p8Mj32tCk74JAaQURERERUxjFtGitjabPCvC6y qDo5UcFKVR4H2QGH1AgiIiIiojKOadNYGUubREREREREpQTTpjGmTSIiIiIiIk8wbRpj2iQiIiIi IvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGnti0yb/MicRERERERUr pk1jJZo2SzIBluS2iIiIiIjoKcS0aYxpk4iIiIiIyBNMm8ae2LRJRERERERUrJg2jTFtEhERERER eYJp09jjSZvJ2ecbhQ8vP7dz/RWD151JUt1WN+7kB+xa4RPcC73VFvXsGBucdeuG6rOKz0prGD5U 1o05l6LNKb1aVVukXaO1H7p6ttmasRXmdakc2M0vbkn+T3fVCCIiIiIiIhOYNo2ptDnUOcmNnnGW NmsE99HK5eZ0QvCTAXn37jQIG6J1yYLBV/JzZUDajcsIh1pXpfldtbIM0KraIu0arV2/D1gQcdUI IiIiIiIiE5g2jT1Km5IPbRRT2uywPej+gwcdY4Ol+mnMfBkwKCFSWnrvDkN17KEoqWpR0C9uibR8 vjXw3v37WFGqWGSAxmW7/87l2IeQE7ul6hPcS40gIiIiIiIygWnT2ONJm8euXUA19XqWVGuG9JUB 9VcMlpacu7dRRRqUqu/S/jLglWUDpEVmwK1UscgAjcv27Nt5qGqbKDenkwwgIiIiIiIyg2nT2ONJ m6pe0FJhXheplp/bWRujX9BuM0CqWlbUWjTm2+1biIiIiIiIXGLaNFYobeJWT2v3mHHa1LKiy7SJ RQaUm9NJX2XaJCIiIiKix4Vp01ip+CRtjeA+MkD7JO2NO/nSYqPW4n4ywGYGLDJAY77dvoWIiIiI iMglpk1jj/NbgjrvWCxV+28JarNpVkZONlru3L8XcfrAG5ETZABW1FbBDEX5liBVZ9okIiIiIiKP MG0aezxp09lfQMn/6W7jiFFal36RAanXsyrO99MazfwFFG2xGSBVsG8hIiIiIiJyiWnT2KO06Yzk Rs84S5sHrmQ0Ch9efm7nOst/WHcmSXVbIXAOS1zXMHwoUiWCaK3F/T7fGhiflaa6Hz7cdj4VvVj3 lWUDNmQckQm1b5TVNmG/2AyQKti3EBERERERucS0aUylTb0iJkw9m7TpdTfu5EtQrBzYTTURERER ERGVCKZNY2UvbbaOmhmflXb/wYP8n+5qv8bZZtMs1U1ERERERFQimDaNlb20KfFSv5Sf2znhcrrq JiIiIiIiKhFMm8bKXtqMu3Cy3ea5lQO7VZjXBbdto2cfuJKh+oiIiIiIiEoK06axsv17m0RERERE RI8L06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGm TSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIi TzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9ok IiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE 06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIi IiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBt GmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0a8yRt7j+S MmLV7k9mbv7r+I1Y/jlry+jVu9GounX0afOZjrNtFmknIiIiIiIqi5g2jbmdNpdsO/C3SVGdF+8a s+nonJ0nsKCAaquJG9GlBhVg2iQiIiIioicV06Yx99Lm4m0HWk2MGh11ZPaOEzYLGtGFAWqolT5t apg2iYiIiIjoCcC0acyNtLn/SMo7EzYMXZ80ZWuqLLLTWhVdGJCg+0gt0yYRERERET2pmDaNuZE2 R0bs/teCuDHRR7Ul/WouFn0LBgxbGa9W8Cht3si/E7Bil0+v4PKd51bruahjcGzWjVvSJWtN35pc 0W/+KwOWbUs9//aU9RhW54flh85eNTNAxB6/0HZ2dOVugejCbYuJayMPnVF9RERERERE5jBtGlNp EwnTGcmN0G5GdEB44uD1SQYLBnw8I1qt4H7azLtzr8GQMG2ALDX6BF/JzUevVMt1miMFZEUpYGkz a5OZAUJr1C/RRzNVNxERERERkQlMm8YepU3Jhzb07X8Zs65vxIF+qx4tstP6lr4RiW+MXqtWcD9t DopMkK7eYbtRHRt1SKoBK3ahKuWkc1cPZFyRckL65WMXrqFQPSDIzADRfFxkeOKpO/fuo7z6YLqM 1MdRIiIiIiIil5g2jbmTNkev7Raa4L/i0SI7rW/pGrqv5dh1agX302b9wSukK+f2XVTvP3ggVd/+ S1GVsnWgbblCl3n2jfYDHJKRlbsFqjoREREREZEJTJvG3EibH02N+nxhXMfFu7VFdlrfggEfT4tS K7ifNvWffdUvaEevlGWkTblcpzn2jfYDAAl2bNShV0dEVPSbr33mFotsgoiIiIiIyCSmTWOF0iZu 9bR2MSw8/m9TNn++cKe2yE7rWzBgSJjn3xLkLG1iQa9WcFZ22GhT9l++U6r2iwwgIiIiIiIyg2nT mBvvbSYkpbQYHdlm9raP58XKIjutVdGFARimVnCSNrVIef/BA9VUQPsk7Y38O6pJR7oMyg4bbcoV usyTavTRTOzAvfv3paoNICIiIiIiMoNp05gbaROCYhKbj4x8b0ZM61nbbBY0ogsD1FArh2mz4dBw SXdD1u63CZzatwS1mbUpIzsHLXfu3Y84cPqNCZEoS5d1oOOyw0abspY2D529iq33Dd8jVW0AERER ERGRGUybxtxLm7BoS2KL0ZF/Hb/xnalb/jY9BgsKqKLRJmqCw7Q5NeaIFvC0Rbry7/7UeFSETZcs 6NUKzsoOG23KXy7aJlVZqgcEaWUZQEREREREZAbTprFHadMZyY16+4+k/Bga12bShmbDV/9lZORH UzcOCduJRtWt4zBtwsTNh+v+uFz/JT2qwxo4h61LbDg0XL7Fp1a/xZ8Hbo1Py0KXfqTDssNGm3LO 7btdl+6s0n0hJm8yetWhs1elVxtARERERERkBtOmMZU29RwmTM84S5tERERERERlHdOmMaZNIiIi IiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRorubS5/XQ2ltJfJiIiIiIiMoNp01hJv7fp LOOVtjIREREREZExpk1j/CQtERERERGRJ5g2jTFtEhEREREReYJp0xjTJhERERERkSeYNo0xbRIR EREREXmCadMY06ZTz8zuKIuqExERERER6TBtGnt60+al/JtfbF1YZWH38nM7O0yVTJul3zOFqVYi IiIiohLBtGns6U2b7TbP1fKkw1TprL00ePddBK2HvXurqggIsDS+/baqPg1UyiygWomIiIiISgTT prGnN21WmNdFwmRm7jXVVHakpj4sV+5h+fIP09JUCwpowXLsmGp5qjBtEhEREVHJY9o09vSmzdL8 1qUZXbta3sls21ZVUUDVz09VnzZMm0RERERU8pg2jT2NaVPLmTaLs15p13y+NVDa47MsbyziVqqf bJknA+DGnfyAXSt8gnuVn9u52qKeHWODs27dUH1Wk5O2vBoxouJ8PwzAsE9j5sts5l258rByZUvC 3Lv34e7dlkKlSpbG0kbLgcOGDatSpcoLL7wwdepU6YJ79+6hvU6dOuXLl69UqVK7du3S09NVn9Xe vXs7dOhQo0YNDKhcuXLr1q0PHDig+nS0rRARERERlRimTWNMm48WZ73Srsm+nVcjuA/am60Ziypu UUZivJKfKwPy7t1pEDZEW10WrKINQBC16ZVFes0bMcISMhs3tiwooOoByWmg6nZUt6dZTtadjRNB R7ru37//xhtvqKYC1atXz8zMlAGgWnUQO7dt26a6C0iXqhARERERlQimTWP8JK3TjGcwIOpssnQN 3LdGCqvTD6o+nHMJkdLYe3cYqmMPRUkVIVMGaL8yGnvhOKr37t+Pzjz67sZp0mvenTsPa9VC0LIs KKDqAclpoOp2VLenWU7WbdSoUUREBOLljRs3AgICpGvUqFHoaty4cVJSEqqXLl369NNP0eKn+0Bw ixYtwsPD71iPDet27twZA5o3by69Gss2mDaJiIiIqGQxbRpj2vQkbULnHYu1AV9sXahareqvGCzt OXdvo3r/wQOp+i7tLwPkrVEsraNmLju573ye5XH1TEiIJWpiQcEzktNA1e2o7qKlzZkzZ6q6ToMG DdCl/+gs8iRaatasqep27t27hwGVKlVS9QKWbTBtEhEREVHJYto0xrTpYdpEkqwZ0he9VRZ2z76d p1qttD/gabOgXQYgYZab00nfVXf5j7OPxkqvuyRtllqSAxEjVV2nfPny0msD7WrEw4dLlixp1apV 5cqVy5Urp7qfeQZl1V1A2lWFiIiIiKhEMG0aY9r0MG0eunpWG7D30mnVauUsbWJRIx4+TM+5MmT/ 2tZRM19Y4K/1Dty3RnW7o0ykTVUpzFnaBBkwYsQIVbcjAzQOG4mIiIiIihXTpjGmTQ/TZsPwoeiq HhSA2wZhQ1SrlfZJ2ht38lWToQ0ZR2R85cBuqskdCFmlOWcZ5MCGDRtWqFAhP9/pvfTCCy9g3dmz Z8vvbUJeXp7DCSW43r9/X9WJiIiIiIof06Yxpk1P0ubUIzFoLzen07bzqfKZ2LGHolQfzrmCbwlq s2lWRk42Wu7cvxdx+sAbkRNkQNPVYwJTdkrX/QcP1p1JkvEV5nWRAW4pYtqU8Aaqbkd1e7oNg3XH jx+PrubNm8fHx0tQzMrKWrhwYdOmTWUAsigGrF69WnqTk5Pfffdd63y2E9avXx+NyKWqTkRERERU /Jg2jTFt2oZJrd1+kQHn865XDuyGattoy6HhFuVK87tm5l6TAfk/3W0cMUpbS7/IAJtGbfGLWyID 3ILk5WkStJDwBqpuR3V7ug3jdd9++20ZYEN65Rto9QICAqQgAzSTJ0+WdqFaiYiIiIiKE9OmMaZN t9OmxEssCZctX6a6++IpqUr4FAicwxLXNQwfWnG+X7k5nWot7vf51sD4rDTpPXT1bMCuFUik8qdQ MKbZmrGTk7ZIr7uQrYoSr1Q+cz6F6vZ0Gy7XnTlzZrNmzSpWrFiuXLnatWt37Nhx79690nXv3r2+ ffvWqFEDXTVr1hxh/YuiziYcMmRI9erVnfUSEREREXkd06axpzdtEhERERERFQXTpjGmTSIiIiIi Ik8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPa JCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2ix7cssCta9ERERERE8upk1jTJtlj8pzpZvaVyIiIiKi JxfTpjGmzbJH5bnSTe0rEREREdGTi2nTGNOmrWdmd5RF1UsfledKN7WvRERERERPLqZNY0ybtspQ 2nzeyr4MbdqgJbdfP1UVffpYGj/4QFWNmZxBv119We0rEREREdGTi2nTGNOmrScjbR4+nFulSm7V qrnJyaoFBbRgOXhQtRgzOYN+u/qy2lciIiIioicX06Yxpk1bT0bahO7d0Zj7z3+qKgqo+vurqhlm ZtBvV19W+0pERERE9ORi2jT2NKbNyUlbXo0YUXG+X/m5nX2Ce30aMz8+K0316dJmcvb5ZmvGVpjX pXJgN7+4Jfk/3VUjHj7Mvp3XIz60elAAZsBtwK4VaEH7/QcP0IJ1c+7elpEaDEA7ejEGVeN9MCZx DvTpTl8WZ8/m1qhhyYdxcbmxsZaCj4+l0TwzM+i3qy+rfSUiIiIienIxbRp76tImkqGWJ/WL6tal zZohfbUyFqwoA/Lu3am/YrC+C0uDsCESR5uuHoPqujNJMlgTeeYQ2pusGo2yy30wJnEO9OlOX9aM HGmJiK+/bllQQFUj4x1SI6wMZhD6VfRlta9ERERERE8upk1jT13arDCvi0S72AvHUb13/3505tF3 N06TXtCyn//O5fcfPAg5sVuq1YMCZMCghEhp6RgbjAGddyyWKtrR6xe3BOWpR2JksGZy0ha0oxdl l/tgTOKcGdeu5data0mJWFBAVSPJ0CE1wspgBmNqX4mIiIiInlxMm8aeurRZI7iPJL3WUTOXndx3 Ps9yn+pJLxbtw7FSLTenkwzQ3thMvZ6FKm6lWnf5j6iGpiWg/PnWQJTbbZ6LMm5R/mTLPJTRi7LL fTCm8pw5QUEqK6LgGc9mUPtKRERERPTkYto09tSlTaQ75EYJe7IgJc4+Gqu6HX1LkE2L/Gam/YAK 87qgnJGTjfKrESNQrrW4H8o1Q/qi3Ch8OMrpOVdQdrkPxlSeM02yYlF4MIPaVyIiIiKiJxfTprGn 8VuCEPmG7F/bOmrmCwv8tbw3cN8a6dVapAo2LTZpU3vzU9ImVFvUE+WsWzfQ+Oa6ybhFGfES7TIA jPfBmMpzpjnMiupTs46oETpMm0RERERE9pg2jT2NaVNvQ8YRSXqVA7tJi5b9pAo2LcafpIU2m2ah OixxHW6jM4/iVn7VE+0ywIb9PhhTec40pk0iIiIiouLAtGnsqUubTVePCUzZmZGTjfL9Bw/WnUmS pKe9MylVLFIFmxb9twShqn1L0JD9a2XAqAMbUa0R3McnuBequJVf1ES7DHC5D8ZUnjPNg6xog2mT iIiIiMge06Yxx2lTT7V6pBSmTcl19ot8W6x+gFTBpiX/p7sNw4dqjbKgRfuDnPJ+JpZPtsxDVb4r CEvU2WQZIFX7RdsHYyrPmca0SURERERUHJg2jT11720euno2YNeKxhGjKlj/DEnF+X7N1oydnLRF dZtIm5B9Ow+T+AT3Kj+3M25Rli+wFffu35cvAZp3LA5V3KKMFrTLAJf7YEzlOdOYNomIiIiIigPT prGn/fc2yyKV50o3ta9ERERERE8upk1jTJtlj8pzpZvaVyIiIiKiJxfTpjGmzbJH5bnSTe0rERER EdGTi2nTGNNm2aPyXOmm9pWIiIiI6MnFtGmMabPsUXmudFP7SkRERET05GLaNMa0WfaoPFe6qX0l IiIiInpyMW0aY9ose1SeK93UvhIRERERPbmYNo0xbZY9Ks+VbmpfiYiIiIieXEybxpg2iYiIiIiI PMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGns6U2bl27mf7Fwa5XuC8t3nvtMx9lYVAcRERER EZEJTJvGnt602W7uZgmZ2qI6iIiIiIiITGDaNPb0ps0KXeZJyMy8xi9QJSIiIiIitzFtGnt60ybf 0iQiIiIioqJg2jRWomlTC3gHMq40Gh5evvPcuj8uX5d0RnUX0Iadv57XZtamin7zfXoFz9yeLL3Z ebd7hMZXDwjC6rgNWLELLdIlXA7Q5rdZVDcREREREZEJTJvGVNpEwnRGcqNnnKXNGn2CtXK5TnMO nb2qRlhpXfUGhWplLOjKu3Ov/uAV+kYsDYaE5d/9SdZ1OQBserVFdRMREREREZnAtGnsUdqUfGij mNJmh6Dt9x886BgcK9XPA7eqEVbaMN/+S3efuoiW7LzbvcN2ozAoMkG6sC5m6Lx4h1TRbl3V9QCN tGNRdSIiIiIiIncwbRp7PGnz2IVrqKZmXZdqzb4hMkBow+LTslRTAe19S6yLqjZD3R+XmxygkXYs qk5EREREROQOpk1jjydtqnpBS4Uu81TdSht2/8ED1VTA/m9jSlWbweUAjbTrR7rld4WpViIiIiIi emowbRorlDZxq6e1e8w4bSJMStVZ2lR1HZswaT+DywEaaddGukulzAKqlYiIiIiInhpMm8ZK9Sdp VV2Hn6QlIiIiIqJSgmnT2OP8liDtK3w+nR+jRlhpw1RdR/8lQKhqMwxZu9/kAI20Y1F1IiIiIiIi dzBtGns8adPkX0BRdZ38uz81HBquDZAFLdofOHE5QKP1qjoREREREZE7mDaNPUqbzkhu9IyztJl8 PrvR8PDynefWGxS6LumM6i6gDVP1wrLzbges2OXTKxir4xZltKg+K5cDhPFWiIiIiIiIjDFtGlNp U6+ICVPPWdpUdSIiIiIiojKLadMY0yYREREREZEnmDaNMW0SERERERF5gmnTWImmzQpd5smi6kRE RERERGUW06axEk2bRERERERETwymTWNMm0RERERERJ5g2jTGtElEREREROQJpk1jTJtERERERESe YNo0xrRJnsglIiIi8jZ1nUFUdjBtGmPaJE+o1wQiIiIi71HXGURlB9OmMaZN8oR6TSAiIiLyHnWd QVR2MG0ae+rS5jMdZ8ui6uQR9ZrgjgEDBrRo0UJVSiuDnTx37lzHjh19fHyet1KtublS1ajW0s3l Y/EYH6yWLVsOHDhQVYqHy00UfUBJ4k9W6VGaf3B4VnvdU3JWO1N8Z5S6ziAqO5g2jTFtlkbPWKmK IzLAXrly5dSIYqZeEwpeO+3LNg4fPlylSpWVK1equrcZbNo8453s2rWrbEWo1jJ49eDysXA4oE0b HGluv36qKvr0sTR+8IGq2oiPj8cdol2N7dmzp2fPnq+99lr16tWrVq1at25d3KVHjhyRXg22i61j H1TdCYd3tbc2UfQBJcbhg+VF1pOaP1mmODzM0vODU/QBJhX9wTI+YYrOekLxrHaqxE45/Z2gL6vr DKKyg2nTGNNmaSTRUVUckQH23n33XTWimMlLAuhfIfRlG+3bt3/ppZdu3ryp6t5msGnzjHcSXdhE bGysqtvxyj6UAJePhcMBuGCoUiW3atXc5GTVggJasBw8qFpstG3bFnfIhg0bpCr3jw0fH5+oqCgZ ILDd2rVrf/bZZ6peGPYtMTERBayLW5S/+uora4+FzGnD3U1A0QeUGP5klR6l+QcHij7AmPHPplt4 Vj9esm82iuOUk5nty+o6g6jsYNo0xrRZGkl0VBVzGjRogFVwgaLqxUxeEkD/CqEv66WlpVWpUsXj Kw8znG3aPJc76XITLgeUBi4P02BA9+44xtx//lNVUUDV319VbRw+fBj3RuPGjVU9N/f111+fPHly QkKCXJ+h8M4772DMa6+9JgM0X3/9NfYBe6LqOiEhIa+88kpERARWxC3KaFF9XtqEKPqAEmDwYHkL 7j1QFY+43EmXm3A5oDQwOMzS8IMjivWsNv7ZNM/lCVN0lvOJZ7VzJXbK6e8EfVldZxCVHUybxp7e tJl8PrvZ2DUVusyr3C3Qb0lc/t2f1IiHD2OPX2g7Oxrt5TvPxW2LiWsjD51RfQ8f1v1xOVZ/f3qU qj982GrqBrSgXdUfPryRfydgxS6fXsGYoVrPRR2DY7Nu3FJ9JribNvFigPE1a9ZU9eInLwmgf4XQ l/XGjx+PdvsrD208BtSrV69q1ar169efOnWq9Iq4uLhOnTrhwgW9NWrU+Pjjj/fs2aP6CmZwSI0w zXgn7aluHWftgNdaHAUeIBwFblG2efV1OQC0+YcPH/7SSy9hmM19ZYazw9QYDDh7NrdGDewGHpTc 2FhLwcfH0uhQly5dME9QUJCqO3L27FmMwbUInolUkxW2jnZc7qh6YcnJyU2bNsUAXBLZf7jLhmeb gKIPKAH8ySoTP1ml5AcHij7AmFs/m87wrC49Z7WmmE45yy4W3An6srrOICo7mDaNqbSJhOmM5EbP lOa0WbNviFbGgnCoRujG6Jfoo5nS2ztsN6oV/ebff/AAVdwisqKlb/geGZB3516DIWHairLU6BN8 JTdfBrjkbtrs3Lkzxg8cOFDV3SHbAlU3R14SQP8KoS/r/eMf/0C7/WeKZDxeC6Wg0V9pqSYdvL5G R0c769XIAPOMd9Ke6tZx1n7mzBlc/UivBi1oNzlASPusWbOkIFSfac4OU2M8YORI7Ebu669bFhRQ dejkyZO4LsG1oKo7cfHiRetBPH/hwgXVZIVLRjRiT1S9sJSUFLmixS3KqtUJzzYBRR/gjGVvnFAj THP2YMls/MkqPT9ZpeEHB4rvrBZu/Ww6Y3zC8KwuybNaU0ynnHVKtVf6srrOICo7mDaNPUqbkg9t PMFp03/5TgTFkN0npFo9IEiNePiw+bjI8MRTd+7dR3n1wXQZ0GbWJundlnpeWuLTslCNO3lBqmiX AYMiE6QFuRTVsVGHpKoPtMbcin95eXkVK1bE+PT0dNXkDtkWqLo58pJgUu3atfEqcu3aNVUvIK8u jRo1wgsSqngZ+9e//oWWli1bygBo1apVaGiorIsBXa1fvfDWW29Jr8Y6k+cvpeBsJzUuN+FsQJ8+ fdDeuHHjg9bf08KtXJD16tXL5ACBFkBXWFjYzZs3cW9gRdVnmsvDNB6A5rp1sSeWBQVn0/Tr1w+T uPyndBwghuE6SdULYOtox56ouk5ISEidOnVWrlyJAbjFuvZvL+h5sAlR9AHOYC1n1AjTnD1YMht/ skrPTxaaH+8Pjij6AAPu/mw64+yeRCPwrC7Js1pTfKecQ+o6g6jsYNo09vSmzey826gicEq1XKc5 MsCeDKjcLVCqWAVltCBGojpq4wGUX/BfIL1Qf/AKWSXn9l1UtU349l8qA1xyK/7Nxn38zDMtWrRQ dTfJtkDVzVGvCeZUqVIFrzeqooNG2L59u6oXfFynevXqqm4HpywG+Pj4qHoB60xFunpwtpMal5tw NqBhw4Zo1/8rOMpoadCggVRdDhBogRkzZqi6R1wepssBQUHYE8vi7LN+uKzBA+Tr62twKQYjR460 HtDzS5YsUU06aK9ataqq6LRv316usTAAtyijxdrjgGeb0BR9QHHjTxbay8pP1uP9wdEUfYAzbv1s GuBZjfZSclaL4j7l7KnrDKKyg2nT2NObNlXdrgXhEDHy1RERFf3mI4JqveU7z5UB0G7uZrTIr27i FuVP5m2RLsBIbS39op/BmFvxr1GjRhgcGhqq6iVCvSaYg1cavN6oio7l5cuu3aYxJCTkww8/rFGj hry6C5RVdwFpVxWPONtJjctNOBsgM8vXLQiU0VKtWjWpuhwg0AK4JFV1j7g8TJcDAP0GQ+Sjbnjq UHU7eN7p1KmT5WCef37ixImqtTB0YU9UxREMUCVHvLWJIg4obs4eLDTat9s08idLgxYo7p8sQL/B kBL7wSniAJcwgyp5xNk9iUb7dptGntUatEARz+qSOeXsqesMorKDadNYobSJWz2t3WNlMW36L9+p tdgsMgCW7TuJKuLovfv3cYsyWlSf87SJRY1wxXzaPHToEEbiZeb+fcvnfkuMek0wx/iTUapSQN+o /ZOqPRmgcdjoluL7ZJR3rx5UxVMuD9PlAMBeONsRrOjr6+vj4+PsKufMmTMtW7bEJrChiIgI1VoY JsGAl19+WdXd5JVNFH2AM1jLGTXCNGcPlsPZ9I38yVJ1K7SAqniqTPzgFH1ACeBZjfbScFaXzCnn kLrOICo7mDaN8b1N2xb5yh8s0Ucz7z94gDxpMwBybt+Vtz0nb0nCLcryoVmhfZL2Rv4d1eQm82lT vh+od+/eql5S1GuCOfKFCvpPQAk0gqoU0DfWrFkT5VmzZmkv6pcvX9YP0DhsdIuzndS43IT9RYDw 7iejVMVTLg/T5QDAXjjbkWnTpmF1Z78gFB8fX6dOHQz46quvbL7TQk8O39kXSxjz1iaKPsAZrOWM GmGaswfL4Wz6Rv5kSVWgBVTFUy4PE7ARZ9spmR+cog8oAc7uSTSCqhTQN/KslqpAC6iK+0rslHNI XWcQlR1Mm8aYNp2mzUNnryJt9g3fYzNANB8XiZZ6g0Jxi7JqtdK+JajNrE0Z2TlouXPvfsSB029M KDTMgMm0eefOnUqVKmFkamqqanKfbAtU3Rz1mmDO1KlT8Xpj/40RaARVKaBvrFatGsorV66Ul+TE xMQ2bdroB2h8fX3ROHfuXPsXb5Oc7aTGulmjF+/XXnsNA3Cto+oF5Esd0Cu/1ISjaNKkCVpsvvXB YIBAC6iKp1wepssBgL1wuCO48+UvE5w8eVI16SxcuBAPaNOmTXEdo5qcCAoKwj548GcYvLiJog8o AfzJQntZ+ckCbMThdkrsB4dnteBZbawkTzmH1HUGUdnBtGmMadO25ctF27QWLNUDgrSyDBDjo9U3 zWKZuPmwarXKv/tT41ERWq9+USNcUfnPETXCat68eWjBS4Kqe0SmBVU3R70mmJOW5vgPYVtfDY2u HuQbBfXkhRZkgKZ79+7SrlEdpjnbSY3LafGCKmOEanX+hfWnT582OUBIu6p4yuVhuhwA2AuHOyIX Fl26dFH1wmT/HdLeixCfffYZ9sH+L8i5pKZzxN1NFH1ACXD2YMkhq0oBfSN/smSAkHZV8ZTLwwRs xOF2SuwHh2e14FltTNZ1yOunnEPqOoOo7GDaNPYobTojudEzZTFt5ty+23XpzirdF5brNKfJ6FWH zl61GSCOXbimtaOsWgsgcA5bl9hwaLh81VCtfos/D9wqfzHFDJX/HFEjrF599VW0BAaqL8v1jEwL qm6Oek0wrX379i+99JLNPyTLq5eqFNA34gT97rvv8DqKl6s6deqMtP6VOv0AzcWLF3FhUbduXYx0 OMAMhzupMTMtfl7kX81tRuI6oFOnTpi8atWquO3YsaPNmxguB4D9tJ4xPkxwOQB74XBHGjdujD2U f3G3J/vvkP4KBtvF1nGNouruUNM54tYmij6gxPAnqwz9ZGEjDrdTMj84RR9QYnhWP96zWtZ1yLun nDPqOoOo7GDaNKbSpl4RE6ZeKUyb5BXqNcG05ORkvK6HhoaqeqlUJnay6Fwepmf3Q2RkJK5Fiv4b X2FhYdj64cOHVb0YuNxE0QeUGP5klR6l/AeHZ7V3PSVntYHiO6PUdQZR2cG0aYxpkzyhXhPcMXjw YPu/sl3alImdLDqXh+nB/fDOO+9Uq1bN5e/5uIR5Bg0apCrFw+Umij6gJPEnq/QozT84PKu97ik5 q50pvjNKXWcQlR1Mm8aYNskT6jWBiIiIyHvUdQZR2cG0aYxpkzyhXhOIiIiIvEddZxCVHUybxpg2 yRPqNYGIiIjIe9R1BlHZwbRpjGmTPKFeE4iIiIi8R11nEJUdTJvGmDbJE+o1gYiIiMh71HUGUdnB tGmMaZM8oV4TiIiIiLxHXWcQlR1Mm8aesrS5c2cZWIiIiIiIqCxg2jTGtFn6FiIiIiIiKguYNo0x bZa+hYiIiIiIygKmTWNMm6VvISIiIiKisoBp0xjTZulbiIiIiIioLGDaNMa0WfoWIiIiIiIqC5g2 jTFtlr6FiIiIiIjKAqZNY09j2pw8b82r/YMrdp5bvtMcH//AT0ctj18V/Sjs7dyZvTW2x6Sw6t3m YwBuAyaHo0U/AMszHWfLcn7z9jbDl2I2TDVzQaSZAdg62mv3XKANbtgvCC0N+i6yVImIiIiIqCxg 2jT21KVNREctB+oXLfjlbd9Rv+8im17kwPzYOG0MFq2rXp+FWhmLmQGzF0RKee/qzajeiY0r942l OmBahGVdIiIiIiIqC5g2jT11abNCpzmS9GJXWt7PvBcXF70i6t0hSywxz7oMmhEhAzqOW3E/Lq7z +BVSRbs2Bos0YvHtuWC3NTRmb43tPTnczICc7TvKW3ej75SVqEYu2ygjJXyqXSUiIiIiotKNadPY U5c2a3SfL9Gu9fClyxavP795uyXg6Rbtjc3UDVtRxa1U6/ZZqB8mjVhsPoWrLcYDvhizHF3yYdr+ U1eiXKtHoOolIiIiIqKygGnT2FOXNpEw5WOr2oIYOVv3+5byriMWrUWqFTrN0Vq0Riz34wp9wlZb jAdsC98kvXtXb24xaDEK/pPCVC8REREREZUFTJvGnsZvCUqP2jZkRkTr4Utf+HaeRD4sA6dbPtSK xSZtIitK1Vna1DfqF5cDfHsuQG/vyeGyxZjwTaqLiIiIiIjKAqZNY09j2tQvG0LV70xW9psrLe5+ klbfqF9cDkDiRa8k3irfznvURUREREREZQHTprGnLm02HRAcuGhtRvQ2lO/Hxa0rSJvaW5f6bwlC VfuWIIRDGSCLNGLRN+oXlwOwD9pner8Ys/xRFxERERERlQVMm8Ycp0091eqRUpg2tRBos/hNUL82 mR8bJ3/9Ur+gxdlfQNE36heXA7C8OdjyG5tYIpZueNRORERERERlAdOmsafuvc1DkVsCJoc3/j5I /hRKxc5zm/0QMnnemkdhz/qnSjDGxz+wfKc5uEUZLfoBWCQlYrFp1xaXA7BguxiAPbmn/yYhIiIi IiIqC5g2jT3tv7f5eJemA4KRNtuNXFaonYiIiIiIygKmTWNMm49tiVoRJW9+hgSvL9RFRERERERl AdOmMabNx7NIzsRSo/v8Qh+jxUJERERERGUB06Yxps3Hs1ToNAeLb88F8auibbrUrhIRERERUenG tGmMabP0LUREREREVBYwbRpj2ix9CxERERERlQVMm8aYNkvfQkREREREZQHTpjGmzdK3EBERERFR WcC0aewpS5tERERERERewrRpjGmTiIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aY NomIiIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmTiIiIiIjIE0ybxpg2iYiIiIiI PMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmT iIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGmMaZOIiIiIiMgT TJvGmDaJiIiIiIg8wbRpjGmTiIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aYNomI iIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmz1MklIqLHTT0jExERGWLaNMa0Weqo Kx0iInp81DMyERGRIaZNY0ybpY660iEiosdHPSMTEREZYto09tSlzWc6zpZF1UsfdaXjjgEDBrRo 0UJVHHE5wGMtW7YcOHCgqpRBzxemWu2UqsMsvkfTiwx28ty5cx07dvTx8bG5z6WqUa2l22P80XOp BE5al5so+oDHSD0jExERGWLaNMa0WeqoK52Ci2/7so3Dhw9XqVJl5cqVqm7H5QBnsOLo0aNff/11 g61jWkyOkape1sihaVSrHa8c5tatW6taoaCa3Ofxo2mS8f1gkvFOdu3aVbYiVGsZTJsuHwuHA9q0 wZHm9uunqqJPH0vjBx+oqo34+HjcIVpq3bNnT8+ePV977bXq1avjdKpbty7u0iNHjkivxuRJ6/Cu 9tYmij7gMVLPyERERIaYNo0xbZY66kqn8HW/vmyjffv2L7300s2bN1XdjssBzshGNaq1MExbu3bt zz77TNXLLINjhKIfZkpKiq+vb4MGDRo2bIjC8ePHVYebPH40TTK+H0wy3kl0YROxsbGqbscr+1AC PPvRQ7CqUiW3atXc5GTVggJasBw8qFpstG3bFnfIhg0bpCr3jw0fH5+oqCgZIIxPWuxbYmIiClgX tyh/9dVX1h4LmdOGu5uAog94jNQzMhERkSGmTWNMm6WOutIpfM2tL+ulpaVVqVJFf5low+UAA40b Nx4+fPjhw4edbV18/fXX2AQ2pOplk/ExQlEO8+LFi3/4wx/q1q2L1aFOnTqoolF1m4Z1PX40TXJ5 P7jkciddbsLlgNLA5WEaDOjeHceY+89/qioKqPr7q6oN+QHED6Oq5+a+/vrrkydPTkhIkByLwjvv vIMxr732mgzQGJy0ISEhr7zySkREBFbELcpoUX1e2oQo+oDHRT0jExERGWLaNPb0ps3k89nNxq6p 0GVe5W6Bfkvi8u/+pEY8fBh7/ELb2dFoL995Lm5bTFwbeeiM6nv4sO6Py7H6+9OjVP3hw1ZTN6AF 7ar+8OGN/DsBK3b59ArGDNV6LuoYHJt145bqc0Vd6RS+5taX9caPH492/WWiDZcDzLBu3OnVPyZH L65NVd3btK0j+r700ks1a9acOnWqdAFOYrQ3bNiwatWqPj4+n332WUpKiuqziouL69SpEy6mMaBG jRoff/zxnj17VJ+OthVninKYH3zwwcsvv6y9nynvc6JRquY5ezSt+27ZeQyoV68ejrR+/fr6ewmM 7weZwSE1wjTjnbSnunWctQMyCY4C5wCOArco26QUlwNAm9/hGWVSUX70zp7NrVEDu4EHJTc21lLw 8bE0OtSlSxfMExQUpOqOnD17FmOQ2fDjoJqsjE/a5OTkpk2bYgCypf2nZG14tgko+oDHRT0jExER GWLaNKbSJhKmM5IbPVOa02bNviFaGQvCoRqhG6Nfoo9mSm/vsN2oVvSbf//BA1Rxi8iKlr7he2RA 3p17DYaEaSvKUqNP8JXcfBlgTF3pFL7m1pf1/vGPf6Dd4EOJLgeYYd2446t/QIxBLzak6naMVwfj AdI7a9YsKQjpunnzprzloocgd/LkSRkAqlUHOSQ6Olp1F5AuVXHE5WE606tXL+ySfGpRgyoae/bs qermOHs0rfv+PLKTFDT6iKKadPT3g2pyRAaYZ7yT9lS3jrP2M2fOIC1LrwYtaDc5QEi7wzPKPJc/ WcYDRo7EbuS+/rplQQFVh3AmI+DVr19f1Z24ePGi9SCev3DhgmqyMj5pU1JSJG3i1ubfaOx5tgko +gBnLHvjhBpRNOoZmYiIyBDTprFHaVPyoY0nOG36L9+JoBiy+4RUqwcEqREPHzYfFxmeeOrOvfso rz6YLgPazNokvdtSz0tLfFoWqnEnL0gV7TJgUGSCtCCXojo26pBU9YHWgLrSMad27dq4tLp27Zqq 23E5wAzr9ZvTCzhMjl5sSNXtGK8OxgOkFxfEYWFhiJe42O3Tp490jR49Gl2vv/56QkICqggV7du3 R4u/7lOJrVq1Cg0NlXsA68pX1Lz11lvSq7Fsw3AnXR5mCXD2aFr3/flGjRrhwh1VHOa//vUvtLRs 2VIGgLfuB5dcnnIuN+FsAB53tDdu3Pig9RcccSthCXne5ACBFnB4Rpnn8jCNB6C5bl3siWVBwdk0 /fr1wyQu33rFAWIYcrWqF8DW0e7wpA0JCalTp87KlSsxALdYFy2qzxEPNiGKPsAZrOWMGlE06hmZ iIjIENOmsac3bWbn3UYVgVOq5TrNkQH2ZEDlboFSxSooowUxEtVRGw+g/IL/AumF+oNXyCo5t++i qm3Ct/9SGWBMXemYU6VKFeNLK5cDzLBev7mIB1WrVlUVO2ZWNxggvTNmzFB1HeQKdOnflkFyQAsu o1XdDk56DPDx8VH1ApZtuLqjMMDgMEuAs0fTuu/Pb9++XdULPvdYvXp1VbdTlPvBmMtTzuUmnA1o 2LAh2vXvFqKMlgYNGkjV5QCBFnB4RplX9B+9oCDsiWVx9iFZnMx4gHx9fZ1FVjFy5EjrAT2/ZMkS 1aSDdocnbfv27SWTYwBuUUaLtccBzzahKfqAx0I9IxMRERli2jT29KZNVbdrQThEjHx1RERFv/mI oFpv+c5zZQC0m7sZLfKrm7hF+ZN5W6QLMFJbS7/oZzCgrnTMwSUaLtRUxRHjAejSU612jHsBvcV3 sShbx5W3quvI0dnT70xISMiHH35Yo0YNufoXKKvuAtKuKk5gQPEdphnOHk3rvtu22zR68X4w5mwn NS434WyAzCzfWyNQRku1atWk6nKAQAs4PKPMc3mYLgcA+g2GyEej8SSs6nbwDN6pUyfLwTz//MSJ E1VrYejCnqiKIxigSo54axNFHPBYqGdkIiIiQ0ybxgqlTdzqae0eK4tp03/5Tq3FZpEBsGzfSVQR R+/dv49blNGi+pynTSxqhCF1pWOO8af1wHgAuvRUqx3jXvkg3Msvv6zq3mawdbmgd0gGaO/J2JMB GoeNesV9mGY4ezSt+250RF68H1xyeU663ISzAfJweyttqoqnivijJ7AXznYEK/r6+vr4+DhLxWfO nGnZsiU2gQ1FRESo1sIwCQZ4fNJ6ZRNFH+AM1nJGjSga9YxMRERkiGnTGN/btG2Rr/zBEn008/6D B8iTNgMg5/Zdedtz8pYk3KIsH5oV2idpb+TfUU3uUFc65sg3keg/QmnD5QAzrNdvTi/g5MOKHnzJ h0kGW2/SpAmCxNWrV1XdTs2aNbHurFmzcEUrLZcvX3Y4oX1QsVHch2mGs0fTcjx2R6RvNH8/OGx0 i8tTzuUmnD0W3v0krap4yuVhuhwA2AtnOzJt2jSs7uwXSuPj4+vUqYMBX331lc13IOkV5aT11iaK PsAZrOWMGlE06hmZiIjIENOmMaZNp2nz0NmrSJt9w/fYDBDNx0Wipd6gUNyirFqttG8JajNrU0Z2 Dlru3LsfceD0GxMKDXNGXemYM3XqVFxaGXy9h8sBZliv35xewAUFBaHX4A8YGK8OxgMMeuWPTLz1 1lu4ppdwcvr06cDAwBYtWsgAZFEMWLlypfQmJia2adPGOp/thK+99hoakcdU3Y7LwywBzh5Ny/HY HZG+0fz94Ovri8a5c+caBG9jLk8562YdP6DC2WMhXwKEXvmFQxxFkyZN0GLzLUEGAwRaQFU85ZUf PeyFwx3BnS9/yUb/7cqahQsX4gFt2rQpAqFqcsLjk9aLmyj6gMdFPSMTEREZYto0xrRp2/Llom1a C5bqAUFaWQaI8dHqm2axTNx8WLVa5d/9qfGoCK1Xv6gRhtSVjjlpzv+CvHA5wAAuAR1S3QU+++wz bML+rxpqHK6lZzzAuPeDDz6QATakV755VU8CCcgADS52pV2oVh2Xh1kCnD2aDvdZ32j+fujevbu0 a1SHaS5POZfTOnsszjj5AyenT582OUBIu6p4yuVhuhwA2AuHOyIBrEuXLqpemOy/Q9p718Ljk1ZN 54i7myj6gMdFPSMTEREZYto09ihtOiO50TNlMW3m3L7bdenOKt0Xlus0p8noVYfOXrUZII5duKa1 o6xaCyBwDluX2HBouHzVUK1+iz8P3Cp/McUldaVjWvv27V966SWDd6JcDnBGXV3aUd1WmBaT43pR 1R2xX8uG8QDjXpgxY0bLli2rV6+Oa9Z69erhGl3+EAjgFP/uu++QN9BVp06dkdY/a+hsQpzt8s6e fa+ZwywZDh9Nh/usbzR/P1y8eBFBtG7duhjpcIAZxqecmWmdPRbIjZ06dcLkVatWxW3Hjh1t3v1z OQDsp/VM0X/0sBcOd0S+bFneobUn+++QPgoW5aRV0zni1iaKPuAxUs/IREREhpg2jam0qVfEhKlX CtNm6aeudExLTk5GMAgNDVV1Oy4HFEVYWBgmP3z4sKo/oUrPYRbro+ktZWIni66YfvQiIyMR6jz7 ZUu9EjhpXW6i6AMeI/WMTEREZIhp0xjTZqmjrnTcMXjwYPs/06/ncoDH3nnnnUGDBqnKk6tUHWbx PZpeVCZ2suiK40cPJ1u1atVc/sKkSyVw0rrcRNEHPEbqGZmIiMgQ06Yxps1SR13pEBHR46OekYmI iAwxbRpj2ix11JUOERE9PuoZmYiIyBDTpjGmzVJHXekQEdHjo56RiYiIDDFtGmPaLHXUlQ4RET0+ 6hmZiIjIENOmMabNUkdd6RAR0eOjnpGJiIgMMW0aY9osddSVDhERPT7qGZmIiMgQ06axkkub6gWc iIiIqDSRCxUiIg8wbRpj2iQiIqKnmlyoEBF5gGnTGNMmERERPdXkQoWIyANMm8aYNp8EAwYMaNGi hao44nKAx1q2bDlw4EBVKYOeL0y12ilVh1n0R7P4zgcvMtjJc+fOdezY0cfHx+ZRk6pGtZZuj/Gx cHlWF31ASeJZXfqVwBnl8QxyoUJE5AGmTWNMm2Xe4cOHq1SpsnLlSlW343KAM1hx9OjRr7/+usFV DqbF5Bip6mWNHJpGtdrxymFu3bq1qhUKqsl9Hj+amqLPYMz4njTJeCe7du0qWxGqtQxelzs8zDZt cCC5/fqpqujTx9L4wQeqaiM+Ph7Hq8WYPXv29OzZ87XXXqtevTrOt7p16+IeO3LkiPRqXJ7VRR9g UtEfLOMTpuisJxTPaqdK7JRzyeUM+rtRX5YLFSIiDzBtGmPaLPPat2//0ksv3bx5U9XtuBzgjLwS a1RrYZi2du3an332maqXWQbHCEU/zJSUFF9f3wYNGjRs2BCF48ePqw43efxoaoo+gzHje9Ik451E FzYRGxur6na8sg8lwOFh4jq5SpXcqlVzk5NVCwpowXLwoGqx0bZtWxzvhg0bpCqHb8PHxycqKkoG CJdnddEHGMPhJyYmooDdwy3KX331lbXHbTyrHy/ZNxvFccq55HIG2Tf7slyoEBF5gGnTGNNm2ZaW llalShWDSzSXAww0btx4+PDhhw8f1r8k2/v666+xCWxI1csm42OEohzmxYsX//CHP9StWxerQ506 dVBFo+o2Det6/GiKos/gkst70iWXO+lyEy4HlAYGh9m9Ow4h95//VFUUUPX3V1Ub8hOKn1ZVz819 /fXXJ0+enJCQIMEGhXfeeQdjXnvtNRmgcXlWF32AgZCQkFdeeSUiIgL7hluU0aL63OHyhCk6y/nE s9q5kjzlXDKeQX836styoUJE5AGmTWNMm2Xb+PHj8WJpcInmcoAZ1ldkp1c5mBy9uNRQdW/Tto7o +9JLL9WsWXPq1KnSBTiJ0d6wYcOqVav6+Ph89tlnKSkpqs8qLi6uU6dOuJDFgBo1anz88cd79uxR fTraVpwpymF+8MEHL7/8svZ+przPiUapmlf0R9PZDJaDtx4+BtSrVw/3Vf369fX3MxjfkzKDQ2qE acY7aU916zhrB1yD4ihwFuEocIuyzVWpywGgze/wnDTJ4NE8eza3Rg1sBfd5bmyspeDjY2l0qEuX LpgnKChI1R05e/YsxuASHD8vqsnK5Vld9AHGkpOTmzZtihkQV+w/eGkSz+rSc1Zriu+Uc8l4BnSB fVkuVIiIPMC0aYxps2z7xz/+gRdLgw9fuRxghvUV2fFVDuByDb3YkKrbMV4djAdI76xZs6QgpOvm zZvyL+h6CHInT56UAaBadXC9FR0drboLSJeqOOLyMJ3p1asXdkk+MahBFY09e/ZUdXOK/mg6m8Fy 8M8/j6tMKWj0GUY16ejvSdXkiAwwz3gn7aluHWftZ86cQa6QXg1a0G5ygJB2h+ekecaP5siR2Eru 669bFhRQdQinOi7oEaJU3YmLFy/KTl64cEE1Wbk8q4s+wFhKSoqkTdza/DuRecYnDM/qkjyrNcV3 yrlkPINlnwqOS1+WCxUiIg8wbRpj2izbateujRfLa9euqbodlwPMsL4iO73swOToxYZU3Y7x6mA8 QHpxMRoWFoZ4iWuXPn36SNfo0aPR9frrryckJKCKi6f27dujxV/3ocNWrVqFhobKPYB15as43nrr LenVWLZhuJMuD7MEFP3RdDaD5eCff75Ro0a4UEMVd9S//vUvtLRs2VIGgLfuSZdcHqbLTTgbgDMH 7Y0bNz5o/Q1I3ErU6dWrl8kBAi3g8Jw0z/gw0Vy3LjZkWVBwdmf069cPk7h8Dwr7j2EIGKpeAFtH u8FZXfQBBkJCQurUqbNy5UrMgFvsnv1bf2Y4uyfRCDyrS/Ks1hTfKeeSZzPIhQoRkQeYNo0xbZZt VapUwcuqqjjicoAZmMF4EvRWrVpVVeyYWd1ggPTOmDFD1XVw/YQu/VsiuEJCCy5hVd0OTnoM8PHx UfUClm24uqMwwOAwS0DRH01nM1gO/vnnt2/fruoFH4SrXr26qtspyj1pzOVhutyEswENGzZEu/79 JZTR0qBBA6m6HCDQAg7PSfNcHmZQEDZkWZx9SBZnO+5/X19fgwwDI0eOlB1esmSJatJBu/FZXfQB zrRv317yD2bALcposfa4h2c12kvJWS2K+5RzyYMZ5EKFiMgDTJvGmDbLNryg4mVVVRwxHoAuPdVq x7gX0FvEiwMDsnVcWKu6jhydPf3OhISEfPjhhzVq1JCrPYGy6i4g7ariBAYU32GaYfxomuFsBsvB 27XbNHrxnjTm8jBdbsLZAJlZvshEoIyWatWqSdXlAIEWcHhOmmfm0US/wRD5jCiesVXdDp7iO3Xq ZN3Z5ydOnKhaC0MX9kRVHCn6AJcwgyp5xNk9iUb7dptGntUatEARz+qSOeVc8mAGuVAhIvIA06Yx ps2yzeWns4wHoEtPtdox7pWPLb388suq7m0GW5erKIdkgPZP7PZkgMZho15xH6YZLh9ul5zNYDl4 w/vEi/ekSy4P0+UmnA1wedntcoBAC6iKp8w8mtiIs+1gRV9fXx8fH2fx4MyZMy1btsQmsKGIiAjV WhgmwQCDs7roA0oAz2q0l4azumROOZc8m0EuVIiIPMC0aYxps2yTb57Qf1TMhssBZmAGUBU78qGs onypgzGDrTdp0gQXTFevXlV1OzVr1sS6s2bN0i7yLl++7HBC+wsyG8V9mGYU/dF0NgMaQVUK6BvN 35MOG93i8jBdbsLZo+ndzxyqiqfMPJrYiLPtTJs2Das7+826+Pj4OnXqYMBXX31l82Uwei7P6qIP KAHO7kk0gqoU0DfyrJaqQAuoivtK7JRzybMZ5EKFiMgDZSttrvH1NV4wRsVEL2HaLNumTp2Kl1WD r9ZwOcAMzACqYicoKAi9Bl9Yb7w6GA8w6JU/KvDWW2/hGk4uwk6fPh0YGNiiRQsZgCyKAStXrpTe xMTENm3aWOeznfC1115DI647Vd2Oy8MsAUV/NJ3NgEZQlQL6RvP3pK+vLxrnzp1rf1lsksvDtG7W 8SkhnD2a8nUp6JVfF8RRNGnSBC0236diMECgBVTFU2YeTWzE4XZw38qf9NB//bJm4cKFeLyaNm2K AKCanHB5Vhd9QAngWY32x3tWl+Qp55JnM8iFChGRB5g2jTlOm3qq1SNMm8UtLc3FXwx3OcCA5dLD EdVd4LPPPsMm7P96m8bhWnrGA4x7P/jgAxlgQ3rlGyb15MILZIAGlybSLlSrjsvDLAFFeTSFsxkc HrW+0fw92b17d2nXqA7TXB6my2mdPZpnnPwpiNOnT5scIKRdVTxl5tHERhxuR66nu3TpouqFye45 pL2JJ1ye1UUfUAKc3ZNyyKpSQN/Is1oGCGlXFTfJug55/ZRzybMZ5EKFiMgDTJvG+N5mmde+ffuX XnrJ4F/cXQ5wRl0s2FHdVpgWk+PVXdUdsV/LhvEA416YMWNGy5Ytq1evjiuMevXq4RJc/uAB4BT/ 7rvvcF2Frjp16oy0/tVCZxPizJd3MOx7zRxmyfD40dQ4nMHhUesbzd+TFy9exCV73bp1MdLhADOM D9PMtM4eTVxhd+rUCZNXrVoVtx07drR5e9DlALCf1jMuH01sxOF25NuY5a0qe7J7Dukv/V2e1UUf UGJ4Vj/es1rWdci7p5xLHs8gFypERB5g2jTGtFnmJScn4wIoNDRU1f9/e3cDHVV953/cY0gDptls bHjYnBzKsnL4a8uipa3oP0UOUl2qFBFRZHMoZRGMUSgi0lL+iEgjlfWBRWR5LEIEFCMiUsEHtLal VK1oKYupopRSSinSsilVSjH/78z3x4/LnZk7d27uPCXv1/mcnHt/9zd37tyZkfmYyUyMpBNa4skn n5Sd//KXvzTrrVTu3MyW35tpfTyEJS8OsuWC3cyNGzfKi/iW/GGbSvqobvmEjOFRnRcy8IgKvAd9 oQIAAdA2vdE2W4O777479uvInZJOCOxrX/vazJkzzUrrlVM3s+X3ZvoeDyHKi4NsuQA3Ux6N5eXl Sf9ALqmkj+qWT8gkHtW5LwOPqMB70BcqABAAbdMbbRMAALRp+kIFAAKgbXqjbQIAgDZNX6gAQAC0 TW+0TQAA0KbpCxUACIC26Y22CQAA2jR9oQIAAdA2vdE2AQBAm6YvVAAgANqmN9omAABo0/SFCgAE QNv0lrm22dy8l4SSs3xwXYTkceTe9I5rPiGEEEIIyVSibdM9mLNxdcvYyI0xNTEktM38S9IySdts VbGtMlFc8wkhhBBCSKZC2/RG28y/0DbbVmyrTBTXfEIIIYQQkqnQNr0Faptvv9W4eP47U2p3j7k+ kim1jUsWyKDZ6tAW2+Y117jjmtDiuMrkrl0vlJQUV1V9yY6k2ja/EOUazIssGtfsjGtrfkXuweLi cxobX3aNu7tlbFzzCSGEEEJIpkLb9JZy2/z1xvXv3Fz9m+9O+MO82R8ufVAiC7L6zs3/LpvMpFNo m5G4JrQ4zjJ58uT7vXr9Hxl54okFdpC2mcnI2fY+4TohVkFBgXPa+vWLZVDuTblPnePubhkb52RC CCGEEJLB0Da9pdY2pU82jrvx4IP3HF78gCsyKJtchbMttk2bjLTNOXOmymppaYmzojgntJHkY9sc PHigc5rcg3I/yrjcp85xd7eMjXMyIYQQQgjJYGib3lJpm2+/tXv8yN/P/X9/XHCvJlIhm5vtqmx6 Z/zId9/aYebTNtPcNo8ff7esrFRWR40aZrdK7IS2k1xum7Hp3ft8uchzzz3qGh8xYrCMl5ef+9FH jafHtVJ6xM4khBBCCCGZDW3TWwpts3HJgg/uGPeHB++2aT55UuIckQmNi+ebC+Rs29z1UvN9M5tv vKF52LWRn3dNbX590+mttiW+/9PmybdF5tw6vvmNH6YwwTXNNS6ZMiEyPm7M6ZHbb42MfOuW0yOJ Y7vNihX3R4rOWWetXv1fdqtEJ2zZ8tiUKbX9+lV9+ctf6tv34muuuXrWrDt/9asX7DR9A61lx51b X3ppbVXVpTfeOOzDD99esmTuJZf0HTbs6/v3/9xOOHZs9113TZb9y6Y777z14MFfOHeSNMf+/Nsf rWz6wcSTS2o+kZ+yLCN2q+2Qb79wZPV3TsicNdNO/Grrh3aCTaK2+fT3P5bxd7f/0Y7s+9UfZKTh e8ftSAujd4Fr0CNvvLFR5ldW/pNrXFJf/5DubfnyuafHtVJ6xM4khBBCCCGZDW3TWwptc/eU2v13 TTo4Z5rN348c/vufPnSOyIR3ptSaC+Rs27Q90Jm3tri3jvnG6eVrr23+YJvfCa5pzkHNltVm07uv RlZP7IlcXFYfe+SMaQkibUQXhg0bpOXkJz950m6VyMjDD39P22AsO82sn2LHnVv79++nC+PHf0MX xPTpk+yEadMm6oL66lcHHDnyS+d+PPLR//521Z1/16JoIyMyrhN05M1Nf7JbNc726JzpGpS889PD Mr7hvo/tyAuLjsnIzpfclVXPpHCNJ02ql6qpqZb5M2ZMdI1Ltm9/Wvc2fPhVp8e1UnrEziSEEEII IZkNbdNbKm1zzPUH7r79wKzJNh+/t/vjPY3OEZmwe8xwc4GcbZvT72j+2TORjifLP99oit/37zJb dVWy4PvNn3zQ/Mh9ZnVend8JrmnOQc1HjZHfiMqmlQ9HVl/fZGZq+UwWaSO6UFn5T1pOjh9/126V yEjfvhdL91u5ct6f/7xTB//wh188++yKsWOr7TQbLYpxB19//dm33tqsy9u3b9i58wVZ+NrXrrAT Roy49oMPfiqre/du+/d/Hy4jDz00y+7EOz9bd1SK35Ozjv/p97+TVfnZ8L3jMrLtiaM6QZYlj9/1 t0MfHJDV4x/te2npX2Tkmbkf6QQbnekalJw8uffR20/KpiMHIlfx8bF9S2o+kXz0l33OaRI9k8I1 njQpXerYsd0dOrSX+Xv3Rk6aK3I/6t4qKjqfHtdK6RE7kxBCCCGEZDa0TW+ptc393711//TbbP6y /dW//PzHzpHffvfW3TeNMBfIl7/b1KZ34w1nrEr2vxZZ/d3rZvU/Rvud4JrmHLT5r7rIJn0zbf2C yPJN3zxjQuJIG9GFgoICLSd2k0ZGBg8eJMXv9ttvnj590pw535We+cYbjncLn5lobYzfNk+efF/i Wr7kkr52gvRPexHtotdcc7Ud8c7j/+9v0gP/8P7v7Ygsy8ja6Sd0VTvkwT2nJ0hLlJFltZ/YEY3O dA1qtj8Z6bQ/fux/ZflXWz+U5S0LjjknaPRMCtd40qR0qUWL6mTywIFVrnEb3VthYbvTg7Jz79iZ hBBCCCEks6FtekvtnbR7J43Zd+d4G+mWEueITHjnztx+J+0nHzSvXx75y8nrh5v3r2qGXWsm2BF7 EV0dfp3fCc5B5zRnfvWS2fruq5E/HJWFpQ+65ySItBFdkE6i5cRu0sjI229vGTr0ai2E1rBhX//j H3e4Jkt0q8ega/mLX/yiHZT+qeMS7aJ9+15sR7yzpOYT6X6ffHJ6RJZlZOktpkzKssRuTXVQ03R4 v2ySgvq3j3+zvi7yZ5x73/qDa05LEvcuSJQ+fXrJZOfX1biie6NtEkIIIYTkRWib3lL7lKB3x98o fdLmo8ZdEueITMj1TwmSUqc1LzY6wbUq7VRXE7XN2Aka17TYjP+PyNYV/2XeVfvL078k9I60EV3o 2rVCy0nsO2l14Z13Xt6y5bHlyx+4885b/+//vVSq4O2332yn2URrYwptU5d1IbZtfvnLX7Ij3slM 25RsmvdX2fqT1f8rPx+9/aTzGlsevQtcg3Hz9tubZWZ5+bnOk+YM76QlhBBCCMmv5FfbNBUwMbkx ZikkKbTNd9/asXvcje/XVn8wYZRGjkbYVdkkE3L9G1CkE2oJfGtLpCj+fY9ZlegEu9rCd9Jqh5TI tTjHbR5fFNk6ckTkZ/VI99bEkTaiC/qFGSL2U4Kcq5ojR34pVTDuLx6jtTFg24x9J+3gwYPsiHd8 vpPWbvUYjC2uzvzm7cjn0Gp+uibyltoQo3eBazBu9POBpkwZ7xq32bbtKd2b3LOnx7VSesTOJIQQ QgghmQ1t01sqbfPdd3+9cf0737xuT81IKZauyKBskglmalROt80PtkV64MqHzapEJ9hV/RCg/55r Vh+c7XeCRr/URCKtMm7h/ONbp9/K+19nfsKQZ6SN6MLy5XO1nKxc+YDdKpGRb3xjxBNP/Pd7772q v0b78MO3Fy36vlRB/ZNLV6K1MWDbvP76oXv2/FhW9+7dduONw2TkgQfkOXd6Px7RTwlad/ff9FOC jhz4XcM9cT4lSJdt4g7KTmTwf1497Bq3eezbJ/SCv3/vdLl1Rs+kcI0njc9LHT/+bnHxOTKzsfFl 1yYb+w0oK1bcf3pcK6VH7ExCCCGEEJLZ0Da9pdY2xa+feWr3TTf++j+Gvzd+hDRMiSzIamTwzKop crFtzr/XFDzNN6pPL+sEu9rCb0DZtOr0VhvnBMnd3zbj2ze6NyWOtBFdkAJTXn6urJ7xq7DoBK2C sZYu/U87zQzFcG71WNaFO++8VRfUV786QJqtzkyaRN+A8tejZ3wDip3vMbjzpcjH/9i4tkr0a1Rk 565xm0jJi3KNJ425WDzOaUuXfl9Gqqq83masv6yW+/SMt0ZrpfSInUkIIYQQQjIb2qa3lNtmxNtv NS6e/86UW3Z/87rdY294Z+qt7yx5WAbNVodcbJsfNTYveSDyzlXph9+eFKmIripoV/dtb558W+QN sRNqmt/44ek9JJ1g88yjzbeOP+OziFwTnl0ZGRx+XeQNva5NieOsMXPmTJXVkpJi558Cysivf/2j Bx6YeeONw/r2vfiLX/xiVdWlkyfXvPLKE3aOxBTEGM6tHsu6cOzY7rvumizXcsklfadNm3jw4C90 ms9IsfzRyqYV3zq5pOYT+fnKo01/+ZOpmpK41TFRn/zFs39aOdl0V9cmyetP/1nGf/p4wrfRyklT rvGkMReLxznty1/uLSPLl891Djoj92BpaYnMkfv0jE1aKT3inEwIIYQQQjIY2qa3QG3Tt1xsm0mT qBnaJJ3gP9+5PbKf/7zbPe4ZZ42RitKr1/+REefHnLp6TpqibdM1mLNZMy3yTtrf/zr+22hzIevX L5Y7Tu5N92cIaaX0iHMyIYQQQgjJYGib3mibMUlaJpNO8JkdW8x+ftTg3uQZV5lsbHy5rKy0f//T f5BJ23Tlf149LFWzfmrCt9HmQgYMuFTuxzh/1WlbZaK45hNCCCGEkEyFtumNthmTpGUy6QQ/sTsZ 842U3kYrSVomaZvO6HtrJb949k+uTfkR2yoTxTWfEEIIIYRkKrRNb7TNmAy/zsQ1bpN0gp/oHsb/ R/M7r7g3JUuOtM2+fS+O+30quZalt3yyrPaTH61sCvdrNjMX2yoTxTWfEEIIIYRkKrRNb7TN/IuW yWe6d5foiGvZtk2POSznzbJtlYkSnU8IIYQQQjIf2qY32mb+Rcqkdz/RCbHjLOfjsrtbxiY6kxBC CCGEZD60TW+0zfxL0jfKJp1A8im2VSaKaz4hhBBCCMlUaJveaJv5FymTSbkuQvI4H/86SVzzCSGE EEJIpkLb9JbJtgkAAAAArUe0beYNUwET8zMnJbRNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI 2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt01tbbJtHjn086YltnSavLKxZIj8nr/uZ jJhtUd4Tzhq3SLNj3+E+32uQOeff9fimnb8xm6PmvbTzy3XrO9Quk61d7lhVvWzrtj0HzTYAAAAA rQJt01uba5vHjp/odfc62xg1vWc9+dHf/u5zgh2suHOVXS64efHbv/1QJ0g7tePO6FYAAAAArQNt 01uba5szN76h3W/cqldPfvJJzWM/1lUZ9zlBVyVjV/5IJsg0XR21/GWdUHTLUh159de/l9UTJ0++ 8D/7Bz+8WbcCAAAAaB1om97aXNu0v7dsPBg5m/JTV8+/63GfE3RVsvv3f3JOqJxarxPs7zyHLtyy 9vX3Dvz5mI4DAAAAaE1om97aXNssrFmiVdCsn2qPRbcs1dWkE3TVY4I0zIKbF9tpEmmqi179H90K AAAAoHWgbXpr623z5Cef6Gqithk7QVc9Joi9h5tmPfuLoQu3lE78gZ0/45nXzWYAAAAA+Y+26Y13 0ob/TlqX5361TyeUTFhuhgAAAADkP9qmtzb9KUGyaj8EaNazv/A5QVcl+ilBdkL1sq06oeq+Dct/ +s6+I02yLBM27fyNTnD+8hMAAABAvqNteovfNp3MaCA52DY/+tvfL7qnQeufjYzYLzhJOsEOJvoG FDvoSu3qn+gEAAAAAK0AbdNbnLYZohxsm+LIsY8nr/tZlztWFdYskZ+yLCNmW5T3BNsedx040ud7 DTLnczOf2LTzN2Zzc7PUTrlI3znri6JfhdKhdlm/uc/Me2mn2QwAAACgVaBtemuLbbOFbNs06wAA AADaJNqmN9pmymibAAAAAARt0xttM2W0TQAAAACCtumNtpmyoluWasw6AAAAgDaJtumNtgkAAAAA QdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16 o20CAAAAQBC0TW953zbPWjROY9YBAAAAICNom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABA ELRNb5lum0ePfzT5Z+u6rLqjcElN+aO3j3t11cG/HjXbHNXx7Q9/2++ZuUVLbylZPqH2J6s/+vvf zIzm5k2/2dlr3d1y8T4N39t15IC9iNkMAAAAABlB2/SW0bZ57MTx3k/Osv1QU7HqzsMf/UUnOAft skQKqk7YcXhfweKb7bhzmk4AAAAAgMygbXrLaNuc+cZGbYZTtj8pq3Pf3qKrtkzqqmTiTx8/+ckn 9e9u19Uuq+7QCaNeXq4j415ddeLkSfmpqxKdAAAAAACZQdv0ltG22Wvd3doMm/72saxKn9TV7mum 6QRdlRz5+JhzQsHim3WC1E4dafzzQVmVn7oq0QkAAAAAkBm0TW8ZbZuFS2psOXRGxnWCHdFV4Rqx b6PVVeGaAAAAAACZQdv0lhNtU6ITXKvCNeJqm/aXn3YEAAAAADKDtuktO++kPXr8IzN0ptjq6Bqp rJ+qq7yTFgAAAEB20Ta9ZedTgoY9/9/7mo7IyPGTJ9Z/sGPAxgd0Qmx1dI04PyVIVsf+aKVrAgAA AABkBm3TW0bb5kd//1vf9XNsP3RGJ7hWhWvk7Q9/6/wGFPurTolOAAAAAIDMoG16y2jbFFI4Z7+5 6aKGezosq5Xe2PWxb496efm2g3t0a2x1jB3Z9Jud5z9+V+GSmj4N39v54e9iJwAAAABABtA2vWW6 bQIAAABA60Db9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAA AAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAE bdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfa JgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAA AAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt 0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9om AAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAA CIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3T G20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYA AAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAI grbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdMb bRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAA AAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiC tumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xtt EwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAA AARB2/RG2wQAAACAIGib3mibAAAAABAEbdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK2 6Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20T AAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAA BEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbp jbYJAAAAAEHQNr3RNgEAAAAgiNbdNkePHm2WTokd8UbbBAAAAIAgWn3bdNZL16oftE0AAAAACKIt tE3hWvaPtgkAAAAAQbT6v9s0FfMUM+obbRMAAAAAgmgLnxJkimbqVVPQNgEAAAAgiLbQNkWwqilo mwAAAAAQRBtpm4HRNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdNbpG1u zwi9hQAAAACAzDPFLFSmViaQubZprhAAAAAAkHGmmIXK7DoB2iYAAAAAtH6mmIXK7DoB2iYAAAAA tH6mmIXK7DoB2iYAAAAAtH6mmIXK7DqB7LfN0aeYdQAAAABAikytSlysTDELldl1Allum+Z8UDUB AAAAoGVMuUpQr0wxC5XZdQLZbJvmTFA1AQAAACAMpmLFK1mmmIXK7DqBrLVNcw6omgAAAAAQHlO0 YqqWKWahMrtOgN9tAgAAAEArYSpWG//dpjJngsIJAAAAAC1jylWCemWKWajMrhPIctsU5nxQOAEA AAAgKFOrEhcrU8xCZXadQPbbJgAAAAAg3UwxC5XZdQK0TQAAAABo/UwxC5XZdQK0TQAAAABo/Uwx C5XZdQK0TQAAAABo/UwxC5XZdQK0TQAAAABo/UwxC5XZdQKRtmkWAQAAAAAICW0TAAAAABA+2iYA AAAAIHy0TQAAAABA+GibAAAAAIDw0TYBAAAAAOGjbQIAAAAAwkfbBAAAAACEj7YJAAAAAAgfbRMA AAAAED7aJgAAAAAgfLRNAAAAAED4aJsAAAAAgPDRNgEAAAAA4aNtAgAAAADCR9sEAAAAAISPtgkA AIAsaMh/5pbkjHUNG0lexNxhp7i25njMQftD2wQAAEAWSFv7TT7LzbbZjJwXW9jy6I6jbQIAACAP 0DZDR9vMC7RNAAAAIL1om6GjbeYF2iYAAEDa9fHHzG5dzG1LxsxupWiboaNt5gXaJgAAQNpJmzKv XxILvXE9+eSTHTt2bN++vVnPkqzc9pY466zwXzGmu23KMZul9MhM20zpzNM28wJtEwAAIO0CNC55 5S2KioouvfTSN954w4ym4oILLnj++efNSgLer++9t/oUrG0ePnz405/+9D/8wz/IghmKEcrhxUq0 25ZcXUptU67ILEW5VuNKNMfPZf2I2za3b99+8cUXy0O0ffv2n//8581oC6R0hmmbecG7bR49erRL ly5mpbn5wIEDffv2LSwsrKqqOnjwYNwReShWVFTIpWQheqHmgQMHbtu2TZfDRdsEAAD5waNx7du3 79/+7d82b94c2zbl55EjRx566KF//dd/1cGUyEs0s5SY9+v7lF79JxLgtos1a9ZcffXVX//61x97 7DEzFCOUw4uVaLctubpW2TZ79uzpce8EkNIZpm1mi9xNHsykU7zbpusiY8aMmTVrlizIz5qamrgj ZWVl+6NKS0tldfv27QMGDJCFdKBtAgCA/JCocWndqq2t/etf/xq3bSrtjTKyd+/eyspKWd61a5fM l3H5KctxR6Iv5CJk2Vq8eHHnzp2LioqGDRsmq2bGqTkVFRWyh44dO86fP9+19b333rvyyivlgt26 dZN+GJ3uixyPubVn8rjtYuTIkffdd9+cOXOqq6t1RA9D6XL00CJkOfbmWzpB6bL8vPXWW+W2dO3a 9cc//rGMyK27/PLL5eIXXnihnR/i2Wh525SfN91006c+9Sl5ADz33HMy8uabb1522WXt2rXr1auX vcg//dM/ychnPvMZOXuyKuNKlmW+vC6XPcitTul4RNy2KTdfHpBmJSruaYk9jbEP46qqKt00derU T3/60zJ5xYoVkQufusti0TazKPKQisdsdvBum8J5qU6dOh07dkwWmpqa5BESd6SkpESqpvzXQxZk VR7SUjhlIR1omwAAID/EbVzOuiWrrsYlL8Lk55EjR6ZNmyZFSEeefPLJ6MY/f/WrX7333ntlQX7q 1tgR3YPLOeecIy/xZbdS5GQ17py33npLpsmCc+vw4cOfeOIJWdi6dWvPnj110I8At10O7x//8R/l RaRUQVmQVRl0HowuO0dib74V94Jr1qyRhYceeqhv376yILfuW9/6llyR9CXnfBHK2QilbS5dulQW 5AZ+6UtfkoUhQ4bU1NR88MEHUiNdF5HzJscsC85xmS8VThaeeeaZ8847Twd9its25SEkrXLChAlS 3Q8ePCgjHqfFeRrtw1geA/Lw1mUhmxYuXCj3wvPPP9+5c2c7qAsutM3skvvFxWw4U0pts6CgwCw1 NxcWFsrP2BF5FkjPLC0tlYXAv9j8+c9/bpYcYgdpmwAAID9Im9q8ebO8tpaWpa9jXHVLxLZNUVRU dM0110gF0hHdJGRcO5j8lOW4I8751oUXXvj1r399+fLlv/vd72TVOUeu5aabbvqXf/mX9u3b67jr GmVVyUtAM+pDgNu+adOmz3zmM7r8D//wDxs3Rl7zyfXqiNBl50jszbc8Lug8e/YPRHVruGcjlLap q1IvP/WpT8mC/NyzZ48O6lapnaNGjfrnf/5nPWY7rmS+rCo5ZjPqT9y2KaTWzpw5c8aMGSNHjpTV 2NOS9DTqvaacm5zLcdE2s07uI8sMxUipbWqfVLocO+Kkv9iUB6frLzm9HT16tLq62jVZVmVQNpn1 KNomAADID9KmpFlJv9LSFVu3RGzbNEunOEfsy3RnX3KNxO5BSMmUqjls2DD9WBfnHHmxdd99973/ /vuyBx2Pe42pCnDbb775ZrlqS1ZlUBZ0q9Bl50jszbc8LigNU3/h5rx1ujXcsyGvZU1v80FqoVRK XZYF6WmyINeuI9Iw9feWzmm69frrr581a9Zbb70l4zpiLyWc81Mlx29uSTxyKuQgZSH2tKR0Gp2b nMtx0TZzgdxNwqzEk1LblNLY1NQkC9L6ZDnuiCU988orr5QF119y+uEqnHGrpqBtAgCA/CBtSl67 2NIVW7dESm3zq1/96ve+9z1ZuOeee+w7aV0jsXsQ3/72t6VwvvPOO7Zl2b9y/PrXv/7GG2/Iq/8V K1boZZ1br7nmGqkNslWaw+jRo3XQjwC3vbKyUv/GTyxcuFBeZcpC586dn3/+eTmABQsWxB5e7M23 Yi8oP+UMyMiECROGDx8uI/369XvggQdkYe3atTon3LORUtscMGDAzJkzdXnGjBmXXXaZLMgxvP76 61IXx48fP2TIEBm59NJL5SbLwvLly2WrLAwaNOjll1+WOY888oiOSMP82c9+Jgviqquuki4qW6WO jhw5Ugd98m6bq1at0g+yij0tsadRfyo57XJLzcqZm+yyc9CJtpkXUmqbY8aMmT17tizIo2LcuHFx Ryx5mshDSxZcf8npky2cIm7VFLRNAACQH7RxCS1dsXVLpNQ2pfZ86UtfKiwslJ9agWJH4r5MHzFi hLSmjh07Ll68WFY3bdokPUGb59atW6XmydbJkyfrZZ1b33vvPekSslVIo5ARn1K97T/+8Y/l2u2X vkg1klU5NulUctif/vSnp0+fHnt4sTffir2g/LzwwgtlsrQdfZfy9u3be/bsKSP6a1UZCfdsyCta 09t8kFY5cODA0ihZkFUZlGPo1atXu3btpGS++eabMvLiiy+ed955MiKvyGWrjDzzzDPSzKVh3nrr rTry+OOPf+5zn5NjlmW5lBRO2SqkdsqIf3L85pY4yJG0b9++oKBATqacQBmJPS2xp1F/Krlz5ZTK aZddyapzk112DjrRNvOCd9uUO1fp6sGDB+WRoI8H/b6T2BG1bds2/cWmcP4lp474pIUzUdUUtE0A AJAfbOPy4GqbrUYO3nZ5dWuWMiWlthmXHLNZyoa4bTO7aJt5wbttZp30zERVU9A2AQBAfqBtesvw bS868w87M6DlbfNT0U8GyhbaJoLJ8bbpjbYJAADyg7QpP8zs1sXctmTM7Faq5W0zu2ibCIa2CQAA AKQXbTN0tM28QNsEAAAA0ou2GTraZl6gbQIAAADpRdsMHW0zL8Rtm3kUc9D+0DYBAACQBdLW8p25 JTnD1QpIzsbcYW0AbRMAAAAAED7aJgAAAAAgfLRNAAAAAED4aJsAAAAAgPDRNgEAAAAA4aNtAgAA AADCF2mb74bEfIMMAAAAACAPmZoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoakNbfNI0eOjBkzpri4 +KwoM5q6adOmVVVVmZV8069fv+nTp5sVAAAAAEjM1MSQtOa2WVNToz1TmdEUNTY2FhQUbNiwwazn GzlyOX65FWYdAAAAABIwNTEkrbltlpWVScncvn27WQ+kurpa9nPy5Emznm/kyMvLy0eMGGHWAQAA ACABUxND0prbZkt+pakOHDhQUFAwatQos56fRo8eLbdCbotZBwAAAIB4TE08kxQKs5SikNumFrym piY5oKKiog4dOgwfPnzfvn166JZOk4XZs2eXlZWVlpbOnz9fNwnpRWPHjpXBwsJC+SnLrqbkPUF3 HstsTsX9998vF1y9erVZP0V3mNabedFFF8llt2zZYtabm2VZRnr37m3Wm5tPnDghe+7Zs6fsobi4 eMSIEXv37jXbHOT45YLz5s0z6wAAAAAQj6mJDlJ5lFlPRVra5siRI3VBdenS5dChQ3r0SscXLVqk C0o3ycyKigozdIqM2D0knWCGYujWlAwbNkwuGPteXN1hWm/m3LlzZUTuVF0Vo0aNkpE5c+bo6smT JwcMGBC93GmdOnXav3+/TrBee+012SS3xawDAAAAQDymJp6iPdMyo76lpW327t179+7dstrY2Nin Tx8ZmTJlSvTgDZ0mm9avXy+t6ejRo5MnT9ZNsiCb7B7kp+5h0qRJPidYMijMSiDl5eWyh+PHj5v1 U3TPab2Z+/btk9Xi4uITJ07IqvzUD9e1v72U2imrffv23blzp6xKTa2urpaR2tpanWDJ8cu43Baz DgAAAADxmJoYZSpmtGSapRQLZ1rapvOXgbIsIz169DDrUTpt4cKFZt2hZ8+essljD0knWDIozEog BQUFcfege056DDot2M0UVVVVMtLQ0CDL0ldl2flFLNJUZcT51llpszJSWVlp1h1kvLCw0KwAAAAA QDymJka56qVr1Y+0tE3nJ7jKsowUFRWZ9SidJu3IrDtIKZJNHntIOsGSQWFWAtHrMisOuuekx6DT gt1MMX/+fBkZPny4LOt7ehcsWKCbhO4hloybGQ6JxgEAAADAMjUxKrZb5mjbdFUdnWZWzpS0hiWd YMmgMCuBeL+TNvYYQryZ4tChQwUFBTLz8OHD8lOWnX8XqnuIy8w4Rd9J26VLF7MOAAAAAPGYmhiS DL2Ttnv37mY9SqeZlTPl1Dtp9TeK27ZtM+un6J5jjyHEm6kGDhwog1deeaX8lGUzGnXRRRdJNf3o o4/MemK6Zz4lCAAAAIA3UxNDkpa22atXr127dslqY2OjfpOH/XQcpdPMypn043NkD/rxObIf3YPr U4I8JlgyKMxKIPpe1kTfgJLWm6mWL18e3UeELJvRKP12lv79+0sZ1t+RHjx4cMWKFc6/7VT19fUy k29AAQAAAODN1MSQpKVtDh8+XBdUly5dpAjp0SsdNytnSvTVIHYPSSdYusmsBHLgwIGCgoJRo0aZ 9VN0z2m9maqpqUnfMSs/ZdmMnjJo0CC9oIvZfMqIESPkVji/zBMAAAAAYpmaGJK0tE3pRaNHjy4q KurQocPIkSP37dunh27pNLMSQxrX2LFjy8rKpGLJzzFjxri+QzLpBOV9LT5VV1fLVTj/wFLontN9 M9WQIUNkJ/LTrJ9p4cKF/fr1kwOQPtmtW7dx48a99tprZluUHLnsXAqnWQcAAACABExNDEla2qYe aOuwZ88eKXL6NSRWHt3M9evXy/E3NjaadQAAAABIwNTEkNA2k5s5c2b//v3NSlQe3cwBAwbMmDHD rAAAAABAYqYmhoS2GUQbuZkAAAAA2hRTE0MSctssitIDbcXayM0EAAAA0KaYmhiSkNsmAAAAACBP mZoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoaEtgkAAAAAiDA1MSS0TQAAAABAhKmJIaFtAgAAAAAi TE0MCW0TAAAAABBhamJI8q9tnjVukTNmtAWmTZtWVVVlVnLGWVFmJUv0GCwzGqNfv37Tp083KwAA AADylqmJIWnrbbOxsbGgoGDDhg1m/RQZnzNnTt++fb2LVvpk63qd9BgsMxpDzp6cQzljZh0AAABA fjI1MSR5/E7aUNpmdXV1WVnZyZMnzfoppmCdYkYzKFvXG5f3wcjZKy8vHzFihFkHAAAAkJ9MTQxJ m26bBw4cKCgoGDVqlFl36N279+zZsxsbG72LVvpk63rjSnowo0ePljMp59OsAwAAAMhDpiaGJPy2 uf9Pfxm59KUOtcuKblk6avnLTR//zVULD/z52NiVPyqd+IPCmiXyU5ZlxGyLeu2DQzJYcecqmVAy YfnQhVt27Dtstjm0vG3ef//9UqJWr15t1uNJWrQSWbt27bBhw0pLSwsLC4uKinr06DF27NjXXntN t8bdrXNQl5uamqTIycU7dOgwfPjwvXv36la1f//+kSNHyiaZIJ1ZJuulzOZonZYr1WOQn7LsKoRy PDJYUVEhE0pKSoYOHbpjxw6zzcG121hyDmXCvHnzzDoAAACAPGRqYkhCbptHjn3c9duPaQ/USPPU BT36Q//7kdRIu1UjIzKuE4Rrq0Rq5yuN7t+b6SazEoi0QelI27dvN+vxRHtWym1z2rRpesFYOsG5 bDkHdXnEiBG6oDp16nTw4EGdcOTIka5du5oNUdI8dUEnHDp0SGqkjlgyIuM6QZhRB6mdr7zyitl8 im4yK/FIa5UJcj7NeoykewAAAACQdaYmhiTktjm14efSAHvdvW7XgSOyuvv3f+rzvQZnLZy87mey 3HvWk7LJOWHSE9t0ghj44LMNb75//ETkbymPfnS85rEfy4T+/7lRt1rO3QZTXl4uFej48eNmPZ5g NamoqEguNXfu3MOHzW9l9+/fv3Llyn79+ulq3N06B3W5d+/eu3fvltXGxsY+ffrIyKRJk3TC1KlT ZbVXr167du2SVZmmE4ROmDx5sizbPdgJdg9i4MCBDQ0NegaOHj1aU1MjE/r3769brchOPU+C7EEm yPk06zGS7gEAAABA1pmaGJKQ2+b5dz0uDXDbHvP7N7H9/T84a2HP/xeZIIO6KnRCj+lrzXqMEydP yoTi25aZ9VOcuw2moKAgaQUKVpO6d+8ulxoyZEh1dXVtba30TNcvDOPu1jmoy87fu8qyjPTo0UNX zz//fFndtu10S9cJQld79uwpyx57iHXixAmZUFxcbNZPiezUx4kqLCw0KzH87AEAAABAdpmaGJKQ 22ZhzRJpgCc/+USPVciysxYmmlB0y1Kz3ty8+rV3r5r/XMmE5QU3L9bLSmTZbD5Fx81KINKOklag YDVJSqCWPSfph/bPJnVEly3noC47PyxXlmXENjo9+NgJQlcTTSgqKjLr0b+3vOqqq0pKSrR4K1k2 m0/RcbOSgEzwaJsAAAAAcp+piSHJubZZ98MdOj82OsGKO5iS9L2TVu3YsWPt2rV1dXXDhw8vLi6W /QwZMkQ3xe7W1RV12aMrtrxtyoFFp8ehE6y4g076TtouXbqYdQAAAAB5yNTEkITcNvWNsi15J23p xB/I6qJX/0f/blMcO37CuQcrtrimSj8lyPlm1FjRnuVVtHw6dOiQ7Mc2vQ4dOsiq/atO4XofrC57 vA9Wf3faknfSlpaWyuqiRYts3z527Fjk8jG3N7a4uuiePT4lCAAAAEDuMzUxJGn5lKDz73pcPyVo zx+Pxv2UoF53r9NPCZJpF91zxqcEFd2yVFY3vLVXa6RMGPzwZuceLNmJDEovNeupmz9/vnSkdHwD St++fRcsWLBz505taAcPHpw5c6bsR0qmTujfv7+sVldXHzkSOVHS1vTvMIVO0GX7IUCNjY0XXXSR jEyZMkUn6KcEyaV0wp49e+J+SpDsQT8lSKbpHuynBOlHGW3YsEEPUiYMHjw4cvmY2ys7kUHppWY9 Rn19vUzw+AaU6F5TPo0AAAAAMsnUxJCE3DaPHPu4cmq9lkPNmEdf0QU9+kTfgHLw6F91gn4CrTNa UCU6wZr30k47J3arHwcOHCgoKBg1apRZd9B2FMtsTsbMjjF79mydsGLFCjN0yqxZs3RBJ+iy/VIT 5fz+EqmplZWVZkPUmDFjdEEnJPoGFPsdKvoJtE5aUIVOsKRG6rgyow4jRoyQM+n6Mk+nRBcEAAAA kDtMTQxJyG1T7P/TX0YufalD7bKiW5aOXvFy08d/kyro/BAgKZZjV/6o7FsrCmuWyE+po3IRsy36 CbRTG34u/bPg5sVSXOt+uEMGE/XJWc/+otPklYHbpqiuri4rK4t9j6i2o1hmczJvv/22NLeLLrqo qKhIalhJScnQoUM3bNhgNkdJhevWrZts7d69u/5W0HkVutzU1DR69GjZSYcOHaR57tu3T7eq/fv3 y6BskgkyTSbLReybdYUUy7Fjx8oNLCwslJ9SR+UiZlv0E2inTp0q/VOOQYprXV2dDOr16gQnKcOd OnWKu1XOnuxcCqdZjyfuBQEAAADkFFMTQxJ+23RpPPhnqYIeX3CSXXv27JGu1dDQYNbzWWNjozQ6 jy84SZP169fLOZRrN+sAAAAA8pOpiSEJv232m/tMw5vv62f87Pzdh1X3bZC2ObXh57o1B82cObN/ //5mJa/069dPerJ+xs/OnTurqqqkbU6dOlW3ZsyAAQNmzJhhVgAAAADkLVMTQxJ+29T3tTrT7Tur D//lI92KEEXfnXqGbt26OT/nFgAAAAD8MzUxJOG3zW17DlYv21o68QdFtyzt+u3HJj2x7dD/UjXT Ytu2bdXV1aWlpUVFRV27dp00aZL9DCEAAAAASJWpiSFJ+99tAgAAAADygqmJIaFtAgAAAAAiTE0M CW0TAAAAABBhamJIaJsAAAAAgAhTE0NC2wQAAAAARJiaGBLaJgAAAAAgwtTEkNA2kXYrV648cuSI WUFQGzdu5FmGpFrB062NP9RbeA/yHwoAQAuZmhiS1t82p02bVlVVZVYyq1+/ftOnTzcrbdioUaNe ffVVs4KgamtrN23aZFayhGeTyuJ5SKoVPN1y4aGeRS28BxOdPf49AgD4ZGpiSLLQNhsbG+fMmdO3 b9+zosxoesh1FRQUbNiwwayHx8+tkOuVa5eZZj2Qn/zkJ4VRsmCGMs7jNvoR98XT4MGy2+YpU8yq mjw5MjhokFlN1RtvvCHH6b8G7NixY+LEib169erQoYOc4a5du9bU1Ph/JLsEO0X+jyHrL8F5Nqn0 nQflcRL8aAVPtxY+1Fty9kIRvQNDvgdbfvZCeQYBANoCUxNDkoW2qf8SW2Y0Paqrq8vKyk6ePGnW w2OO/hQzeia53vLy8hEjRpj11O3du7dTp049evTo2bOnLOzbt89syCyP2+hH3BdP8pqnoKC5sLB5 zx4zIgsyItm924ykasiQIXKcL7zwgllPRm+XS3Fx8datW80MH+QxtmvXLlmQy8pPWZbbG93ii16p S9xjyHrb5Nmk0ncelMdJ8KMVPN2CPdRb+EwMkd40s5K6uPeg7tMlpbPX8mcQAKCNMDUxJFlom717 9549e3ZjY6P+e2lG0+DAgQMFBQVpesHh81aMHj1ajkGOxKynoqmp6XOf+1zXrl3l4qKyslJWZdBs ziDv25hU3BdP4rbbZM/Nw4ebVVmQ1dpas5oqvS/kfjHrPvTt23fevHk7d+7U5iALAwYMkJ306tVL J/ixevXqioqKjRs3ygXlpyzLiNnmg/9jyG7blEcgzyYhl03feVDeJyGpVvB0C/ZQb+EzMUSR+y/s ezCUs9eSZxAAoO0wNTEk2fy7zRb+k5zU/fffL/tP9wsO71sh1y5b5VWCWU/FoEGDunTpYn8Do7+Z kUFdTcoemJyHbt26FRYWdu/eff78+bpVvfbaa2PHjpWXZbK1pKRk6NChO3bsMNtO7SEuM8OfRC9/ Dx9uLimRa5HDaN6+PbJQXBwZDGbcuHFyYPX19WY9kMOHD8tO5AXZiRMnzJAPe/bs6dOnj1xQXhEG eCK4JDqG7LbNNv5sshKdh+iB83RLTegP9ZY8EyMnOrfvQZcAZ68lzyAAQNthamJIWnPbHDZsmOx/ u7ywSifvWyGvTmSrHIlZ923SpEnyaljfGGbJqgxOnDjRrHvSA5s9e7YuWM4XiGbIQV5FvfLKK4m2 WjrBJ48XT3V1ci3NfftGIguyGsz+/fvlVZe8OjTrQTU1NekNPHr0qBnyQaqLvsaVn7JsRoNKdAwB XoLrfuIyM3xr488mK9F5iB44T7fUhPhQVy15JuqR5Pg96BTg7AV+BgEA2hRTE0PSmttmeXm57P/4 8eNmPT28b4Vcu2yVIzHrGaQHdv7558srDFmVVyQjR46UkX79+ukEMXDgwIaGBj1FMqGmpkYm9O/f X7da0T0Fv6c8XjzJNXftKvuPRBYC31dTpkyRI3T9IiIAqSWyn4qKCrPuw+rVqysrKzds2CAXlJ8t f/9eomPIbtts488mK9F5iB44T7fUhPhQFy18JkZOes7fg04Bzl4uPIMAALnP1MSQtOa2WVBQkNb9 q6S3QrYWFhaalQzSA9u2bZtZP/XOqw4dOpj1GCdOnJAJxcXFZv2U6J7S9eKpvl72H0ngN+XJyz45 5k6dOsV2gJTU1dXpLV27dq0Z8qG6unp39INW9BTJsoxEtwThcQyBf+ETijb+bLISnYfogfN0S0Ho D/UWPhP1YHL/HlSBz55cJLvPIABA7jM1MSStuW3Kv6ke+9drt8xo6pJeXLZmsW2alVNcg6tXr77q qqtKSkr0NbSSZbP5FB03K6lL+uJJ9t2C3Tfrm99mzZpl1lMnrxrHjh2rN/PBBx80oymSy5qlQJIe Q3bbZht/NlmJzkP0wN3jrkGebirdD3XZrVlKhR6PWTnFNZgL92ALz55cKrvPIABA7jM1MSRt9520 eu2WGU2d98X1nUtdunQx6xkU98Ccg/b/jsfSCVbcQf/S+vJXznCnTp2Ki4uPpvKXlk6HDh3q16+f 3EB5wGzcuNGMZpafYwjwEjx6v8VnZvjWxp9NVqLzED1w95E7B3m6qTQ91Fsu7ml3DubCPdjCs5cL zyAAQO4zNTEkrf9TgpzvjEoH71uxfft22ZqVT2WIe2DOwdLSUlletGiRfel87Ngx5wQr7qB/aX35 u2DBAjm2yZMnm/UUvfHGG5WVlbIHOUh5JWdGM8vnMWS3bbbxZ5OV6DxED9zricPTTaTvod5y0bOe 0/dgy89eLjyDAAC5z9TEkORu2/Te6sf8+fNlDyl9UEQA3sdZX18vW7PyifNxD8w5WFRUJMsbNmzQ L3DbtWvX4MGDnROsTp06yeDSpUt1ZqrS9/JXjke/q2D//v1mKBUrV66Uk9CnTx95GWeGMs7/MWTl JbjVxp9NVqLzED1wnm5ecvyhHve+cA5m9x4M5ezlwjMIAJD7TE0MSRbaZvRf5zjM5lPiDqYkrd/D rocXy2w+ZcSIEXIMWfk27bjH4xzUD1R0mjx5si7oBOu2227Tccts8Cd9L3/1xdO4cePMeor0tsRl f32Rbub64nEdQ3bbZht/NlmJzkPcA3YO8nTT2xJXLjzU9UjMyinOwezeg2ZH8fg/e7nwDAIA5D5T E0PSmtumqK6uLisrC/Y/mL3p4cUym6PkeuXa5R94s55ZsccjnIMnTpyYOnVqRUWFvP6orKysi377 nnOC1dTUJK+runbtKjPjTvCWvpe/vXv3loPRD6IMQG9LXLTNWG352eQU9zzEHrBwDvJ009sSV160 zezeg7qfuHyevdx5BgEAcpypiSHJ5jtpM2DPnj3y731DQ4NZz6z169fLtTc2Npr1tirpy99gnnvu OXml1Xb+BinrbZNnk8rueUiqFTzdsv5Qz64W3oOJzh7/HgEAfDI1MSStvG2KmTNnxn77dmYMGDBg xowZZqUNS9PLXzm9RUVFWfyTywzLhZfgPJtUFs9DUq3g6UbbTEfb5N8jAIBPpiaGpPW3TWRdml7+ tjVt/CU4fGoFTzfaZjraJgAAPpmaGBLaJtKOthkKXkTCD9pmvqNtAgCyy9TEkNA2kXYzZ86srKzs FtW9e/d9+/aZDUhm/vz5et5ERUXFjh07zAYggTx9uvFQtwLcg5w9AECITE0MCW0TAAAAABBhamJI aJsAAAAAgAhTE0NC2wQAAAAARJiaGJJQ2+aPfkQIIYQQQgghJC9D2ySEEEIIIYQQEn5om4QQQggh hBBCwk+baptnRcUdtFxbAyfcveVF9CZbrq2tL0eefXbM175W3L59Dt7eNB1SmnZLCCGEEEJaZ3K8 beqr27jOuBn+EveCOmi5tgZOsL0Fu1SORA/ecm1tfakZMsTc1CjX1swk0VUnGm9h0rRbQgghhBDS OtOm2qZ3wt1tsL0Fu1SupXXciqQpKymRm7l94ULXeCaT6FQnGm9h0rRbQgghhBDSOpMXbfOMI05b wr2uYHsLdqlcS+u4FUmTCzcz0TEkGm9hEu120R13uEYIIYQQQghpDW3ztUWLxl59dUV5eWG7diXn nDP0K1/ZsWyZc4LuxHJucsZj64mtW2ePHduza1e5iuL27UdcfvneJ55wTti3bp0MyqaiwsLRgwY1 bd7ssbfY6OS47JwDTz0lN7O0uFiOQX7KsozYrX7ifaL06uTI5fjlVnQoKhrev7/cLv8TbHSma1By 6ec/L+P106fbkefmzpWRPj172hHvRHec/Bh0mizIvVZWUiKna/7EiXZr0jPpPUF3HstOSBqd33DP PXIvXNSjx8Gnn541ZozclvM/+9k9a9boHO+HnO4hLucEWbi/trZbly6yk+4VFc6TIEl6Hnw+qide d50MLr3zTtc4IYQQQghp62kFbVPnOMmr51fmzUs0wY67kmjryZdfHvCFL+hWq1NZ2f6GBp1waMOG LueeazZEDbvsMl2wO/GOTo5LJ8hVSEs0Q6fIiIzbnSSNuZiD80TpyMiBA3VBye2yV6EjHhNsdJNr ULL829+W8apeveyIdEUZmTdhgh3xTnTHyY9BxxfdcYcuKN2U9EwmnWCGYuhWP9H5+kZc4Xx0VV9x hUxI+pAzQ/E4J0hf1QXLVn0/58HPo3rFd74jB/bE3XdLI/3Jww87N9nEXooQQgghhLSJ5OnfbTpv w8A+fRruuef4iy/K8tEf/lA/u6X/hRc652hiL+tMoq1zxo+X8b4XXLBzxQpZlVfhUglkpHboUJ0w +YYbZLVPz57vrl4tq7tXrep93nmRfaX+CjvRpfQqZLeyc1mVn3J1MjLp+uud07zjfaIiV+y4isb6 er2KKTfe6HOCjc50DUpObN1aXloqm3Y9+qisHnn2Wam7ksMbNzqneUT3nPQYdJpsWj97tjQ3ubFy AnVT0jPp/1TLoHAN+olecOtDD0k90+UXHnhg+8KFstC1c2eZkPQhZxO5cLxj0PHzP/vZ1xYtklU5 A1rR+/XurRN8ngcZ9HhUy/Hbkqm1M6XfdRNCCCGEkFaeVtA2XZFKIxOK27d3jUu8L5toq77Idr6P UV67y0hlx4662qOyUladnxajzUHYEZ9JdKmeXbvKeOxVyFXbkVTjOlGRK/a8iqQTbHSma1AjtVA2 SdGV5fkTJ8rykKoq5wTvRHec/Bh02sLbb3cOapKeSf+nWgaFa9BP9IJSgyWu5Q5FRTIh6UPOJnLh eMeg49seecSOSKWXEd2/JOnNlIW4E4Su7m9okHrpfAOtlOFe3bs3bd5sRzTOSxFCCCGEkDaUVvBO 2tUzZlx1ySUl55xTcPbZOl/IsmuaRDe5Bm0SbS1s1043uci4c4K0BXsR2yLsiM8kulSiqygqLLQj SeN9onTV4yqSTrDRma5BjTQo2SSdRzrJl88/X5Y31NW55ngkuuPkx6DTpKE5BzVJz6T/Uy2DwjXo J84Lupb17tBjiCXjOtNGx12DkrjjzsHA50Ho6siBA8cNHmy3ai79/OenjxrlGiSEEEIIIW00+d42 6266SefEcs2UJBrXJNqa6KW/0Ala3jxel/tPoksl7QZJk/RE6XLsVdiGk3SCjc50Ddpc+eUvy9ba oUPlZ3lpqXOHSRPdcfJj0GnOEZukZ9L/qZZB4Rr0E+cF4y7rMcSlM23iDkrijjsHk97MpI/qoV/5 ytq77rJbNXK3xr7dlxBCCCGEtNHke9ssLS6WCYvuuEP/HFFybMuWRJdKNK6Jff2tuahHD3kJ/tEL L7jGbRK9KVHYEZ9JdKmWv5M26YnS5dir6F5R4XOCTaIzqdl4773RPUXcdu21rq3e0UslPQad5hyx yZ130nosJ33I2diLuBJ33DkY+DwIXaVtEkIIIYSQJMn3tikvymXChro67Ta7Hn108KWXJrpUonFN r+7dZWvsNwfeX1sr4/0vvHDbI4/otRx8+ukV3/mO/WxV+3kqjfX1sirHoLsSOsF/OpWVyaWW3nmn q6rpVchu9TNd5CqkkMiI/08JSnqidFmuQj/CR26LXoVctc8JNonOpE3Xzp2jOzsr0aeYJopeKukx 6DTniE3SM+n/VMugcA36ifOCcZeTPuRsEj1gontyH5tz0Od58HhU+2+bzksRQgghhJA2lHxvm/rB qk76KlnYOboay07QzJswwWyIcm4adPHFZvRMuvXwxo2uL5MYcfnlumD34DO3XXutXtDS8UTfVyEl xF7WO0lPlC7rV5JYXc49116FjnhMsPE4kxr9Zg45ftd40ugOkx6DjjtHbJKeSf+nWje5Bv3EecFE y94POZtEDxjnso1zMOnNTPqolrZZP3368RdfdEYeZrRNQgghhBBiku9t88TWrVNHjpSXxQVnn13Z sWPdTTfJoOtSuhrLTrCZNWaM/rIoduvC22/v17t3h6IiuaJuXbqMGzxYv1tCs2/duuorrpCtRZ7f g580ckEpgV07d9a/mnPuQWrA2KuvLispKWzXTn6O+drX7Lcv+knSE6XLcgBy/HIr5LaMHDjQ+YUW SSc443EmJdNHjZLxiddd5xpPGt1h0mPQaa5Bm6Rn0uep9r4WjzgvmGhZ4v2Q0yR6wDiXbVyDSW+m 96Na2qauutA2CSGEEEKISY63TZKxJK0ESSf4T/eKCtnVq/Pnu8aTJsRjIIQQQgghhKQ3tE2iSVrk kk7wmUV33CH7if3qSD8J6xgIIYQQQgghaQ9tk2iSFrmkE/xEdyJmjRnj2uQnelnXICGEEEIIISQX Q9skmqLCQolr0JmkE/xE9tChqGjs1Ve7PkPVZ0I5BkIIIYQQQkgmQtskhBBCCCGEEBJ+aJuEEEII IYQQQsIPbZMQQgghhBBCSPihbRJCCCGEEEIICT+0TUIIIYQQQggh4Ye2SQghhBBCCCEk/NA2CSGE EEIIIYSEH9rmWeMWOePaGiDTqqurevVyDWY9Z0W5BjMcPQbLtdWmX+/e00eNcg0SQgghhBBC8iy0 zXDbZmN9fcHZZ2+oq4sdnzN+fN8LLvAuWulLtq7XGT0Gy7XVRs6enEM5Y65xQgghhBBCSD6FtmkT StusvuKKspKSky+/7Bo3BesU19YMJFvXGzfeByNnr7y0dMTll7vGCSGEEEIIIfkU2qZNy9vmgaee Kjj77FFXXukal/Q+77zZY8c21td7F630JVvXGzdJD2b0oEFyJuV8usYJIYQQQggheZPcb5v7N780 sm5Nh5olRTcvHnXv2qaXXnbVwgObXxp73+OltUsKb14sP2VZRuxWyWtPbZHBim8tkwkltUuG3vPY jqefd07QtLxt3l9bKyVq9YwZrnFnkhatRFl7113DLrustLi4sF27osLCHpWVY6+++rVF5oDj7tY5 qMtNmzdLkZOLdygqGt6//94nnrCTJfsbGkYOHCibZIJ0Zpmsl7ITpP7JleoxyE9ZdhVCOR4ZrCgv lwkl55wz9Ctf2bFsmXOCxrXb2Mg5lAnzJkxwjRNCCCGEEELyJjneNo+8sLXrpOXaAzXSPHVBb8Ch LVulRtqtGhmRcXMLpducuVUitfOVJ56zE5zTXIMpRdqgdKTtCxe6xp2J9qyU2+a06mq9YCyd4Fy2 cQ7q8ojLL9cF1ams7ODTT+uEI88+27VzZ7MhSpqnLuiEQxs2SI3UEUtGZFwnSMyog9TOV+bNsxOc 01yDzkhrlQlyPl3jNkn3QAghhBBCCMlycrxtTn3oSWmAve5cseuZyG8jd298oc93HnXWwskPrpPl 3lMflU3OCZMeXKcTJANnrGqof/b41ldk+eiLW2vmPi4T+k9fZSdonLsNlvLSUqlAx1980TXuTLCa VFRYKJeaW1NzeONGHdnf0LDyu9/t17u3rsbdrXNQl3ufd97uVZEb3lhf36dnTxmZdP31OmHqyJGy 2qt7912PPiqrMk0nCJ0w+YYbZNnuwU6we5AM7NOn4Z579Awc/eEPa4YMkQn9L7zQTtBEdup5EmQP MkHOp2vcJukeCCGEEEIIIVlOjrfN86f8QBrgtobN9oi3N2x21sKed6yQZRl0Tegx+Qd2xJUTr7wi E4pvWewad+42WArOPjtpBQpWk7pXVMilhlRVVV9xRe3QodIzXb8wjLtb56AuO3/vKssy0qOyUlfP /+xnZXXbI4+4Jghd7dm1qyx77CE2J7ZulQnF7du7xiM79XGiCtu1cw3a+NkDIYQQQgghJJvJ8bZZ ePNiaYAnX4n8WlIjy85amGhC0c2ny+TqlRuvuvuxktolBeMjF9TIsp2g0XHXYEqRdpS0AgWrSVIC tew5ST+0fzapI3Z+7KAuOz8sV5ZlxDY6PfjYCcJ7QlFhoR1ZPWPGVZdcUnLOOVq8lSzbCRoddw26 IhM82iYhhBBCCCEk19Pq22bdgqd0fmzsRTRxB1NK+t5Jq9mxbNnau+6qu+mm4f37F7dvL/sZUlWl m2J36+qKuuzRFVveNuXAotPjsBfRxB10Rt9J2+Xcc13jhBBCCCGEkLxJjrdNfaNsS95JW1q7RFYX Ldugf7cpORbzqbaa2OKaavRTgpxvRo1NtGd5FS2fObRhg+zHNr0ORUWyav+qU+J6H6wue7wPVn93 2pJ30pYWF8vqojvusH372JYtkcvH3N7Y4uqK7tnjU4IIIYQQQgghuZ68+JSg86f8QD8laM+m+J8S 1OvOFfopQTLtoqlnfEpQUbRDbnhsk9ZImTD47sece7CRncig9FLXuP/MnzhROlI6vgGl7wUXLJg0 aeeKFdrQDj799MxvflP2IyVTJ/S/8EJZrb7iiiPPPiur0tb07zCFTtBl+yFAjfX1F/XoISNTbrxR J+inBMmldMKeNWvifkqQ7EE/JUim6R7spwTpRxltqKvTg5QJgy+9NHL5mNsrO5FB6aWucZv66dNl gsc3oET3mvJpJIQQQgghhGQuOd42j7ywtfLMLzgZ8/21uqA3INE3oBw89Q0o+gm0zmhBlegEm3mL n7ZzYrf6yYGnnio4++xRV17pGpdoO4rlmpYoZnaM2WPH6oQV3/mOGTpl1pgxuuDcg/1SE+X8/hKp qZUdO5oNUWO+9jVd0AmJvgHFfoeKfgKtkxZUoRNspEbquHJtlYy4/HI5k64v83Qm0QUJIYQQQggh uZIcb5uS/ZtfGlm3pkPNkqKbF4/+/tqm6PtgnR8CJMVy7H2Pl926tPDmxfJT6qhcxG498corUx96 UvpnwfhFUlzrFkQKTKI+Oevhhk4TTHd1bfKZ6iuuKCspiX2PqLajWK5pifL28uXS3C7q0aOosFBq WMk55wz9ylc21NU550iF69ali2ztXlGhvxV0XoUuN23ePHrQINlJh6IiaZ771p3+nhjJ/oYGGZRN MkGmyWS5iH2zrkSK5dirr5YbWNiunfyUOioXsVtPbN06deRI6Z9yDFJc6266SQb1eu0cGynDncrK 4m6Vsyc7l8LpGncm7gUJIYQQQgghOZTcb5uuNG58QaqgxxecZDd71qyRrtVwzz2u8XxMY329NDqP LzhJU9bPni3nUK7dNU4IIYQQQgjJp+R+2+w3fVVD/bP6GT87n3m+6rsrpW1OfehJcwNyLzO/+c3+ F17oGsyL9OvdW3qyfsbPzhUrqnr1krY5deRI55wMZMAXvjDjG99wDRJCCCGEEELyLLnfNvV9rc50 m7T88AvmzzJJiIm+O/UM3bp0cX7OLSGEEEIIIYT4Te63zW0Nm6vvXVtaG/m7za6Tlk96cN2hU58A RMLNtkceqb7iitLi4qLCwq6dO0+6/nr7GUKEEEIIIYQQklry7u82CSGEEEIIIYTkQWibhBBCCCGE EELCD22TEEIIIYQQQkj4oW0SQgghhBBCCAk/tE1CCCGEEEIIIeGHtkkIIYQQQgghJPzQNkneZeV3 v3vk2WddgyTVbLz33ndXr3YNEuJKK3i6tfGHegvvQf5DQQghpEWhbaaaadXVVb16uQYzk369e08f Nco12AYz6sorX50/3zVIUk3t0KGbvv9912CGw7NJk8XzkDSt4OmWCw/1LKaF92Cis8e/R4QQQnyl FbTNxvr6OePH973ggrOiXFvDjVxXwdlnb6irc423PH5uhVyvXLvMdI2nlJ88/HBhu3YSWXBtylg8 bqOfxH3xNPjSw7LLKTf+1jk4+YbfyuCgiz90DvrPG4sXy3H6rwE7li2beN11vbp371BUJGe4a+fO NUOGBP61QLBT5P8Ysv4SnGeTJn3nQeNxEvykFTzdWvhQb8nZCyXROzDke7DlZy+UZxAhhJDWn1bQ NvVfYsu1NdxUX3FFWUnJyZdfdo23POboT3Ft1cj1lpeWjrj8cte4/+x94olOZWU9Kit7du0qC/vW rXNNyEw8bqOfxH3x1Fj/WsHZnxS2+2TPmp/riCzIiGT3qtfttJQypKpKjvOFBx5wjSeK3i6X4vbt tz70kGumR+QxtuvRR2VBLis/ZVlur92aNHqlLnGPIettk2eTJn3nQeNxEvykFTzdgj3UW/hMDDF6 01yD/hP3HtR9uqR09lr+DCKEENIm0graZu/zzps9dmxjfb3+e+naGmIOPPVUwdlnp+kFh89bMXrQ IDkGORLXuJ80bd78uX/+566dO8vFJZUdO8qqDLqmZSDetzFp4r54ktx27X7Z6/D+h3RVFmS1dujv 7ISUoveF3C+ucY/0veCCeRMm7FyxQpuDLAz4whdkJ726d3dO887qGTMqyss33nuvXFB+yrKMuOZ4 xP8xZLdt8mzSpPU8aLxPQtK0gqdbsId6C5+JISZy/4V9D4Zy9lryDCKEENJW0pr+brOF/yQnzf21 tbL/dL/g8L4Vcu2yVV4luMb9ZNDFF3c591z7Gxj9zYwM2gnesQcm56Fbly6F7dp1r6iYP3Gic85r ixaNvfpqeVkmW0vOOWfoV76yY9kyu1X3EJed4yeJXv4e3rit5Jy/y85eW/Tm9oVvykJx+7/LoGua z4wbPFgOrH76dNd4Sjm8caPsRF6Qndi61bXJI3vWrOnTs6dcUF4RtvzzORIdQ3bbZht/NtkkOg/R A+fpllpCf6i35JkYOdG5fQ+6EuDsteQZRAghpK2Etuk/wy67TPa/feFC13i48b4V8upEtsqRuMaT ZtL118urYX1jmI2syuDE665zDiaKHtjssWN1wXK+QDRDDvIq6pV58xJttewe/MTjxVPdTe/Lzvpe cFQiC7LqmuAz+xsa5FWXvDp0jaeaps2b9QYe/eEPXZs8ItVFX+PKT1l2bU01iY4hwEtw3U9crplJ 08afTTaJzkP0wHm6pZYQH+qaljwT9Uhy/B50JsDZC/wMIoQQ0oZC2/Sf8tJS2f/xF190jYcb71sh 1y5b5Uhc4xmIHtj5n/2svMKQVXlFMnLgQBnp17u3nTOwT5+Ge+7RUyQTaoYMkQn9L7zQTtBE9xT8 nvJ48XT8xVe7dv5Y9i2RBVl1TfCZKTfeKEfo+kVEgEgtkf1UlJe7xj2yesaMyo4dN9TVyQXlZ8vf v5foGLLbNtv4s8km0XmIHjhPt9QS4kNd0sJnYuSk5/w96EyAs5cLzyBCCCG5Htqm/xScfXZa969J eitka2G7dq7BDEQPbNsjj9gRfedVh6IiO+LKia1bZUJx+/au8eie0vXiqX76btm3RBZcm3xGXvbJ MXcqK4vtACml7qab9Jauvesu1yaPVF9xxe5Vq2RBT5Esy4jdmmo8jiHwL3xCSRt/NtkkOg/RA+fp lkJCf6i38JmoB5P796Am8NmTi2T3GUQIISTXQ9v0H/k31WP/eu2Wa6v/JMLGg20AAAV/SURBVL24 bM1i2/QeXD1jxlWXXFJyzjn6GlrJsp2g0XHXoP8kffEk+5a4Bv1H3/w2a8wY17j/yKvGsVdfrTfz wVtvdW31GbmsaySlJD2G7LbNNv5sskl0HqIH7h53DfJ006T7oS67dY34iR6P92Au3IMtPHtyqew+ gwghhOR6aJv+4/3eP712y7XVf7wvru9c6nLuua7xDCTugTkH7f8dj2Xna+IO+k9aX/7KGe5UVlbc vv3RVP7S0plDGzb0691bbqA8YDbee69ra2bi5xgCvASP3m/xuWYmTRt/NtkkOg/RA/d64vB006Tp od7yxD3tzsFcuAdbePZy4RlECCEk10Pb9B/9PA/nO6PSEe9bsX3hQtmalU9liHtgzsHS4mJZXnTH Hfal87EtW5wTbOIO+k9aX/4umDRJjm3yDTe4xn3mjcWLKzt2lD3IQcorOdfWzMTnMWS3bbbxZ5NN ovMQPXCvJw5PN0n6HuotT/Ss5/Q92PKzlwvPIEIIIbmettM2vbf6yfyJE2UPKX1QRIB4H2f99Omy NSufOB/3wJyDRYWFsryhrk6/wG3Xo48OvvRS5wSbTmVlMrj0zjt1ZqpJ38tfOR79roL9DQ2uTX6y 8rvflZPQp2dPeRnn2pSx+D+GrLwEt2njzyabROcheuA83byS4w/1uPeFczC792AoZy8XnkGEEEJy Pa2gbUb/dY4j7jTXYEpJ6/ew6+HFck0bcfnlcgxZ+TbtuMfjHNQPVHSafMMNumDna2679lodt1wT vJO+l7/64mnc4MGucZ/R2xKX/fVFumOuLx7XMWS3bbbxZ5NNovMQ94Cdgzzd9LbElQsPdT0Sj8Hs 3oNmR/H4P3u58AwihBCS66FtppTqK64oKykJ9j+YvaOHF8s5R65Xrl3+gXcOZiyxx+MaPLF169SR IyvKy+X1R2XHjnU33eSaYNO0ebO8ruraubPMjDvBO+l7+dv7vPPkYPSDKANEb0tctM3YtOVnkzNx z0PsAbsGebrpbYkrL9pmdu9B3U9cPs9e7jyDCCGE5HRa0ztpM5A9a9bIv/cN99zjGs9M1s+eLdfe WF/vGm9rSfryN1iemztXXmm1nb9Bynrb5Nmkye55SJpW8HTL+kM9u2nhPZjo7PHvESGEEF+hbaaa md/8Zuy3b2cmA77whRnf+IZrsA0mTS9/5fQWFRZm8U8uM5xceAnOs0mTxfOQNK3g6UbbTEfb5N8j QgghvkLbJHmXNL38bWtp4y/Bic+0gqcbbTMdbZMQQgjxFdomybvQNkMJLyKJn9A28z20TUIIIdkM bZPkXWZ+85uVHTt269JF0r2iYt+6da4JJFHmT5yo501SUV6+Y9ky1wRCXMnTpxsPdZsA9yBnjxBC SGihbRJCCCGEEEIICT+0TUIIIYQQQggh4Ye2SQghhBBCCCEk/OR02wQAAAAA5C1TE0NC2wQAAAAA RJiaGBLaJgAAAAAgwtTEkNA2AQAAAAARpiaGhLYJAAAAAIgwNTEktE0AAAAAQISpiSGhbQIAAAAA IkxNDAltEwAAAAAQYWpiSGibAAAAAIAIUxNDQtsEAAAAAESYmhgS2iYAAAAAIMLUxJDQNgEAAAAA EaYmhoS2CQAAAACIMDUxJLRNAAAAAECEqYkhoW0CAAAAACJMTQwJbRMAAAAAEGFqYkhomwAAAACA CFMTQ0LbBAAAAABEmJoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoaEtgkAAAAAiDA1MSS0TQAAAABA hKmJIaFtAgAAAAAiTE0MCW0TAAAAABBhamJIaJsAAAAAgAhTE0NC2wQAAAAARJiaGBLaJgAAAAAg wtTEkNA2AQAAAAARpiaGhLYJAAAAAIgwNTEks+596P8DFzZMN+MZTiEAAAAASUVORK5CYII= --000000000000a29a6f0581fa3781-- --000000000000a29a700581fa3782 Content-Type: application/octet-stream; name="query_19_02_16b.thy" Content-Disposition: attachment; filename="query_19_02_16b.thy" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: f_js6wk59f1 dGhlb3J5IHF1ZXJ5XzE5XzAyXzE2YgppbXBvcnRzIENvbXBsZXhfTWFpbgpiZWdpbgoKbGVtbWEK ICAgIGZpeGVzIFkgOjogcmVhbAogICAgc2hvd3MgIlk9WSIKcHJvb2YgLQogICAgaGF2ZSBMNyA6 ICIobmF0IChmbG9vciAoKFkvMikqMikpKSA9IChuYXQgKGZsb29yIChZLzIpKSkgKiAobmF0IChm bG9vciAyKSkiCiAgICBzb3JyeQogICAgCiAgICBoYXZlICIoKC0xKTo6cmVhbCkgXiAobmF0IChm bG9vciAoKFkvMikqMikpKSA9IAogICAgICAgICAgKCgtMSk6OnJlYWwpIF4gKCAobmF0IChmbG9v ciAoWS8yKSkpICogKG5hdCAoZmxvb3IgMikpICkiCiAgICBhcHBseSAoc3Vic3QgTDcpCiAgICBi eSBhdXRvCiAgICBhbHNvIGhhdmUgIi4uLiA9ICgoKC0xKTo6cmVhbCleMikgXiAobmF0IChmbG9v ciAoWS8yKSkpIgogICAgb29wcwplbmQK --000000000000a29a700581fa3782 Content-Type: application/octet-stream; name="query_19_02_16a.thy" Content-Disposition: attachment; filename="query_19_02_16a.thy" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: f_js6wk5940 dGhlb3J5IHF1ZXJ5XzE5XzAyXzE2YQppbXBvcnRzIENvbXBsZXhfTWFpbgpiZWdpbgoKbGVtbWEK ICAgIGZpeGVzIFkgOjogcmVhbAogICAgc2hvd3MgIlk9WSIKcHJvb2YgLQogICAgaGF2ZSBMNyA6 ICIobmF0IChmbG9vciAoKFkvMikqMikpKSA9IChuYXQgKGZsb29yIChZLzIpKSkgKiAobmF0IChm bG9vciAyKSkiCiAgICBzb3JyeQogICAgCiAgICBoYXZlICIoKC0xKTo6cmVhbCkgXiAobmF0IChm bG9vciAoKFkvMikqMikpKSA9IAogICAgICAgICAgKCgtMSk6OnJlYWwpIF4gKCAobmF0IChmbG9v ciAoWS8yKSkpICogKG5hdCAoZmxvb3IgMikpICkiCiAgICBhcHBseSAoc2ltcCBvbmx5OiBMNykK ICAgIG9vcHMKZW5k --000000000000a29a700581fa3782-- From john.w.oleary at intel.com Fri Feb 15 23:21:42 2019 Received: from ppsw-30.csi.cam.ac.uk ([131.111.8.130]:34160) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gumne-0006Td-RO (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 15 Feb 2019 23:21:42 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853564 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [134.134.136.20 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mta0.cl.cam.ac.uk ([128.232.25.20]:55849) by ppsw-30.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.146]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gumnd-000UHt-fa (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Fri, 15 Feb 2019 23:21:42 +0000 Received: from ppsw-33.csi.cam.ac.uk ([2001:630:212:8::e:f33]) by mta0.cl.cam.ac.uk with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1gumnn-00077c-1e for isabelle-users at cl.cam.ac.uk; Fri, 15 Feb 2019 23:21:51 +0000 X-Cam-SpamDetails: score -2.4 from SpamAssassin-3.4.2-1853564 * -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, * medium trust * [134.134.136.20 listed in list.dnswl.dnsbl.ja.net] * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from mga02.intel.com ([134.134.136.20]:1782) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) id 1gumna-000Izv-hT (Exim 4.91) for isabelle-users at cl.cam.ac.uk (return-path ); Fri, 15 Feb 2019 23:21:39 +0000 X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from orsmga007.jf.intel.com ([10.7.209.58]) by orsmga101.jf.intel.com with ESMTP/TLS/DHE-RSA-AES256-GCM-SHA384; 15 Feb 2019 15:21:35 -0800 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.58,374,1544515200"; d="scan'208";a="115343369" Received: from fmsmsx107.amr.corp.intel.com ([10.18.124.205]) by orsmga007.jf.intel.com with ESMTP; 15 Feb 2019 15:21:34 -0800 Received: from fmsmsx117.amr.corp.intel.com (10.18.116.17) by fmsmsx107.amr.corp.intel.com (10.18.124.205) with Microsoft SMTP Server (TLS) id 14.3.408.0; Fri, 15 Feb 2019 15:21:34 -0800 Received: from fmsmsx118.amr.corp.intel.com ([169.254.1.168]) by fmsmsx117.amr.corp.intel.com ([169.254.3.143]) with mapi id 14.03.0415.000; Fri, 15 Feb 2019 15:21:34 -0800 From: "O'Leary, John W" To: "acl2 at utlists.utexas.edu" , "agda at lists.chalmers.se" , "coq-club at inria.fr" , "hol-info at lists.sourceforge.net" , "isabelle-users at cl.cam.ac.uk" , "lean-user at googlegroups.com" , "pvs at csl.sri.com" , "mizar-forum at mizar.uwb.edu.pl" Thread-Topic: ITP 2019: Second Call for Papers Thread-Index: AdTFhSMju4cHTeRpQuSbXhNtlGveSw== Date: Fri, 15 Feb 2019 23:21:33 +0000 Message-ID: <1AB5DFF36715A840AFE44961D8EEBFE801106A080F at fmsmsx118.amr.corp.intel.com> Accept-Language: en-US Content-Language: en-US X-MS-Has-Attach: X-MS-TNEF-Correlator: x-ctpclassification: CTP_NT x-titus-metadata-40: eyJDYXRlZ29yeUxhYmVscyI6IiIsIk1ldGFkYXRhIjp7Im5zIjoiaHR0cDpcL1wvd3d3LnRpdHVzLmNvbVwvbnNcL0ludGVsMyIsImlkIjoiZjI4YjNjZGQtMjY2MC00YTRkLThhYjctOGQ0OTk2NmFkMWU5IiwicHJvcHMiOlt7Im4iOiJDVFBDbGFzc2lmaWNhdGlvbiIsInZhbHMiOlt7InZhbHVlIjoiQ1RQX05UIn1dfV19LCJTdWJqZWN0TGFiZWxzIjpbXSwiVE1DVmVyc2lvbiI6IjE3LjEwLjE4MDQuNDkiLCJUcnVzdGVkTGFiZWxIYXNoIjoiem9lTFA2SkR6eHFJcnc4NVwvVitTNUhKYTV5TFRLQ2hHYm9JSmdSUnoremRlSU1DSmMwTlpRVzg5T1VqRFVYOGYifQ== dlp-product: dlpe-windows dlp-version: 11.0.400.15 dlp-reaction: no-action x-originating-ip: [10.1.200.108] Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable MIME-Version: 1.0 X-debug-header: local_aliases has suffix X-Mailman-Approved-At: Sat, 16 Feb 2019 10:48:42 +0000 Subject: [isabelle] ITP 2019: Second Call for Papers X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Fri, 15 Feb 2019 23:21:43 -0000 SECOND CALL FOR PAPERS ITP 2019 Tenth International Conference on Interactive Theorem Proving 9-12 September 2019, Portland, Oregon, USA https://itp19.cecs.pdx.edu/ Contact: itp19 at cecs.pdx.edu The ITP conference series is concerned with all aspects of interactive theorem proving, ranging from theoretical foundations to implementation aspects and applications in program verification, security, and the formalization of mathematics. This will be the 10th conference in the ITP series, while predecessor conferences from which it has evolved have been going since 1988. PAPER SUBMISSION ITP welcomes submissions describing original research on all aspects of interactive theorem proving and its applications. Suggested topics include, but are not limited to, the following: * formal aspects of hardware and software * formalizations of mathematics * improvements in theorem prover technology * integration with automated provers and other symbolic tools * user interfaces for interactive theorem provers * formalizations of computational models * verification of security algorithms * use of theorem provers in education * industrial applications of interactive theorem provers * concise and elegant worked examples of formalizations (proof pearls) Submissions will undergo single-blind peer review. They should be no more than 16 pages in length excluding bibliographic references and are to be submitted in PDF format via EasyChair via the following link: https://easychair.org/conferences/?conf=3Ditp2019 We also welcome shorter papers, which can be used to describe interesting work that is still ongoing and not fully mature. Such a preliminary report is limited to 6 pages and may consist of an extended abstract. Each of these papers should bear the phrase "(short paper)" beneath the title. Accepted submissions in this category will be published in the main proceedings and will be presented as short talks. All submissions are expected to be accompanied by verifiable evidence of a suitable implementation, such as the source files of a formalization for the proof assistant used. IMPORTANT DATES * Paper submission deadline: March 31, 2019 * Author notification: May 31, 2019 * Camera-ready copy due: July 1, 2019 * Conference: September 9-12, 2019 PUBLICATION DETAILS For the first time with ITP, the final conference proceedings will be published in the LIPIcs series ("Leibniz International Proceedings in Informatics"). This was chosen in large part because of its commitment to free and open access to all papers. For more information on the series see https://www.dagstuhl.de/en/publications/lipics and for more detailed instructions for authors on document preparation: https://www.dagstuhl.de/en/publications/lipics/instructions-for-authors/ PROGRAM COMMITTEE * Andrew Tolmach, Portland State University (chair) * John Harrison, Amazon AWS (chair) * John O'Leary, Intel Corporation (chair) * Andreas Abel, Gothenburg University * David Aspinall, The University of Edinburgh * Jeremy Avigad, Carnegie Mellon University * Mauricio Ayala-Rincon, Universidade de Brasilia * Yves Bertot, Inria * Sandrine Blazy, University of Rennes 1 - IRISA * Arthur Chargu=E9raud, Inria * Koen Claessen, Chalmers University of Technology * Gilles Dowek, Inria and ENS Paris-Saclay * Amy Felty, University of Ottawa * Jean-Christophe Filliatre, CNRS * Ruben Gamboa, University of Wyoming * Shilpi Goel, Centaur Technology, Inc. * Jean-Baptiste Jeannin, University of Michigan * Cezary Kaliszyk, University of Innsbruck * Gerwin Klein, Data61, CSIRO and UNSW Sydney * Joe Leslie-Hurd, Intel * Assia Mahboubi, Inria * Panagiotis Manolios, Northeastern University * Guillaume Melquiond, Inria * Leonardo de Moura, Microsoft * Magnus Myreen, Chalmers University of Technology * Tobias Nipkow, Technical University of Munich * Sam Owre, SRI * Lawrence Paulson, University of Cambridge * Christine Rizkallah, UNSW Sydney * Alexey Solovyev, Independent mobile software developer * Sofiene Tahar, Concordia University * Christian Urban, King's College London * Josef Urban, Czech Technical University in Prague From wolfgang-it at jeltsch.info Sun Feb 17 11:52:50 2019 Received: from ppsw-33.csi.cam.ac.uk ([131.111.8.133]:60676) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gvL06-0004ME-OL (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 17 Feb 2019 11:52:50 +0000 X-Cam-SpamScore: ssss X-Cam-SpamDetails: score 4.4 from SpamAssassin-3.4.2-1853687 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0001] * 0.0 HTML_MESSAGE BODY: HTML included in message * 0.6 HTML_IMAGE_RATIO_04 BODY: HTML has a low ratio of text to image * area * 1.4 HTML_IMAGE_ONLY_28 BODY: HTML: images with 2400-2800 bytes of words * 2.5 IMG_ONLY_FM_DOM_INFO HTML image-only message from .info domain X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from schaeffer.softbase.org ([88.198.48.142]:54215) by ppsw-33.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.149]:25) with esmtps (TLSv1:ECDHE-RSA-AES256-SHA:256) id 1gvL05-000xpS-i0 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 17 Feb 2019 11:52:50 +0000 Received: from asterix (64-60-191-90.dyn.estpak.ee [::ffff:90.191.60.64]) (AUTH: PLAIN jeltsch, SSL: TLSv1/SSLv3,128bits,AES128-SHA) by schaeffer.softbase.org with ESMTPSA; Sun, 17 Feb 2019 12:52:47 +0100 id 0000000020110A60.000000005C694B0F.000036ED Message-ID: <1550404367.14010.108.camel at jeltsch.info> From: Wolfgang Jeltsch To: cl-isabelle-users at lists.cam.ac.uk Date: Sun, 17 Feb 2019 13:52:47 +0200 In-Reply-To: References: Content-Type: multipart/related; type="multipart/alternative"; boundary="=-IwNDuukp2aQD4pakG3ym" X-Mailer: Evolution 3.18.5.2-0ubuntu3.2 Mime-Version: 1.0 X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: Re: [isabelle] [Isabelle] some proof problems X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 17 Feb 2019 11:52:50 -0000 --=-IwNDuukp2aQD4pakG3ym Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: 8bit Hi! The string “[isabelle]” is automatically added by the mailing list software, so it’s better not to add it yourself. All the best, Wolfgang Am Samstag, den 16.02.2019, 05:08 +0200 schrieb noam neer: > hi everybody. > (I'm sending this mail again with '[Isabelle]' in the subject. sorry > for the mess.) > > I have two problems I encountered while proving something. > I'm bringing them here in a very simplified form. > I'm working with Isabelle/jEdit 2018 on win10. > > > 1) here there is external lemma which is not really important,  > so I simplified it to "Y=Y". > inside the proof there is a lemma L7 whose proof is again not > important, > so I used "sorry". > the problem comes in the "apply" statement where the cursor stands. > for some reason the simplifier can't apply L7, and I don't know why. > maybe you know? > > > > > 2. it seems I can solve the first problem by applying 'subst' and > 'auto' instead of 'simp'. > but when I'm trying to continue the equality, before even applying > anything, > I get some typing problem I don't understand. maybe you do. > > > > > I'm attaching the text files just in case. > thanx in advance. > > --=-IwNDuukp2aQD4pakG3ym Content-ID: <1550404367.14010.109.camel at jeltsch.info> Content-Disposition: inline; filename="query_19_02_16a.png" Content-Type: image/png; name="query_19_02_16a.png" Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAABM8AAANSCAIAAAD9Kn6KAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7N0JQFT3vS/wvGes11iTZzWWeo3X 0uR6fV6ftbaJ11prUmsWm8VYE5smaUyMUYmi4hZjjPu+7ysq4IYgKm6IoiLihrggCiqKiIobLoC4 RH3fmd+f42GWM2eGAUG/n55O/tv5n3NmDjPn6wzDMw+JiIiIiIiIvI1pk4iIiIiIiLyPaZOIiIiI iIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvM+NtBkXF6dKRERERERE RIbMps3Ro0ePGDFCVYiIiIiIiIgMuZE24+LiVkd8sG9Xq9RjfJOTiIiIiIiIjJhKmzt27MDtti0L bt2q+fDB/9od8m9LFr0bEz1eep1Y3/GZjutV2RhGNpl0QlWc04YZjUefeDSioKnQOpZG3e45HANo t4zCf2x6CrcUrA6FW23nK10su23iTtDYDdCO2+g4bbZiYjuOYKXSfWcSEREREVFhrtPm36DV31CY O6bt1YON7x2qd2R4hbTUCvl55aKCW8sYRxAPSjxtnpg0SW1SP1h2Q2s5MakJ4k9H3e45mxkjHbaD rgXFR72WyXUdNmuVHnZ3gqXB5o6ygfbCAxzc2zbs72q37hT9WHfWIyIiIiKiUsBF2ty5c+eYMWNQ WL5s7ZIZXy8e8b+ygp49OvSFwK/qZq0tH9qpsgxzBPHgUcYwZDJIaMPMjC8Iirq9KGgSjjt0rdZ2 VbHfotZiCVSFjvNRg/1apc2jw9XfOfryI7q7xm6A4zUK6NZE2Y27RH8Hlv47k4iIiIiICnGRNnfs 2BEXF7c4JHTf3tNbo7dP/fGl3Vsqj//i5W0NG8Z/+b9X+VU9tT9RDbWlZQxL/BJaCFNUBrEGifVq 1KNI4WA96dQFD9sxGrX1QjFItQl9RRtVaARaCyq6LSoFLZYdeLSKlX42m7VMsExo0WTSJAfHqy8X jNTfPx07oq1JE/0+Ge0F+tRAbadtyppCjY/WE7b1wnS9lmJHmw/Sok2xnbOApR1Vm5PEcvyP1rD2 qzIREREREZUCRmmz1Tut5Dc2+wT8MGrIkoljglKS6z988L9yT1Sc++tfrGtbLqz1/0T913/JYDuW YGHJAgX/tWPNB5bAgUJB9rAkCK3xURyxlvTjnY1RtA7nGalQxbpdC12TfgDK9qwTF9qA0FKQthfm WTYkW7Xukayun0cr6xof3T8FTSgW7LuuaK/wON2Wte1pCh1o4UlRsx+vY7OVR/tYeC37afQtljVV zVK0ToiCbmLdHhERERER0ePn+vc2lyxeNX1q0OQxa3t06n8hrvbDzL/8FFJ+dO0XRv3uvxNbfxj1 s5+pcbYKrv91sUmxBgcrLT086lerWdd6xNKkDSsoOBgDhcKS84ykq+gGPWotFF+1TWv0+/BoUitt Ovu1CljWKrTTiu3u2s+j366OZRqbYTKz8SdXtWEWBVNa3iC1X8l219R6lpWMtmCh24p+g7p9tG4X bGZCh9bisKybwtVOEBERERFRCXOdNqPWJe5PSOvSuXfIgsVHVv7vW1ueyZv5vwc1/X8jf/e7Da+8 vKric2qcLS0JWEiSsdQtJWnX8os+SBR0Pxqm0WcMa8HBGG3OArq9KNz3qKNQu2q2mUfbtEZrsduJ Rw32a7liuytS0c9TULbbrM3mZKZC8zmAVWwmsXDZWjCtq+kV3Zr6qaX86EDsZ8MIrcVxWdYxuR9E RERERFSSXKfNSaNXjRu+dOniqIMHzkz8vvmpFeVWfv4fe998c/CLv1zY8HcZ1o/aOqIPFhYqEmhJ wRIzpIQmXXpQa+kaFW1NfaHwGDQU2qbNhPqxuqG6HlXEWoXmsVkXCq/zaKuWis1k7ng0l2XH1eqP jkE3vX5DovDmsJLjNyn1sEqh47QoPM0j9veko7Ud0Y/TZi+YrlCDlLQmreC8bOowiYiIiIjoMXCd Nvv1nDqw3/xB/edPHr/8xRdf+7J2je0ftt77y+pHBg1WIxxDJLBmDPxXkchhSRUWj0KCJTxYv97G 4lF+KRhoUSiXFA4baoRljL4GalDBDjya2QKtjjZlbUPVbrBNnincUrAJ0K2oa7VNhs4VrKT7liDd TJav2ClodHr/KJaVCh+GHQzRRjzahtN1CobICMf3tgP6rehWU20F9cLng0ymNmgZ+aixcNk6xvku ExERERHR4+I6bSYmHho+eLpfx0EjBy37xS/+3KnB74KbNt3688rxo0apEU+aUvJLgIUylQew/tOQ wp6SwyQiIiIiKnNcp02BzDllwuLp0xaivDlwwfy/fyTtVGyKljZP6H+X0fL+n46ZdFYyqxRZocMk IiIiIqJSxGzapBLncdqUz6Y+8SHsKTlMIiIiIqKyimmTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiI iIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOI iIiIiIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvM82bT6jIy1169bd sGGDdM2bN08azZOphGrSQaPMqW3FpMzMzHbt2lWqVKlixYoBAQGqtWi0nTEDgxs2bKgqBcaOHWty Ere25RbMrFFNjqDXfge0RncfDgPVqlX78ssvVeXhQ39//ypVqty/f9+LmwCbw3F4dPZnssN9KPqO Yf6inBvehY1CuXLlXnnllZCQEK3R3T3xyuNlv12DPfFgJ4mIiIioVHGQNr178We8ln3vG2+8sXDh QlVxrkGDBs2aNbty5cq9e/eGDRumWovGrQPEYATd2NhYVbeqXbt2+fLlzUzi2Z1phsmZHQ4rjr3q 2LEj7hZVefiwTp06fn5+quI9NnuuVR2eTvaHafKsMwnzF+Xc8C7tYCXuJiUl6RtLmP12Dfbkce0k EREREXlLqUubJrdSrly5gQMHqoqXuHWAGNyuXbsWLVqo+sOHERERjRo1QswwM4lb23KLyZkdDiuO vYqJicG0x44dQ/nEiRMo28Qwr7DZc63q8IjsGx0O8xhmK8q54V3aod2/fx/lwMBAfWMJs9+uwZ48 rp0kIiIiIm9xnTa1Fq1w6dKlN954o3z58k2aNEHZOsop+wnPnz//6quv4sp7xIgRNpPjViODnenQ oUPlypWXLFmi6o72qmnTpthKhQoVWrdunZ+fjxZM27t372rVqqGMlq5du1aqVAkDsCfSO378+Dff fBOTvP3223fu3EGjMxiMHX7llVcOHTokLc2aNVu4cKG0o2q8dW3Y559/Lp8Ett9//fjp06djV6tX r46yMW1mDWZr06YN9gSrz5w5Uxq1YQYPhxTGjh2L4IQde//995FY0JiZmSmrmPl0KFbRtovbGjVq SLu2os2B169fH48L2rOzs9G4bds2lD/99NMGDRpYVnPCZjekiluN1mhfsHQX0PfaPyImHwWZwa1z w+HZqD36Dh9Bt3YGBUmb8mFarVEr6MsOH199wf6UcHdnNFqL/b1ts0Xch9glf39/y2pEREREVBY4 SJsarcXmcvOTTz7BVSbCWN26dXFBbB3llHUmRVratm1br149ZInw8HA02kyuFVwaNmwYAmejRo3k w4HO9urYsWOYMzQ0FGUUECPl+hgX93Xq1ElLS7OOskCvfDp33bp12irOyH5Onjy5Xbt2qB44cAA5 Si7o9fvvbOsybNSoUbI62O+/fjySxoABA6wDXcBaGmnBzIhwOTk5QUFBaJQIhILsp8uHw/4+wT7b r2Kgc+fOODQUcNujRw9p1Fa0OfBBgwbJLz1OnToVYzp27IgyoqbxW9k2u6FV9e32jcbD7B8Rk4+C zODWueHwbNQefYePoFs7gwJukdaQJPWNWkFfdvj46gv2p4T5nbEn0zo8/7UtItzi8BGVUY6Li7PM RURERESlnoO0KVd4Gv01nxRwZYmyaNOmjXWUUxhjMyFW15KD1mtfMAOXvK1bt0bmTE9Pt9+r+Ph4 FKpUqYIWbXKEGeuqDytVqmQTYNCL+KeVjXdDBuTl5WHrCAkdOnSQmbUVjbeOMva8cePG8tYW2O8/ Ctr4pk2b+vr67t27V6oGsJbNnmPmIUOGoCCBR35BURvm8uGwv08QWrRooTUa2LZtG1ZBkChfvrx2 CNqKNgeODFauXDlECyTML774AncgVkSL/JuCM1h39uzZqmKt2n9kVCsbFPRl+0fE5KOA8ZjBrXPD 4dmoPfoOH0HzOyOQZrWv+UFVtqsV9GWHj6++YH9KuHXPqIqV1mJ/b6OgbXHs2LEo6A+fiIiIiEo/ D9OmmfcxhP2EiBzyWUH9uz32BZMQRbAKooX9XtWqVev9999HInU4OcbbX99rvS53QxsQEBCAOIEL 9KysLH278dZRxlq1a9fGAGmx33/9eKSvzp07o8XlGzv6tQRm1meVoKAglLVh5h8O41WM+fj49OjR 45VXXlF13Wz2B45chKCFdjy4NWvW7N27N5KM6nMC8+P+lDICPCbX3k+233+Dgr5sv2MmHwVtBvPn BrZlcDY6fATd3Rk9rRExfvz48SjoH0oPTgmPd0Zrsb+3tS4Upk6dioL8sMvhExEREVHp50nafPPN N3H1f/78eWu/C/YTNmvWrGHDhrg8lY8F2kyOi075tT1jGCM7gFCBdaOjo+33ClP17dt39+7d9luB du3a4aLf5rOLWq++7JA2ID09HeUvvvjCpt1461LGhf4bb7whLfb7rx8PuMfQ4vKNHZu1oE2bNtrn MJEuUlNT0agNM3449LNp5aZNm9qvYgyPV5UqVfRxQlvR/sAxrFq1anKX9u/f/4UXXsA9KV3OINdh kuzsbJTHjh2LbWH3UNafTvYHpRUcDnN4npt5FLQZzJ8bxmejw0cQ3NoZPa0RB9ikSROkOPmQqjQ6 fHztCzZlz3ZGazE4/1HAj0l+fr78Hql2+ERERERUynmSNjMyMho3boyrXkQCm8H2sJZGWpKTk3FZ WblyZf0FrlYYMWIErsXRax3r1JAhQ+RPStSpU2fy5Mlosd8rBBUMQKKz3wpcunQJl/jYVsWKFadP n27Tqy87pB/QqlWrhIQEKWvtxlvXyu+//778RRD7/dePr1GjBrpatGihvRfqjH4tgSN9++23sTry THh4uDRqw4wfDv1sWvnAgQP2qxiLi4vDSGxL1XWz2R847kz0RkdHo4xVUEYws6zjnPYtO3g0MZv2 kU796aRt0b7gcJj9jpl8FLQZwOS5YXw2OnwEPdgZjdYYGRmJeZDn5V9tpNHh42tf0Jc93hmtxeD8 R2HgwIH4SccuyZ1DRERERGWCbdokMk/eu1u2bJmq05OllDy+WuwkIiIiorKlUNrEVZ0N1eEpNYuO 6igaNZeO6igpaqvOqXGlgNqhwlRf0WRnZ7///vuVKlWSX0p0Rm2yMNXnJWpSO6q71FO7q6M6ikxN V5jqc8Xk42ue2rwjaoQTGMC0SURERFQWlZkrcio9GjVqVNGqadOmsbGxqpWeFKXt8a1QoYJ8wzAR ERERlS1Mm0REREREROR9TJtERERERETkfZa/WEBERERERETkXXxvk4iIiIiIiLzvmetERERERERE 3sa0SURERGXeXStVISKi0oFpk4iIiMo8RM0zZ85s3LhR1YmIqBRg2iQiIqInAaIm0yYRUanCtElE RERERETex7RJREREZR5/b5OIqBTyStq8dv3aFcutp44eTQ5avGDBonmBi+Y6XKQrftdOtYI5gSsX /2PwrMbfjNWWt3pM6Dt5+qGj+9QI8raTRxbELSy5f8J4b87Psq5kqkoxW7wkaPzEMSkpx1S9sB1x 20eNGT5n3ixVNyfxwP6YrZvNLBip1vGGwYMHf6qDqup4smzcs+yjkXWa9q7QJODZPwY8++e+z3Wd 0fLMhTTV/Zjk3IjLu7E878YC3KKsWukJsmHDhh+tNm/efPjwYdX6mFy5khW2csa8RQEz53dZvHzU xUsZqqPEXb5yddfBE0kpZ655frHgAn9vk4ioFHIaDKI3b8LVs8tlzNih8+d+v36Vf9Sabnt2Lrxx /ZJa3x0rVi5Vf5DFuZs3byKRqhVMOH0mpWXAtE5ztgyPONx7edLE9Sd6L0/+amFip9GzPvl+/LZd m9Q4T5m8f/RL9OYotbK3xe3cEbFqpcGCAWpocUo/sQlRs4TTJpZzl9JVvdggTE6eOiE2bvuChfNU U2FTpk08nHRoyrRJy0KXqCYTNm+Jzjdn2/atah2PXLuWfflSFpbE/QldunRGwpw4ceikScOwoIAq Gvcn7JMxGKxW856QJUHjJoxGXC9Yxk6YNFZXfbSsCFum1nGH/fytB9T9Y0D5f055ZeLOz5akdw05 6Tdk4/stB1b5U++Kx04dUKuVuNwbq/NvDr6b8+W9nI9xi3LujTWqj4pfyTxvI2deuph1587tlJRj KO/bt++ak4CF9uxs7/+46SFnxiV12Jf26b5T/4g/2mH6vPaqo6TsSEj9dmT4n76c8fJ7o//vh+Pq th5b5/0xb3eZN2DquhPp59Ug7+HvbRIRlTZOgwFeZVXOc+7Bg7sP7hz86dqE/OwJt7JnZab452Wv v37tsprCiaSkpM5+nbp826WzX+fOfl16BPRYujwEs/30072fHJHPxmRnX122YrGawhVEzY6jZ3UO PvDX7+Y3D5jxx28nv/lDMKJmr2VH/BYnvTNo2V+7jdt7sEjvKpi5f2xgFbWytyFPYv77TqALA9TQ YiNR817WmyWcNsdk/L4EAueioMBjKUczMjIWLJi3M972zIlcuxoZ6ezZswcPHXQrLG2JsaRN6+cC jBaM2V6EtLlt9eze77/Q9a/PYunQ9o/9+wfMnDnGZvn++94dPmqKAd/+9dle772wddVstbKXjB47 AufhA1cwBllRreMOm/l7zm31l+9fmLr/05Xn+gWd+brfkf8IOFx98NH6QekdP5pY650ff6VW86qT aSc2bVlvsMTvmnYypcO1C81uX//LnRttcZuf3RKB8+Z1U29/YX4cplsLVlErm1DW5zejZJ63MzMz ETJv59/KuXlDAica7QNnWkbWkJlr+s4s0j8kuTR3Uffdx/+xJfnl6KTfxB57ffq8z1RH8bt85eoP 09YjXv6t24KR82Mitx9NP5+NZW3ssZGBMR/0WFivzfgl60rjR4227F/ZccqfrmZfUXVvWLJkyWN/ o5uI6LFwkTZPnTp15syZ9PR03OJSG3BJjZdSq7MXz+3JuTD81pUJeTfP3MrLuXllbf6VUTevJasp nPD37xqzNUZbli5fvH3HNmxr3769q9esjoxcE7l2jeXWssAaNMbu2I60uWR5sJrClRHz5kxcurTX 5Nm79lteyBOT4lv1nvDWwKDP5+zC8s8Z21sNXvp2wLjLVy7KeA+YuH8yzxVA2bOrFpMkbWIf9lmN GTNq7NjR+/fvT0xMzMrKQhcGOPvHda9QUTPzlXvn6pV82iyBwDll2qTLly/j8T2ZdnLe/EJJDD8I 4yaMPns2A6dBSmrKzNnTVYcJztLm1atXtAVycnK2botR67jp2rXs7z6sum3oy8sHNunVvcOXX7Yf P37Upk2rrMvq6GgsazZvXjNp0pivvvoSAzBs48Df9PuwqlrfS8aMG4nzUH+MDhcERc/Spn7+rfsj mvWu+Pextf7ct2LTXhW+nPN/g8983euwDwJn36Sawemdmn/33LKtU9Wa3oM8iX0wci/yYf43D2+9 8/DOyIf3luEWgfNuzpe5N1apKQwhfal5TMMqamUTyvr8ZhTr8zaeY0+cUPEY6yJkXrlkeYdT0qbN e5j7j2b8/mvLP7N+N33j16OL8b241ZGLpi94d+vRRlGHfrMr5fO5CwNURzFLTD79x39Nb9hu4sI1 Cecv3whZl9hv6ob3eiz6oGfwDzOil286fPFqzqLI/b9rN+nz75dkXfJOrpN/m1YVT4VsHv/JuPp/ 6vNvl65kqSZvmDBhwvTp03fudO8XgoiIngAu0ubp06fxSoyXZIGS5YVZvTSnXz6/JTdrYN7VoLzc nFt5eTevROdfHnQz28U/VXbv4b8mcs2gQT9iGTN2NDLkvXv3rl27isvinJwbeXm5eXm4ur558+aN mzcxHJeP2bm5N4+fOG7+k7RfDZ08K3Txhayzqo4LwR3r/vjt5Dbj1rWbsgVp84v5+/zHTp2+dL7q dp/N/bPeaoMjFy5cOH/+vFtXLe7S0iZMmTJp6tTJWKZNm4KoeenSJXRhwNWrV9Vob9Oi5q2zLe5l vYcylvjQ/9638ZO05BWXL3vzs1IXr54P3TcO2VJbEDUHpNUq7sA5d/7swAVzcX/iHl4TuXpD1HrV cf36kmUhO+N3yJkwa870HXHbVYcJWtpM0/Huh04vX8ryb/nszlH/2btHhytXr2B+P78un9tBIy6U MaCn/1dxI//z27/8L7W+l4wdPwrnoaRBZwueATxOm/r5242u2yTg2Rbf/yJ023Qsf+7znP+K349O bdrjwIv+CdVGHPljp5D6fx/xslrTe5A2Hzx4WPudkc6WbsP/uXVH48sXWuflBGNvETjv3Gh7L+fj vBum3g9H9ML8YxduNbnk5eW5mwbL9PxmFN/zNk7fdevWIVhiQmmJjo6+evmSljZtSNRMSEiIiIj4 eliYai0G2dlXJs9ut/1Y8w0HfxOb2DksYtY168+aLGqQt126fLXJv6a16hp4+lz28qhDf/h0WoOP Jzf657RXP5/R+ItZ/9N+dpMvZ7f0W7AuLjX9fPaHPYN7jDX1Dy4uIWriYfX4k7TZ17JHLOv4zfQ/ bjq64PXvnvd62ly0aNHMmTNxnhTrP/4SEZU2LtJmeno6kqUKnBnWqGkNmufOYTl78cLem1lTb10c lHdtw62cU1cyh+dfmXbz2lE1hRP9+vWNit4+1QpRMz39NBoPHkycN39uyJIQLIuttwuDFmJZumxJ fHzcjRvX4+JjV65eITO4NGr+rLUbwrp199OW3t992/ibsYia2tJp9NS/9/xeP2btuki1vgk29w/g 0kSgBVcqNsxftXhAS5tjx47WlnHjxmC5fPkyujAABTXaq7SoeTf9Z7cvfHw36707mb+7k/n768cb nTvw7r4NrQ9vei/zrONv1nHX9mPhiJRLV/51xrE/y1uaWIan/fa7Y7V67q1ZrIEzM/MsHj6cq3jE AalS2lNSjk2ZNhH3/KlTp/Yl7HPrjU2wf2/z6tUruMLGQ2b9QKgRjDETzCRtxo+s07lLB6xivSrO vnz5ks1ive68hgGdOnfYWQxpU3vvcdeueIdLfPzO7GzP06Z+fkTNP/X+t7i47TJz8Jrpr39XaXbq p112/qLzjirddtQcG9/mz32fU2t6jyVt3r+PFOFs6Tmp18bYNy9feP3mtSG3ckMeFLy3mXPd1Gcp LWnt/v3p4ftNLp6kwbI8vxnF97x96dIlpMqsC5l4pkUhPDwcW7hyKevu3TtTp0zU3vMU8sbmyZMn ETVRSMvwZqqBDRtXTp7z8cSZrSbNfHfCrL/NW/zPzUmN1iX+Zs+RAWOntxwzrcXoaX8ZPeWNkZP/ NHN+F7WOV30/Zd1v201Ckvx21Kr6H036cnD4uriUs1nXb9+5l5N3+3jGlSnLd7XwW/B658Ah87am n7/WsN2k6HgXn4oyyePf27x4+bzfjL/0XtRq3ZFZW48vLo60GRSEy5qFs2fPXrJkyZUr3vyYLhFR aeYibeIyGtkS8KqM1075tJHlM0bnz1/AciHjUlbC9ayQvItD7maP37u9883shBvXL6gpnOjZq8fa tWvnzp07fMTQRSGBFy9mHTiQsHff7j37du3duxvLvoQ91tvdCfsthfQz6Xv27pm3YE5C4l41hSsx Ozf07O13qzCbtPnFvL1oUX1WCJxqfRP0988Of/+QZ55xuIT94x+4ZLl48aL5qxYPSNrEYySPzrRp U7Bgo7juwUsaujBADfWqjLStEjVvnn4TUbNg+ez2hU9vX2h/O6Pp7cy/nt1Te//q3x1PjVXreGpH yiqEyTkn/zzxXNNByfX6H/EdcPQ3Pxx/uW/SS0ibnbZW7by9qgTOS1ddnIGeWbV65aQp43GXnj59 es+e3evWW/5tYvbcGUeSk9LS0nDnj5swGqFUBptk/97m8RPHvfuhU/u06WxB4MQAS9ocUYzvbco7 KvolO/sqFuvHhq96nDb18//lu+fnrhukn/+PAT8LPNr5q+gXvox6vv2G5+ce/OaPvX6m1vQepM2f fvoJD6gzt2/tuZs3/H7uuw9uvf3g1icPbr1z7UKz/JtDblw39f4/opfx/DY8SINlen4zbF7X5L1N hzx43l62bFnWhfM3b1y7evkicublixdkkbc3sTkZJlHz7t278m8QqEq7Fy1aPGRPSufNR/5r0+Hf bDz0mw0HfrNu/2/WJfwmcq/vmj2+q3b5RsT7hsf5rtpZf+Tk169Zfvy9aUdC6n99MDZ47f5lUQcR NX//6fTlmw7jnrSxfPORVj0Wv+UfvGn3iSUbDzb6ZNKFrGL5J1EzTmWmfDyyzuCwdhGHJgyL+nBz 6sI3f6zaJOBZ/fLOjz7mf5Nz5syZiJd6U6ZMQdqcM2cOAieuf+bNm3f+vPe/JImIqBRykTbln34R YCxvaRZETes/BF+4kGVx0fJqevrqxcQHd5KmTfvR+p20Ll66ps2YankbMyRk0pSJmDY5OSl8ZdjC oAULFy1YsChwwYJ5gQvm4XbBovnBixeGhS9PTz+FqLlvv9moCfsT9w8dPghBCxkS8UBI2vxg9BpJ m18tOogW6Uo5noJbrOLs71vY098/SJWn36hlv6T98d/RdckKg01etQwbNgyXWapiQmpqqqRNPDry u5qzZ89cvDgER4R7ANfa6MIADFMrmGBmH04dXSxR88bpFjnpb+vS5sc5Z/6WfeLPR7c9e/7wf187 0ejC4dcOxXS4csXzEHj83CHEyMnn/jwu8w+Il5blyEu9D9ZEoU9Kdf99L0ra1AKnmWsCd+9nmDBp XOyObenp6YiF8wPnbNu+NWRx0Emr1WtWRa5drcaZZv/eJh4y737oVEubnQrS5tKlS+wXQN7DALfS pvn70Nl7m3gS6Bng371H127d/Xr28o9YvbIo720uWBiI2d4K+A+/bh2+7fnV+OlD10aviNy0Amlz +r4vP1/z/KcRP/8kvNLMvV//sVf51PRDsqgpnDB/jEib93766bZEJVu3pf1O3oa7t4b/lNfhp9x2 9291PHHs65vXk9T6riB62c+PRv2iWi1uY7fRolY2AYNd7r+ON+dHV1HmN/8Y2byuCXmKdgiDzadN PAMjVBzYvxd3FhLmnTuWWxU4b+dL4JSoiR9e3MbsO6nWNMGt56sFwQN3HfsqClHz4G/WW6PmWmvU XL3bEjVX7rREzbBY3/DYOiMnNVfrmGByH/xGhH/QY+G5Szde+3z67z+b/sev5izbdHjjrhPfz9zS cVTkkk1HcK/Clet5f+8f1rrv8nYDVqDcrt/i5RsS1BTOGe+D9dc23f69zcTUuFaDa4zb8HXIvh/7 rXmj35rXo47N35y6KOZ48NbjIdtOLJHl9X6Vzb/biTMB2VKzqMBsq8DAQATO6dOn46VErUBE9ORy kTbDI8Ks2fK8JWhmSs5E0ARr0rxofUG+fEneQBs1Zpha2dCy5UtHjR6BbLlsRcjGzVs+7z1R/onX fmnaaREWm8bvx7v+rqDozZvmzp+NvcK+IXAiVcqiT5tfLkhES9Ouk3F7JuMMstm0GZPN/6UQ/f0j aRPV26mHE555BgsKqKb+vxfRhWRQcP94P23Gx+/8YeD3kjZx2SQPDC7id+/edfXqVfleCnRhAIZh MHZGVjRmch+0j9Eibeakt0DIvJj8O4RM/XI87tkb6e/sjmy6f7Pn37z/Q+Q7Ew82mnKueZ+kmgiZ 2tLrSPV+J37pF1dN/96myQ/TunU/i4T9+5BqLl26iHh59OjR5SuWbt+x/cSJE6dOpbn7GVpR+L3N k1iOH091Fsy0xa0PndqnTZtF3v27ehU/AZZr62JKm/YR+tDhg917+u9L2Hv8xMkjR1MPJaceSzm+ d++erv5+yclH1GqmjRg1tEfP7jLbgaTDmC1w7Tj9+xKz9nb6eOlzbRdX/Hvwv03f2UnfpaZwwvwx Im3iSjfvVh6WW7JgTdQsZbC2593Kzz2an7v2du6Ke7d3bd7qxocOEL1s57cuaJfF2vNoiyiYTGvC wfwFs1kmL9zi3fnl/rFpQcHk/OYfI5vXNfU+plXrAsgGqLr7vC3wbLBy5UoES4F5EDjlfU4c0IIF gXgJu337Nm5t3tJ0+czs1vOVJW0e/XoDomaiNWruU1EzQqLmDkvUXLHNd3nMr4dPbKLWMcHkPjT9 Yvq4oO0L1yQ0+ue0Jl/OfqPzglY9F3/QZ1nb78M++XGV3/iNuFfhek7+50PXfPJjBNrXx5+YtHTn 91PWqSmcM94HnGBn3Py9zai9y/826FfTNn87Y4df17CG/uG/7xnxP31WN0Ps7B/Z4od1bw5c9/aP 69+JTlngbtrUsqWYpTNz5sz58+fPmzdv6tSpSUlm/72JiKiMcpE2ETFxiwxz7jyiJsLMo/c0JWvK G2hXr1zFMJOvyps3R3/Xv9/iZUGpqSkjxoyPTjy7+UCmZTl4bvPB81sOXYg5nIVbKdgvH/V2/bcZ pk2fkpCw7+zZs9g9QJ78Yt5eLN8EH0babD1WfVfQpzN3fD47Hr0y7MCB/SsjzH5bg/7+kbQpCVOD qpY2cS2PFpP3j/mrComamBlh8ubNm/Lv9PbQhQHBwQslcEoENWZ+H7TAmZn4H8iWKNy78CcsOad/ n5VUM33Xc2f2Vbpw5L/SD3ywM7SuWsd9yJBjM3/fP7XWd0drjcv8w7jM1yafazbJukw898cusdW6 7a3m7u9tunX1plkUvAAnyenTp3FZuWpNRMzWLUieiJrm3xXX09JmgWych9790OmjtNnZwXubS5Ys Xrw4JCQkOCQk6OJFy2+pFfd7m7t370Jg3rhxvX+Pb4+fODFz+fYes3f2DTrQc0Gi/6y4+St3nDp1 Cl0nTrrxpy9SUlNktlmhsZitz6JEzNZ1euw3Ez5DmPwu9J2psZ3n7PL/YP7P3ptr+WapWXHdpsR8 82P435v0Kj9hZU81ixPmjxFp886dO7mQY10K/m9drP/Lkf8qGIxV1MomIHrZza8WdFnarQpac7Db 7qZBh/uPdlm0FuvitfmxWCYv3OLW/OYfI5vXNeuLmZKYmPjNN990tsLPF3783Hretoet7N27F5kT gfPC+czo7bv/2mM5DtCDqAlmjjEsYvaC4B9wOycwYGdyB0vUTLBEzTV7rFEz3hI1w3b4rtjuuyym Vkj0LxdtrDJ0QuPNWzauCJ+OgLopeq2ayAkz+3Dx0pXfvDt6067jfSavb/zFzObfzH/LPxhR8+MB 4Z8NWdNh1PrEVMvXpEPsobPfjI36cuQ6tM8I37dlX9o73zr+a8Z6LvfBrd/bXBA18v1htebs6DVy U9uvlvym47L/6hJav2vY77qHvxoQ0aT3qj/1Wf3nfmtex7Lx6Jzm/X7ubtpU4VIHORNmWM2ZMweZ E4EzLq5If4+NiKiUc5E2kVXkJdkSM1FAsSBnWoKmJWpiwYuyG6/KuNbs07dP0OIFiK/vdZ0eufvM 6JVHTS7BW0+9132Omsi5bt39zlu/9cG6j5cPH01o2nUy0uZ7I1d9MGq15Xb0GtwibaI94dBOGYbY bP5XN/X3j6TNhGeesbyEFkBVS5uAFpP3j8krJy1q3riejTDZrdu3337b2eEycsTQsBXLMjPP7tu3 RwKnmsI581dvgMAZG/Rz5MzjOyxpE+FTlvULfp64sW7a7spn9te4nPq3rYv/Q63gPiSESef+9MNx 33GXfjs5qR6q2jIhs4kHURPcOkYN7kakwdPpp44fP56SkhK5dvWmzZuWhy5V3W6StInTw/ppXDiR mur0vU08cAXiPHlvsyBtymLNrjjlceLjx9nykfgTJ1IwoLjf27RuN7tHgD/uwLFLd/ZccGBP6uWz l3NPX7y5fn9mwILE8Ut3IMljgFrTBJlt3NJ4mS1DZkvIROb8fPSHf+r9byPXff5Z0L9r58xnwf+O lmZ9nhux9Gs1hXPmjxHR8fbt/JtWN+Q/9nQdt2/fdjdtYn7cqvUNWQffNpnWhMwvq2u7iUb9olqt vDW/KhUug/n5zT9GNq9rsVYfffRRWFgYCrhFGVC2PGu787ztDE5mBM75q/YiZJ4+ffofP6xYunQJ GqUXm5CCS2aOceLs9/cd77bjQOcpc97fnfK17hc1fx2+s9aK2BrLtlVfvOUXQZueX7jx54Hrnwtc 93zQmlcHjvnvBavqL1jzX2OntFYTOWFmH3YkpP7fD8dduHLzvR5BTTvM+eu3i97ttbTt92GWqDl6 w75jln/SgjNZN/rO3tF96la/CdFo7zsj5vzlm//1gesnNPOPtUujQzt/Mq7u3LhevVc3+2TRLz8P rtl+8a87LH2l84p6fhH/3WXVf30T8RssfhF1e655dW3y9D/3reRW2ly4cKEEy+lWkjD1aRONyJ8I nCi79X4sEVHZ4iJtIrPhJRnx0vrafOHiRfXxWS2eWZJmdjYuIDHY5Kty+pn0jt98vWDR3ITEfX/v PnXN7nSbSGmwTA/f98mAJWoiJ1JSjvX9rjd27Zbulzb3HoyTdzgRMiVzImqiBe0yAIOxyo+DB5p8 k0p//xinzRs3bmA8WkzePyZfTSVqAuKKFIxZ/5XgYlJSElZUUzjn7iu69g6npE1pPHogZEdYnSNb Xjm155eXUt/cuNDnxrV0LNLrFiSESeeajb5Yr0/yL9stePFohvorO2iffM7y/bQouPtttB5ftURt 2jB34tiMjAykza3bYpZPn6I63FeQNi0BzOrqpcuX7D90qr2xaXVFCm6lzZ26tGn5Hc2CtzSDgxfh hzsr6/yFC5n7E/diAIbFFVvaxFEgKweHBC1dtiQwIq7ngv1HTl/JvJxz+fqtjEu5yRnXI3af7TF/ f8TmfUuWhpj8E6OboqOWhy6bvzIW2TLl7PXMSzkXr+VhtgMnLy7alNwjcH/7MW/+uU/FERs+/nvg CzhPcIty876V+s3/u5rCkPljRHS8lX/rxnXLz7sVigVl638LVa7fwEPvbtrE/Li1ZDDMLIsomF8W GYP5LSNNw2B397+I86NFZtBurQW35zf/GNm8rln+2fTSpU5WBw8exG0Xq6NHj7r7vG0vLSNL++M3 iJq5ubl/H7AyJHz9vXv3kD8zMzPxU6yGmmDmGCfOenPT4f8r3wkkv6gZEV8jdEeVpdt+vjimUsjm SkHRlRZFVVqwodL8dc/NW/vc3DWVFqz71eyIyjPCn5sR9ny/Yb5qIifM7AN+pOu2Hpt1NeeDXiHN v5n/tn/wh/1CPxm06quR69fsPIH7E9Kzbg4N2Tdgwe5+c3f2nL7Nb2L0gDmxF67k/PajiWoW54z3 4a6VqrjSJ/CDTyb815y4Ht3DX20zv3LbwP+DJ4ePQ174eGmlf6x47p8rK3266udYUPgktFJo0jB3 02ZgYKD1q/eVaVZa7AQtbaIQHh6u1iQieuK4TpuSUi7itTnr4qWLuBi+ZH0/0/qGpuUXAy1RE5ew GGz+Vblrt2/DVoZu275l5JyVq3eZTZuzNp4Yu3jnrl3xahYn4nbumDBxPPbw3Llzlt8GunULO6oP nDZRU8ZgMFbBiiZ/dVN//0jadPZJWvl3erSYvH9MXjlZQuO17FWrVl24cB6XLzt27MBh4hAsD0m2 5QOZ1n8ayMqyfLOipYBl7NhRMTGbiyNtIg+dOLraEjiz3sSt7AMcPxIeFfTiucN1zh/5w/r5/+f6 tTOWxX0ICVPPvbHoSrvW857bmbpGtVrbJWqevuD2B1ndPUbNwf79p/n7rY+0fCcQblFGi3S5S9Im 7qgTiuX9UpsPncq7mtobmxI1ceXqZtr8T0mb8kFcy280W9/StObMc+fPnz13LmPjxnUYUKxpE1vH s0dnv47Hj6d2nLQ1PD4jNfN6+sWcs5dzcHvw1NWpa4/3mrtrcPDe1NQUDFMrG3o0265Csx1IuzJp 9bGBiw9hti/HN3mjX+Uh69v8ff7zuP1L/+c7TTX75SjmjxHRMe9Wnpz5lqdFy78QWP+hQP1rgZRV J4p42nE3bWJ+iWRYrNPYzZ99TRuA+XGrVjYBg2V+7J3l9pplKpmwUFnXi0WtbAIG6+8fWR2Ltv+P WiwDLPcPymplQ+YfI5vXNTxP4odBEqaf1bcFUlNT3XretiFRs/eklSGbDk5aEiOBc+nqLdu3bz+b cQY/vAic+IFXo00wc4xT5ny889hHMUlvxBz4IObQX8PifrEsttKSrZUQNYMRNTdVWqhFzcjn5qx5 bvaqnwetrzs3otbMsP8zI+wXP4z6rZrICTP7gAfuP98fE7MvbcCM6Dc6L/hbz8Vtvw/7fGjkN2Oj zly8gfsTAqNSRi0/OHxp4qCgvQic3aduXbA+aXvi6Y/7uP5SBuN9cOv3Ni0nYWiXD0bUmr7t2/6R LfA68uHCCh8vrYh4+a+1lb/c+HyH6BcsX2S98fl/RVZedmRgUdKmTc4Uc+fOlU/SYofxU6DWJCJ6 4rhImysjwvGSfOnSJcutJWrixVlFTVw4Wi8JrE+RN9z7N+COHTuEhi/p1HvIwlXbF8WkjQo/OjI8 eWTY0ZFhuFUFXaMsyUFbT/WcuCb9jIu3sFZGhOG5+4I1ZeFWy5yQlJIggbNp18koSyMGQEbGmfT0 9NWrVy1dtlhNZEh//0jaRBUJM8HuW4JyrMzfPyavnBAak5KS8AKWk3Nz69at6emnrd+CeAfJE6+4 uIXb+fmy5N/Ku3H9ev/+fXHPeD1t4jTA+YDrttQjEYiaWKxvGFigMWZxraup/+/k3n9fP6eyxy+o uA4Yn/navCutUMg8l4J5BKoSNVFWQ01z6xjhwuHDez77bEOVKit/9rPjDX+7q8n/hJYrh1uU0YJ2 9GKMGm0O0ibOQAmQAj9qNh86lXxojYi4Oy+jFRfBuP3pp588SJv6j85mZSFnZu7fv2f79pgNG9au X78GA4o1bVqPwvJ59ZTjJ3oEJm5LunD49JXUzGtpF24cO3t9c+LZ6IMXvp8Whq6MjAz/Ht+qlQ1h mMy24+jlQ6eupJy9dvLctWMZ1zbuPR25+/SK2FMy2xsBL741oNrkLV+/OaDqP0b/t1rZBPPHaEmb uXnWQ7Q+ZJZby3+s/y14DC0F1YJp3U6buSptWiewsJlfajIG8+NWrWyCZRU397+I86MFC2q41aoe zG/+MbJ5XbN+kPbRB2g1//rXv4YOHXrq1CkMNv+6ptGiZtLpS0ErN89fn/jV99PRgoSJnCnfUutu 4DRzjKsjF02Z84+pc/45dkrrqH1vL9tuiZohWwqi5sZKgeufQ9Sci6i5GlHzuVkrfz4n9LfT5nSY t6Lx1JDacxf2VhM5YfJ+btlpzrRlO5dsPNTCb+F7vZZ+/MPK9sPXdpkQ3Xf2jsFBe0aHHpgQcWTy mqPjI46MWJr4w4LdATO3bz+YMSt8z6j5m9UUzrncB7zGgaq4gtMsZNPEt354cVxU+xHRbT5e/PNP wixREzmz0/YqfvG/6LLzF99sr/LVphdCj/3YrG+li5fNfrO6Pm1qUVM+Rmv9/U3LW5owZcqUnTt3 4pT34CWMiKiscJE2kdZwa7nI1X0h0FXJmdl4crQ8P96wcO/fgMePHzty1PDBkxeH7Tw9ZV3qoOVH LMsyLEk/Wm4thcG4VY2WZcra1MDNaf/oM1dN4dykKRMOHjyIgCcx0kZ8wjYEzj2JO1TdClEz4+wZ HEZiYuLc+a5/LxT09w8iZdof/x3Z0n5BF+JEbm6u+fvH5Cs6QuORI0fwMtand68ePbp16/Zt165+ uO3W1VLAon5v06+zX+dOMqBv395r1671YtqUPISzApdu562OHAhF2lR3q9X2JS9dP/nagS11oxa+ hJEYr1Y2DVvpsPiVsI3NEDiRLSV+4RZQPXkuWcruvlqbPEZxdNKk6Nq1j9SocfI//uPMr3+NJfTZ Z5E2cStVtKMXYzBSrWMC0ib2wXppDbh7LPek/kOnVnFWO2D//v3y+50InHfu3Bk3YbSayDmbtGn9 hyP10dnz589mZmZERIShXeDOLqa0OWbcyPv370tgRto8ffp0n4X7V+w4HX80C4HzcNrlLQcytx8+ uyP50oBpod3n7sVVuH+PrmplQ0ibltkWJETsOrsz+cKhU5cPnbwYvT9j28EzuI3Yecp/zh7Mho2+ P/g/mgQ8+5c+VXE/q5VNMH+MiI542rEcoQ3Lc6cDuTm57qZNzI9btb7G0fwYhvlNpjUh86v1C6BR v6hWK2/Nr+2/x/Obf4xsXtfkH8XkeQlPIHDs2LF+/foNHz4cIWHBggUYZv51TUjUHDZv/bGMq+Nn LUbOnL/x8Bd9J6MR56EETvmWWrcCp1vPVwuCB67b1VxFzWikzSrLY+qGrG8QtLZe0Ib/mLO60qyI 52aufG5G2M8HjKx37fq1DRsjVq1ZGBOzRa3vhMl96D9l3SffLz1/+ebfeoQgbbb7YeWXI9b5Tdyc dOryhat5F6/dWrD55NzotCmRx0aFHhy4aM+A+Tuzb+b/87ul67a7/tc6t+4HYzgB8AqFZ4/I7Uv+ OqDq4FV/nxb/VfvV1b5Y//zKtEFrzgxbd37E2nPDUYhIGxqeOqRZv0qnz6RhLbW+czidJG1qcC4t tELO1P7kJqImLjnwupmVlYVpsZZan4joyeIibeJJEC/GeB7EVaLlWrjgKh8vzRhjzZnWr3tw5707 WL582fcDvpsaGjsn6sR3wYfVEnIIt/0KCt+FFDRaq+NWp/iPW71ho+uLM1xWWt+z9JDJLwrS3z8b OnZEqnS4hDdvjgssvDp6cNViDKEREWTTpqiwFaHz5s0JnDdn/ry5WObNnTNz5vSxY0YNHvTj0KGD hg0bPHz4UCwjRw6fMH6MybRpEs4DnBS4E/CafebMGbxsn7Ky/DWPAjFhja+nt9wRVm3Lsia4yMPd hbXU+ibg+g/jR2z8eM6yqhPONka8xNlow3JmWt8OsZyXxfAvxKc2bFjn63uyVq1dvr5rq1dP/OUv 97344u4ePXZPn4pblNGCdvRiDEZivFrTFaRNnB4qaFpp720iU0s2K7gkvoheHB0G4xY/c/n5+R6k Tf1HZzMzz2RknA5fGYp23NMZGWeOHj3iVto0D2nz7t27ciyz587EqTtiyd6RyxJX7Di1ds/pbYfO btibvjs5c1fK5S5jVowJ3bd3797AhfPVyobmzp+NRD588Z7RKw4t33Ziza60LYnp6/ac3p18LuZA xvDgXaOXY7Y9gQvmZWZl9Jr//uDRP+CMVSt7lSVt3sxBmgdLqC9gTfiFSAOeNt1Om7r5ZRHoUiUr bX6TaU3YzK9Buyyq7u35cf/oJwfP5jfD5nVN3tu0sWrVqt69eyMPhIeHu/u8LVFzdviO0xeuD566 vF3XYYiavSet/GeP0WjPyMhITU21eYdzxIgR5t/hNAlpc83OPyFqBkVXCtr0wrLo363a9M3R1Ojk 1KiQVe8Erqk5I/y56SuemxZa6bvhddQ63nMi/XzdD8dFbE2O2HZUvbc5wvLe5sVrltdBWBB9HFFz QsSREcss723uPnphTWzKu90Ci/7kbfmtTXO/t4mnU8Q8vGalpKQcPnx447bVfxtYo+/St+Yn+neO qhl+YlDLwf9H+yNJsrw9oPrJtBNYy/glTF4WZ8yYgcCpN3nyZJxUs2fPxi0C58yZMw8dOoQdwFmB F1Cck/IMr2YhInqCmE6blot5XM1jKXg6tORMS9TEBUSOO+/d4TIiOjq6i1+nNXEpI1ce67HgYMFy AEt36y2WnrrGkSuPYmnbbZyawhDiIpJPoiP7HUnQwYoepE1rJCj0750SwnNzc5Ezb9++jRBr/v4x CaFx27ZtUZs2btywLjJy9YoVy1eELl+2bCmWJYtDlspft7B+DUxQ0MJFixYsWDA/MDAQ109Y0a28 54wkHxw+Xn1xvyFhyte0Jicn48Ubr6MHDx7cu23czlWvXD792YqZPvu2jcIYDDb/moph8sp98mwy cubY9Eafzvr3yP1zcLfbw55gZHEEzp2ff3bhlVf2VK26p2PHhL59j9WsubpCheTAQHQdXbAAZbSg Hb0Yg5EYLyu6tHlLtPyTjapbD1n/oVNr4MSRXcI9Ib1yauEWSRURTtYyYJM2z5/PPHfuLHLm0WNJ +/btWrdudVjYMrQjau7bt6djpw6rBzUsprSJeIwDwY9//K64CZPGH0o903NBYsjWk5G70xELI3am xSWd3ZBwFo2HU9MDevVYY/3NWJd279mlzbYwOmV1fFrMgTOrdp2OTz6HsszWM6D76jWrcG5YLu7H DDt16pTXTxJAdMTjYv3mbsvNBcuXeFvK1v9aWKrSYhmRhadPd9Omfn713wsX0C6L/fxupTWb+dUO W/+LLof776358X9VlRaP5jfD5PN2Zmbm6tWrt2zZ4tbz9v6jGYiUi9buzs65haj5RZ+J+qiZlHIK z37IFXhilMCZefbMv/71ubzDqabwEqTNiNjGQdbvBAqJ/tWKDW0vXzkvXUnH1s0K/Q9EzanLn5uy rFK/Ya9Iu3eFRO79w6dTLly5OWjutrbfh/1raGSncVEXs1XanLXu6OjQgyOWHRgUvDck+tjF7Nzf /2Ny8olCfxXGM4iaJn9vE09EZ8+eRc7HCxauDXbt2rUxeu3Hw/+7y5w/LjrYOyxlcLO+z0WsDo+K isLrLHoxBiMxHmvh5FGzOKK9LOIsSk9Pl1fGo0ePInAiZ+KVWD5Gi5dItKMXYzAS47EW1lWzEBE9 QVynTXlJtr6niSs0i+uWryq8YUmaCJqWv4uWm5frxnt3x44dW7x4cbt/tPObm1hombO/y5zELnP2 S0HfODQ0eVhgzMTZIdgJNYtzkjZ3796NF4bJkyfjmT04JGjVqlVr1qxByt28efPOnTvxRI+XELwA 2Nx6kDbl/lH/Kl4YoiZyJtImrrPN3z8mhYWvQG7EseDW5ILXuTFjR82ZMwshRs1SBDgT8NKI12xc P+H1Evc2ouaRI0cOHDiA3L5nz57du+N3rKp3LrlR8PTfbN0wAu146DMyMvCaauZxBNkE7l5sZfmu sQicI1Ibfrro39MzTuMlX09ereXhkDNVTeEN0U2aXKtbd2uVKsfCw9fXqJHh6xtVu7bl4tj6tZYo owXt6MUYjNz0P41N7kDigf2bt2zSL9Gbo/QfOpWoKY8XjgunkH6ZH+j6U99Im92saTPA/8tLly/h PLSHe1ofNb2eNnFv4KBwVa3p+12flREro/aeRBr8bu62zQfPBcWc/G7W5oAFiTsTDk+dPmXM2NH+ 3bu6/CVt0fe73ouXLHY5G84lbBpp8/Tp0949Q4RER2uisCyWP1Fs/TPFqqhjaTp/Hs+j7qZN3Mrq 2oJG/WKZVzc/WmRdM2SwrG6ZwTKJ5T+qqOP1+bU9F57NbwZ+anDCF9PzNiLl5CUx13PzZy5ebxM1 d+9Pit93CHElKSkJz43YigTOnJybWBFlk0+JJiFthm/9vXwn0KKNVZes/euFrFPStSdx4Yzl/26N mpa02WdobWn3unZ9gz/9ftmFKznrdp74cnjkV6PW+03cHDBj+3fzdv6wcPePi/YMDdm759iFS9fy /tl/2ZwVrv8ul0kmf2/TPm3iAmBj1IbO4/766YR6wYnfGaRN4xdQg7QZGBg4Y8aMJUuWHD58GC32 adO7pwERUSlhNm1afk3Ten0mSdPylmbOTflj3HnImu68d4cna7zWjhs39vdfh5hf3vObtGXLFqyr ZnFOS5vINtOmTZs5cybC7fLly8PCwjZt2rR9+/a4uDivp028wMjrhPWesXx0Vq5X7ty5U0zvbeLo ECA3bFiH/Ix7ZqvO5s2WUG0VvWnTRlnWrVu7YoUloO7btw97q2YpGhwyjh25C/fbqVOn8EqMvTp4 8OD+/ft3796+a2PLI3F/Wjr7t3t3BOGlGpdZqampeAQ9S5u4q6MPLkHg/GHD77st/0PMwXC8SGuw AyAv2FjFi1kCu7rupZfO/PrX+3/1q11Vqpz9zW821Ky5+dtvcYw4KNjStWvUSy+hHb0Yg5EYj73F FYlnu6H/0Kn2AVrADx6SEkI7bIqOwum0a4+L72cGLW1O6vqH7t2+RKR0tmwa+t8SNYvjvc0VYcuR HLBgt2X5tlvnSZMnnsi4OCPycL+FCQiKM9cmJZ/M9Pu288aNG4aPHNa7b0DPXt2PmfiLRKdOpeHH 1uFsXfw6yWy9+vTs1KXj4GE/4vzHGevZQ2MM0VEeKWE5feXGwlKwnNHXLf+z/Nd6erubNq1TKdap rTcWloL9/G6ltbI+vxk48YrveRupclX8ias3bw0eY/ldTS1qbtq6E69H8gdzd+zYgdcgvAKuX79+ 8uTJyJmIH158ThZIm8s3/9by9bNrn5u39ufzV70StnIm2q9czfpx9O+nh1axRk3L0nvwS7KK113I utxt1MpXP526Ni71Ynbuhl0nZ68+MHB+3NCgXcGbjm0/lJl9M3/dzuO//+cUL0ZN8/C8itcL7ZO0 CQkJeIDw0OBVc8jcLh8O9/1T7wpR0RvQgnb0YgxGYrzLZw+cUZgc59g5y1dCZGAVCZxIm7ggWbdu HS42MJVETZtP0qopiIieLC7SplvMvyrjiRVPskeOHMFr8C4TMAwX90gyWFFN4ZykzT179iAJ7NwZ J/ESSVLIhN5Km24xf/+YJG9vurUsWboE11hq/SLDiy4ukhAF8QKMGInUd/LkyaNH9x85tOHQvqVx m3+MWf897lg8cMiZ6MLLqlznmU+b8sqN1IUV4dipg/O29R+29qPl8RP2HI1JSUtKP2OJmphZ/2Ek rAhqliLAJNj6wV69dv7iFyk1ahz08Vn/3HNRH3ywadMmXJQg5KMAGz/4AO3oxRiM3Ovvj13C3WLy MG3oP3SanX0VIRNwKZybmzt6/EhEzbXr1uJcitocpVYwhEP47sMXowb6xo38z50jHi1asLRdRv7n 2u99+334olrfe3BP4mHC+YCfzZiYmLDwsB4B/iNGDJs6bSp+SPGEgEKPnv6rVq3q2s1vw4Z1o8eO wo/qt127qPUNIXD2699n3PgxM2fNxKU8ZpswcUJXf7+JEyfazIYLO+/+e4TmxMnjSI9uLSfT3PiF PcyP9OXW8lTNb0axPm8jWH47fBFy5rZDGZOXxEjUjNmxx/JLGgkJe61QQLYEvDwlJyfjRMWTpzxr qVmKDOf28rBpgyf8v4Hjag0YW/P70b/6bkSNcVM+O3HiRNKRvd36/6LHoJ93H/Sc/8AKWAaN/hN+ MD17pnIJP2tLVm//7UcT2g9aMW9Vwu6ks1dv3MKy50hm4JqEzwcsbdFh2tpN2/ECgZFqnaKx/tqm 2b+3iQPHdvEQIPjhsTh48CAeHbkmCVw58dNRv9u125Iz0Y5ejMFIvAaZeerA/YmXOQyWdzjxcoB1 g4KCcCmChCnQgnbtUzne/ecGIqJSxWna3BS9Ea+ybi0xW039NXY9PCnjSdYkkxeIiIt4LcfzuAfw SmMybXpw/2yJcf317u7CfYKLlZSUFLyMhYWFLViwYMaMGePGjZswYcL48eNxqT137tzVq1cjq+NC 33zMMwObhqtXr1y8mJmVddb6t2YyzmbgpTs25WBwavKW0ycPau86IouiG6+pWhpUsxgq2ITlVxgl fWEGHO+J9ORlu8bM2dZnafyYM2dPn808c87y9aqnz58/g1EY78XDxGzYbuLAgTHNm2/+859jBwzA SbJz507LP1rs2mX5otgdO1DY+t13m/70py1//vO+77/HBQT2E/ts8jBtIG1aPjxg/eVMVHGLnIn8 eevWrRFjhsu7mnv27pbBZsRHhXzX9lfd/voslq4tyhUs/9tuUV29P6i2btmUK1e89q8SGtwhuFvk OgyPI+6obdtigoIX+vf49ttunRcvCcblHcaEhoYiFu7btxfR1GTaFFgdk/QI6IbZgkIWbtu+Fad9 cHCwfjbLKVUMUZPKhGJ93k5IPiOBE4v8yZOtu4/sP2x5Qwzk69NACmjByan9A5m3nrJwbuP5KuPs mYOHt+3aExkbt3LL1uVR0YujN6+KiYnZvHlT5PoFGzYFb45Zti02LH535JFky7cVFEfawZP/gQMH tmzZsnRZWI8fp7/fcdQfPhrxm7+N/M93h//h74Pe/XJQ135j8PIUHh6OMRiJfVBrFgGiJg7HzCdp Be4u3P94IsLDIb8MgmcJZMsjR47gFmW0oB29eKTw3KVWMwd3qZY58fKHrQBeCqWAFsmZmNaLL1hE RKWQ07SpsV6bmaJWeNw2b45GYvR4QTBTE5mA1wm8tuFlCQkEL5mRkZGIditXroyIiFi7du3mzZsT EhJSU1Px0uJx9jADr1V4VZPL95MnT+IFEhuVl0m85MuVRPFtHTNjB7AJHKNkQsBG9dCCLnlZdXdP 9PPjMDGPthUNWtDl2fwuyQ7I0eFOxjWiJUBbyUUk7mTc8+jCAOwnYLxa2X1hK0PljR2bq96RY4aN HDt8YVAg9kQNdQfuPOx4auqxxMR9sbEx69evDg1dHBISGBoaEhm5csuWqD174pOSDqWlnUQS9Pp9 6IzcsfqHVQpRUVFdu/khHO6I26GGmuDd2ehJhZMEP7zF8bwtgVOW46fPyZOSQNn+zER7MT1lYWZs Bc+9iDQ4EHnWkn/+k3/7w/MVerFLxbEDAvuATR8/fjwxMTE2NnbdunXLly9ftmzZqlWroqOjcecn JSUheGM3vLgDJn9v0waetHFXyN2F+0e7i3Af4iiKsntYV56XQB50bAjlIr5MEBGVIa7TJhERERER EZG7mDaJiIiozHPr9zaJiKhkMG0SERFRmefu720SEVEJYNokIiKiJ4Fnv7dJRETFh2mTiIiIiIiI vI9pk4iIiIiIiLzvmRXhkVy4cOHChQsXLly4cOHChYtbi8qUTgwZOcmSNs8QERERERERmca0SURE RERERN7HtElERERERETex7RJRERERERE3se0+Xg888wzqmROnz592rZtqyqlUtWqVU+ePKkqnvLK JMXE431z9lh7fUI9GWNm0zivAgMDpUxERERE5EVup80tMZtHjRluv2yKjlIjSlZycvKLL76oKmfO 7Nq1q2HDhs8++2zjxo0TExNVa2H79u2TMX/4wx/279+PlpEjR9arV+9nP/tZ3bp1w8PDZZg9m23B wIEDceGOqVTdkP7S30xg0Bw+fLhmzZpHjx5Fefbs2b/85S+xGyhIb9OmTSMiIqQMNjNr1TFjxvz6 17/GruJ27Nix0ojeli1bShlat24t43GrhxaX233zzTcXLVokZVkL9+drr722detWaTQmW9FPYkMG mGF+pDA53mDfjDmb3/4eA6kaMzNMxjgbqd80zitfX185u4iIiIiIvMjttIlgedYRtKsRJctyha67 pEbIHD9+PApdu3b96KOPpNEG2gMCAlDA7WeffYZCq1atJBQhStWoUcMyyBGbbc2YMQOpVfKqGfp1 9WWXhgwZ8u2330r5hRde2GNVuXJlVFetWtWkSRPpEjYzSxW7ikSxefNmlHH78ssvo0V669evHxMT gzKCOsoy3n73XG73m2++QWiXsqx++vRpifHSaIZ+Ehv2u+SM+ZFuMdg3Y872x2ZC7x6gjDG5aZxd kydPVhUiIiIiIi/xPG2eO3fu/IXzkJl5zj5tJiYmIo08++yzCDDlypVDi/7CV8oY88Ybb/zsZz+r VauWvKOI9sOHDyPvJScnV6pUKSUlBY3Hjx9HwkGLZU1H9DPLtiAtLQ0zSNlG1apVZeajR4/+6le/ kkaBgPTcc8+piiP6beEAEbpUpQAmxFFjE2PGjFFNBbCukLK/vz/2ECMR/IyP9+23316xYoWUMQyR D8lQjs5+H2R+jVR/+9vf6t+zxWzIySigFwG7devWKCOBoKztnmWcjsvt4ijatGkjZf3q8sYvWuSR RRmTYH/QjluUpVdW0U+C/PPiiy/i9HjvvfdQlTEgZW02sLnPZRigbH+OoaV58+b2Z6b9SJsd0O+b dgiNGzfWV7Ujwmx//vOfZSvO5tdPCDIMbLYL9gfYuXNnmWrDhg1osZ9cZjO5aZwPcg4QEREREXmR J2kzMzPzYlbW5SuXr169cuXqlUuXL1+4cN4mbeLitWvXrghvuPjWX/gKKb///vsLFy5EYc2aNS+/ /LK0ax/wa9eunbz9givsL7/8Uhod0s/861//es6cOSjExMTgAl0abWiJFGzGDBkyRPukqEP6bf3b v/2bXMTXrFlTLuI1O3bssE+tNvfA+PHjcf9EREQgWqDF4Hh/+ctfYqSU0Yu8hziKgv0bjICZbaAR h6nNAChj51GQXl9f302bNsmbkNJiXU9BFVxuF3e4JFiQtbCVgIAAhC5p0R5ZhL2BAweigFvpBVlF PwnuQJw8mGTQoEGoansC+tk02n2uH2l/jiFlIaph2v3798tIubUfabMD+n1r0aKFvD0u7I8Is8lW kPScza+fELTdttmuRn+AOMkxAKfQH/7wB7Q4/FHSbl1uOi0trW7duqpCRERERORKZKSDb/axb/Qk bWZlZV29evXGzRs5Vhh05fIVm7SJDIarYSnrL3yFlDEGBWH//icizW9/+1sUcD1t/Lt/+rWQ+mrV qoVwhQAgl+b29AlTX543b15wcLCqOKHfFsq4akcBK2KjKCBafP7550i8yHL6kcJmXVUqKBscr00k 1sgbjIjH+t+otNmuVI3T5tChQzEDbrUWm0lsONwu5tTucKwOeHxbtWqF+0RapAu0cwO3KEujDNBP Ur9+/bfffnvatGnyK4X6GfRl+/vcZluoCjnH0KJ9QQ4atVv7kTY7oN837RCEVtWOCLeIcNZOp/Pr JwS0S8FmuwYHqN+cZV4r/Y+S3LrcNMj5QERERETkUnJy8kcffTR37lxVt0IVjTafSPUkbV66ePHa tWu5ubm38vNv3crPuXkT4dMmberjDa5xtVshZVwEa2OEfgzUrVt3zpw52ttfztisJdauXdu0aVNV KQwZSa7jcV+gLI2ITAiNUjag31blypW13CKBEPfvkCFDDh48iOOy3yt9i8Oys+PFTtrcUYC8JyNt fqPSZrtSRY7VPosLKEuylV7kIsQb2YS02Eyi52y7gDnlV0PtV9e3aI87biUsgTZAmwSPERLXe++9 J2+76WfQl+3vc4fb0jg7M+1H2uwAaPtmM9j+iPQDnM0P2oSg7bbNdg0OEA+cpET7yfUjXW6a720S ERERkVtsAqfDqAmepM3Lly/fvHHz9u3b9+//9NO9e7fybl27fs0mbTZu3Hj4cEvLokWL5JL3xRdf jIiIwFXv2LFjpaVVq1a4jEYLrqQ/+eQTtGiX0WLo0KGINMuXL1d1J2zWgsTEROzADOsX4djDHdGr Vy8UevToIdtdvHixvAXnkn5bmEe+vGfKlCnygUZktq1bt+KIsGltpFbARb/8Uh/o59HKzo4X09p8 UheaNGmCRI2CzW9U6mcGqSK9/PrXv960aRPKuEUZ+6z16kmLfbvG2XahTZs2cp87m1Y0b958wIAB KHz//fdatNYGaJPg0UHu2rdvn7wL5+zes7/P9SPtzzE8UmOsv/2Is1HGy639SJsdAG3fcCf069dP GsH+iDBAzv/AwEBn84M2IWgHZbNd+wPErYTPrl27vv/++2hx9qNkctP8vU0iIiIicpcWOJ1FTfAo bV66dOPGjfxbt+7dvXfn7p3cvLxr12zTZkxMjK+vL67733vvPbnkReCpWrUqkgmSnrQg4OE6GGMA V8NokXbN4cOH//M//1NVnMAqQtWtYaNGjRry8U6H9u/f36hRo2effRa38o2yaooCMsye6i4YgP1H qMA8DRs2lHizZs0abBo7gBSqDdMKiJH16tWTCKE1glZ2dryDBg3SvpNWIClpOU3/G5Wo6mcGrYqQ X6tWLVQRNfV/AUUKGmnBrZ50gcF2Afnqm2++QUG/itC34L7CPaa/30AboE2COIR7EueMfF2qs3vP /j7Xj7Q/xzZv3owzs1y5cphf3pGWtexH2uwAaPu2Y8cObAKrv/baa6jaHxG28vLLL6Plyy+/dDY/ 6O8xgbLNdu0PEDsvJzBOP0yLFvvJZaTcGm8aMLN2jEREREREJkngdBY1we206ezvbaJdjbAjl7we GDp0KK6JVeUp4Ox4te/pVfXSatGiRW+++aaquAOZHwcoZY8ncdeKFSvc/fio1/etxA7Wnrbpo0eP IhjjVtqJiIiIiMxDSDHIKW6nTQ/8rOB389z12muvab8YCfLmjJ7qMKSG6qgOQ2qojuooTjbHq9en T5+PnPz50NIDOy/fr+su3L3a260eT2Ler371K2wRESsiIkI1meP1fSuBg3VG23S7du3kG2uJiIiI iLyrJNImERERERERPW2YNomIiIiIiMj7mDaJiIiIiIjI+8ymTS5cuHDhwoULFy5cuHDhwsWtRcVK Jyxp80Sxmf3MbCwPiYiIiIiInjiDBqlCmaAioHNmxriFaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRp rHSlzWc6zpZF1YmIiIiIiEorpk1jjyFtGkRKgy4qeampqaNGjWrcuPEzVqpVZ+/eva1atapUqVKF ChVq1arVt2/fnJwc1WdOfn5+//79fXx8ypcvX6NGDZTv3Lmj+h4+PHDggL+/f/369StWrIgB2ETn zp1xXqluc1weBURFRb355pvYCg6kSZMmq1evVh1ERERERM4xbRpj2iSnJJ5pVGuBuLg4JEDVV6Bp 06aq2xyEVbVmAbSoPrsdEAi3MTExaoQJarUCqlVn/Pjxqk9H9REREREROce0aYxpk5xq0KDBsGHD UlNTHQawZs2aofHTTz/NyspCNT09vXXr1mgJCQmRAS5t2LAB46tXr757925UcYsyWtAuAxo3bjx5 8uSkpKT79++jisIbb7yBAfXr15cBZhgfxbFjx6T9k08+wSGgBeftF198Ib1ERERERAaekrSJy2NV clPJpU0tSdovMgC0luTz2c3GrqnQZV7lboF+S+Ly7/6kRjx8eCP/TsCKXT69gst3nlut56KOwbFZ N26pPqvsvNs9QuOrBwRhAG4xGC2qr4C2ofPX89rM2lTRbz4mnLk9GV2vjohAe+3vlshIaDg0HC0N hoSpugkZGRnt2rWTj5jiscnJyZFII736ssam8d69e8hIderUKV++PObBbJKF9LRVMLJKlSovvPDC 1KlTpatJkybo0gc/iXaNGjVSdXdYt2O7wzg0NObn56s6HpobN9DStm1bVXcFB4XxyJOq/vAh9h8t CH6qbufKlSsYUK5cOdw/qsk0rAiqUqBr165ofPXVV1Xdkb1793bo0KFGjRp4LCpXroxQfeDAAdVH RERERE+xpyFtIs4IVXeHSptDnZPc6BmP02bNviFaGQsSowzIu3MPqU/fhaVGn+AruSrzYED9wSts BmAVfV4FraveoFCtjAVds2OPSnnv6Uuo3rl3v1ynOagOWLXPuqprly5d8vHxkWwjJFaBDNCXNfrG +/fvy5t4etWrV8/MzJQBQtpn4z7Wka7AwECU9Z9rRQhEiz7amWed2HaH5WO09mmzZs2aqu5K7dq1 MR7niapb31dEi6+vr6rb0XI7tqWaTJMVVaVAgwYN0Lhs2TJVd0RW1MOxb9u2TXUTERER0dPqiU+b KmgWUK2mPUqblnRox4tpUyNZDouq62hd/st33n/wIGT3CalWDwiSAYMiE6Sld5jls5djow5JVYuj 2oCOwbGYofPiHVJFuwwQ0ojFt//S3acuoiU777bMmXP7bvnOc9HVN3wPqpGHzshICZ9mBAQEIJA0 atQI9wCqx44dQ1lSigzQlzX6xlGjRqHcuHHjpKQkVBFfP/30U7T4+fnJAGFdw7KhiIgIBFQEMGxa uu7du1etWjX0Jidb3rDNzs5GQIIrV67IALfIhlSlAKIsGrVP0qalpUmgrVixogxwCSMxXj4l28QK ZeMZevTogQE1atRQdXdgRVCVArIPiPGYuVKlSqjiuKKjo1W3VYsWLcLDw+Xri3And+7cGas0b95c eomIiIjoqfVkp00VMa0hU5XcDJylNG3KZ18RF6VartMcGaC9b4lMqB+A0GgzIDXLcmfhVqp1f1wu A4Q0YolPsyQlG18s3Iou+TBt/4i9KNfqt1i6zKhTpw7SiPwuokDZEnRMp015w03/0VmHbxta13hm 5syZql5Y79690YtohLJ8QvX999+XLndZt2O7w1FRUdKukU+lItOqEa7IWlJGtEbalEZnM4wYMUJW MX4r0hlZV1UKSKO/v78UNNrvjtpDkscARFNVJyIiIqKn1dOQNlXFrmpGKU2bqm7XIu862i9otxkg VZBqhS7zVN1KGrEgr6omnW2p56V37+lLLSauRcF/+U7VZ0K5cuWQRuQtOyFv2YFU9WWNvhFxS6o2 bGKYNDr7TCnCKnorVqyYk5Pz6quvouzxH/awbsd2hyE6OrpZs2YVKlTAVhDYMjIyMMzgnUkb8r6i /R1lPwMCXocOHSw78cwzEydOVK1uktVVpYD89mnr1q0l22dlZcnbyPoPIS9ZsqRVq1aVK1eWR1ag rLqJiIiI6Gn1xKdNVSpQpLSJWz2t3WMlljax2AyQqvbmp7O0qep2fPsvRW/vsN0yYUzKOdVhggdp 02aAs7QJMkDYt9h48803McDPzw+31apV0++SW6zbMdqQQCrDMPNfGGvy9zYvXbok33+LQ4iMjFSt 7sMMoCoFatasiUb9nwm9c+cOWrTEq72hak8GEBEREdFT62n4lqCiKGPvbWoflL2Rb/klOnvufpJW 1e0MWbsfvS/4L8Btle4LVas5r7zyCqKIwSdp5T09/a9Q2gxo2LBhhQoV9F/A45B+FYeQzWQMdO3a VbW6T2ZQFefkHVR/f39Vd8XMd9ImJCRIIPz8888RO1WrRzAJqEqBNm3aoFGfNuWLiLS0+cILL6A6 e/Zs+b1NyMvLs0xk4g4hIiIioicb06axx5A2K/rNl6R3IMP2G2ukHYuq27VoXwLUZtamjGxLQrhz 737EgdNvTFBveem/JQhV7VuCkB5lgJBGLKpuB5PLV9Fi+WLhVtVqjvYtQampqagmJycjPerzSfPm zVH+9NNPs7OzUUXUrFu3rn7A+PHjUcaw+Ph4eUMyKytr4cKF+o93gn4VZ2rVqiXD4uLiVJP7ZAZV 0fniiy/kGNPS0hARMaZcuXLHjh2TXpdc/r3NoKAgpG7ck8ic0lIUlmOwO4qQkBA0tm7dGoeAKu5n ORDtrpaP2q5evVoeCDya7777rmUiV/c8ERERET3xmDaNPYa0+cm8LVrYk0V1OAqBNi35d39qPMry 9zDtF22A/HlM/YIWZ38BRdUdeXPyOhmDNKuazEFisfkLKBJgQAYgN0pVM2TIECnIAHj77belxYbq trJvsTds2DCMKcqXuNpT3Y4GICerPnNatWql1iyAFtXnfAdAe6fRJbWCHdVd8OW6euXLl4+Ntfxr Bcg30OrJvyaADCAiIiKipxbTprFHadMZyY2ecZg2L93M7xgcW7NviLNv9DFuQW4cti4RAbKi3/xy nebU6rf488Ct+q+Wzc67HbBil0+vYMyPW5TlG2717Ke1N3lLEgZU6DLvnvu/7piRkdGuXbuKFStW qFDhiy++sP/s5eTJk2vXrl2uXDlfX1/5KKnNAJg5c2azZs0wCYZhcMeOHffu3av6rOxXsTdgwACM Mf/pVj2Z357qfvhw9erViGrYPewk4rHB97g6k5+f37dvX4RhBDzc9u/fXx8j1fYc8WLazMnJwT7U qlULB4LHC3E3Pj5e9Vm/oEj2EL01a9YcMWIEGm1mICIiIqKnE9OmMZU29YqYMPUcps2youmY1Uib 7eZuVvWieVz5BGkW29XeqSMiIiIiIm9h2jTGtOlYVPJZefMzZPejb0wtiseSNmfj7rf7K51ERERE ROQVTJvGmDYdkJyJpUafYA8+RutQyadN2SIMGTJENRVQHY6oEUWmpnNEjSgyNZ0jagQRERERUXFi 2jTGtOlAhS7zsPj2X6r/ddAiqmClKiUCm6tYsWKHDh3s/8ym7IxDakSRqekcUSOKTE3niBpBRERE RFScmDaNMW0SERERERF5gmnTGNMmERERERGRJ5g2jTFtEhEREREReYJp0xjTJhERERERkSeYNo0x bRIREREREXmCadMY0yYREREREZEnmDaNPZ60+czsjrKoOhERERERUVnDtGmMafMp9UxhqrUse2IO hIiIiIjKCqZNY0ybjpXAHqanp/v5+dWqVat8+fIVK1Zs1apVdHS06it+ks00qrVkyaabN2+u6g8f oiyNqu4Oj1ckIiIiIvIM06Yx/t6mY8WdNmNiYipXriwBSU91l6DHtV2QTZcrVy4vLw/VnJwclKVR BhARERERlWZMm8aYNh0r1rR55cqVKlWqIFN9+eWXqampaLl37150dPS7774rA0rSY0x3sumGDRuG hoaiumzZsgYNGkijDCAiIiIiKs2YNo2VaNrUIpy2qA4raZmevLXifL9Xlg3Ydj717fVTys/tXGf5 D4euntWPwXLgSkaj8OHorbv8x3VnkqRXZN/O6xEfWj0oAL24Ddi1Ai2qr4A2z/m86202zcIWfYJ7 zUzerrXbL2pNq8lJW16NGIG1sAms+GnM/PisNNVnwpAhQxCo2rRpo+qOnD9/vkOHDi+88EL58uVx izJaVF9BTgsPD69cuTLSWlZWFuasWLFi3bp109IseyIDcnJyvvjiiwoVKqCrbdu2GRkZsrqejFSV wpCBhw0bVqdOHexDpUqV2rVrl56ervoePsQuYcV69erl5+ejilvJimiXAS5Zt/zMwIEDP/nkE1Qx f//+/aVRBsDevXsxYY0aNbAPONjWrVsfOHBA9VnJeI1qLaA1jh8/vnbt2pjE19d36tSp0ktERERE VBRMm8ZKXdosN6eTFBDkpIAFgVA/BkuN4D5aGatocTTv3p36KwZrXbI0CBuS/9NdGSC0rnqhg7Sy 8aLWfPgQ8dWmSxbVbUKzZs0QgWJiYlTdzqVLl5CvJClp0IJ2GSAt8gYpvPHGG1KATz/9VBuAFCcF 4ePjo82gkS5V0bl//75+WlG9evXMzEwZYBMvbcKnGdYpn0GeRJzG5nAbFxcnjWpEwRg9JMZt27ap brsBqrWANCIzS0ETEhKiRhAREREReYpp01gp+pYgaUm6eu7AlQwpJ1xOP3btAgrVgwL0Y7B02B50 /8GDjrHBUv18a6AMGJQQKS3owoDOOxZLFe0yQEgjFt+l/XdfPIWW7Nt5vXeHSS9oA1Rdp8K8LtIV e+E4qvfu34/OPPruxmnSa0bFihUReJCvVN1OQEAABiDLHTt2DFXcNmrUCC09evSQAZbAZM2rWjyL jo7evXs3CrVq1dIGaDOkpqbKDL1797ZO8IiMVBWdUaNGob1x48ZJSZa3jhFTkWPR4ufnJwMAD7H8 9umXX36JW5Tlg8EmYRVAATF4yJAhSJv6RtGiRYvw8PA7d+6gfOPGjc6dO6NX/8VCGpsVhTTWrVsX mRZVzCAJHIFfBhAREREReYxp01ipS5sOywh4WlkWpFBUU69nSbVmSF8ZoL2xiS79gLrLf5QBQhqx OPsErDZA1XW0t1VbR81cdnLf+TzLo+IWiUCq4kidOnUwAOlR1R8+lCT5yiuvSNU6gSWvgk0ZUVYb YDCDRkaqio68b6n/6CyiGlpq1qyp6lZLliyxTmCBsmo1R9ZCAWG1WrVq7dq10zc6dO/ePfRWqlRJ 1XUcriiN8fHxqm79pVm0yL1ERERERFQUTJvGykbaLDenk1bWd4FUtTiqff5WqmAzQEgjlvsPHqim wrQBqq6DhKl93FcWRNnZR2NVtwny3iaCk6rbKV++PAYgPaq69XOtaKlQoYJUUQaH5XLlymmNBjNo ZKSq6Mg+2EO7GlHg888/R/sXX3yh6qbJhChERESgIGFVaxRobNWqVeXKlbWvqwU5RhvSpSoFzDcS EREREbmLadNY2UibNmWtiqwoVWdp036AkEZtmD3jAek5V4bsX9s6auYLC/y1kQP3rVHdrjRu3Bhp x+D3NouSNqUsBfsZ7LOijFQVHWdpE9QIq/z8fHkn9pVXXjH/G5vCfjbQN44YMUKq9mSAnsN2841E RERERO5i2jRWVtOmtz5Jq+p2XA7QbMg4IiMrB3ZTTa4MHDgQaad169aqbsfkJ2kNylKwn8HX11fV C9gnW9GwYUOEW5cB0t/f37opi65du6pWc2QtVSmgb3zhhRdQnj17tvzeJuTl5ekH6DlsN99IRERE ROQupk1jZTVtyrcEaV8C9GnMfBmg/5YgVLUBQ/avlQFCGrGoup2K8/1kwIErtn81pOnqMYEpOzNy slHGPqw7kyQjbd4+NaD/e5vyLT4Ie9HR0e+//74MkG8Jql+/vvQmJycj+6HF5luCDMpSwAxYF9XU 1FSZATNbBz6CMWhHolP1AuPHj0d78+bN4+PjJYtmZWUtXLiwadOmMgCwzxiDUBoZGYlblA3esLWH 8aAqBfSNMufq1atlB3As7777rn6AnsN2841ERERERO5i2jTmOG3qqVaP2KRNSWUOF61XP9JZGYuz v4CS/9PdhuFDtS5Z0OLsL6Coup1PtszTxtiMtGnXFr84N74jJyoqSr7N1Yb0OvsLKMh7MkBaDMpS aNu2rRSEj4+PNoNm8uTJqttKtVq9/fbbqrUw6c3Ozq5ZsyaqmAFVmQctaJcBLlknK7RF0DfKN9Dq SQ4HGQBStafvlbLGYSMRERERkbuYNo05SJteVHxpMzn7fKPw4eXndq4XOmjdGcuf6NBk384L2LXC J7gXenGLMlpUXwFtHlW3cyn/ZsfY4Johfe2/dgjJFnM2jhhVwfqnUCrO92u2ZuzkpC2q27S0tDQ/ P79atWqVK1euQoUKiHaIoKrP+kZihw4dqlSpUr58edx++eWX2h+6BH1ecliWQk5OzhdffIHJK1as +Mknn2Rk2L5PK4YMGVK9enVZRTUVmDlzZrNmzbA6drJ27dodO3aUPyUC8uVAb7zxhlShefPmaJE/ +GmGdYO2W9Q33rt3r2/fvojZ2Dpy7IgRI2wGgFTt6XulrHHYSERERETkLqZNYyWaNotOgp8++5FD DFRERERERMWNadMY0+aTiWmTiIiIiKi4MW0aY9p8Mj32tCk74JAaQURERERUxjFtGitjabPCvC6y qDo5UcFKVR4H2QGH1AgiIiIiojKOadNYGUubREREREREpQTTpjGmTSIiIiIiIk8wbRpj2iQiIiIi IvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGnti0yb/MicRERERERUr pk1jJZo2SzIBluS2iIiIiIjoKcS0aYxpk4iIiIiIyBNMm8ae2LRJRERERERUrJg2jTFtEhERERER eYJp09jjSZvJ2ecbhQ8vP7dz/RWD151JUt1WN+7kB+xa4RPcC73VFvXsGBucdeuG6rOKz0prGD5U 1o05l6LNKb1aVVukXaO1H7p6ttmasRXmdakc2M0vbkn+T3fVCCIiIiIiIhOYNo2ptDnUOcmNnnGW NmsE99HK5eZ0QvCTAXn37jQIG6J1yYLBV/JzZUDajcsIh1pXpfldtbIM0KraIu0arV2/D1gQcdUI IiIiIiIiE5g2jT1Km5IPbRRT2uywPej+gwcdY4Ol+mnMfBkwKCFSWnrvDkN17KEoqWpR0C9uibR8 vjXw3v37WFGqWGSAxmW7/87l2IeQE7ul6hPcS40gIiIiIiIygWnT2ONJm8euXUA19XqWVGuG9JUB 9VcMlpacu7dRRRqUqu/S/jLglWUDpEVmwK1UscgAjcv27Nt5qGqbKDenkwwgIiIiIiIyg2nT2ONJ m6pe0FJhXheplp/bWRujX9BuM0CqWlbUWjTm2+1biIiIiIiIXGLaNFYobeJWT2v3mHHa1LKiy7SJ RQaUm9NJX2XaJCIiIiKix4Vp01ip+CRtjeA+MkD7JO2NO/nSYqPW4n4ywGYGLDJAY77dvoWIiIiI iMglpk1jj/NbgjrvWCxV+28JarNpVkZONlru3L8XcfrAG5ETZABW1FbBDEX5liBVZ9okIiIiIiKP MG0aezxp09lfQMn/6W7jiFFal36RAanXsyrO99MazfwFFG2xGSBVsG8hIiIiIiJyiWnT2KO06Yzk Rs84S5sHrmQ0Ch9efm7nOst/WHcmSXVbIXAOS1zXMHwoUiWCaK3F/T7fGhiflaa6Hz7cdj4VvVj3 lWUDNmQckQm1b5TVNmG/2AyQKti3EBERERERucS0aUylTb0iJkw9m7TpdTfu5EtQrBzYTTURERER ERGVCKZNY2UvbbaOmhmflXb/wYP8n+5qv8bZZtMs1U1ERERERFQimDaNlb20KfFSv5Sf2znhcrrq JiIiIiIiKhFMm8bKXtqMu3Cy3ea5lQO7VZjXBbdto2cfuJKh+oiIiIiIiEoK06axsv17m0RERERE RI8L06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGm TSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIi TzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9ok IiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE 06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIi IiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBt GmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0a8yRt7j+S MmLV7k9mbv7r+I1Y/jlry+jVu9GounX0afOZjrNtFmknIiIiIiIqi5g2jbmdNpdsO/C3SVGdF+8a s+nonJ0nsKCAaquJG9GlBhVg2iQiIiIioicV06Yx99Lm4m0HWk2MGh11ZPaOEzYLGtGFAWqolT5t apg2iYiIiIjoCcC0acyNtLn/SMo7EzYMXZ80ZWuqLLLTWhVdGJCg+0gt0yYRERERET2pmDaNuZE2 R0bs/teCuDHRR7Ul/WouFn0LBgxbGa9W8Cht3si/E7Bil0+v4PKd51bruahjcGzWjVvSJWtN35pc 0W/+KwOWbUs9//aU9RhW54flh85eNTNAxB6/0HZ2dOVugejCbYuJayMPnVF9RERERERE5jBtGlNp EwnTGcmN0G5GdEB44uD1SQYLBnw8I1qt4H7azLtzr8GQMG2ALDX6BF/JzUevVMt1miMFZEUpYGkz a5OZAUJr1C/RRzNVNxERERERkQlMm8YepU3Jhzb07X8Zs65vxIF+qx4tstP6lr4RiW+MXqtWcD9t DopMkK7eYbtRHRt1SKoBK3ahKuWkc1cPZFyRckL65WMXrqFQPSDIzADRfFxkeOKpO/fuo7z6YLqM 1MdRIiIiIiIil5g2jbmTNkev7Raa4L/i0SI7rW/pGrqv5dh1agX302b9wSukK+f2XVTvP3ggVd/+ S1GVsnWgbblCl3n2jfYDHJKRlbsFqjoREREREZEJTJvG3EibH02N+nxhXMfFu7VFdlrfggEfT4tS K7ifNvWffdUvaEevlGWkTblcpzn2jfYDAAl2bNShV0dEVPSbr33mFotsgoiIiIiIyCSmTWOF0iZu 9bR2MSw8/m9TNn++cKe2yE7rWzBgSJjn3xLkLG1iQa9WcFZ22GhT9l++U6r2iwwgIiIiIiIyg2nT mBvvbSYkpbQYHdlm9raP58XKIjutVdGFARimVnCSNrVIef/BA9VUQPsk7Y38O6pJR7oMyg4bbcoV usyTavTRTOzAvfv3paoNICIiIiIiMoNp05gbaROCYhKbj4x8b0ZM61nbbBY0ogsD1FArh2mz4dBw SXdD1u63CZzatwS1mbUpIzsHLXfu3Y84cPqNCZEoS5d1oOOyw0abspY2D529iq33Dd8jVW0AERER ERGRGUybxtxLm7BoS2KL0ZF/Hb/xnalb/jY9BgsKqKLRJmqCw7Q5NeaIFvC0Rbry7/7UeFSETZcs 6NUKzsoOG23KXy7aJlVZqgcEaWUZQEREREREZAbTprFHadMZyY16+4+k/Bga12bShmbDV/9lZORH UzcOCduJRtWt4zBtwsTNh+v+uFz/JT2qwxo4h61LbDg0XL7Fp1a/xZ8Hbo1Py0KXfqTDssNGm3LO 7btdl+6s0n0hJm8yetWhs1elVxtARERERERkBtOmMZU29RwmTM84S5tERERERERlHdOmMaZNIiIi IiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRorubS5/XQ2ltJfJiIiIiIiMoNp01hJv7fp LOOVtjIREREREZExpk1j/CQtERERERGRJ5g2jTFtEhEREREReYJp0xjTJhERERERkSeYNo0xbRIR EREREXmCadMY06ZTz8zuKIuqExERERER6TBtGnt60+al/JtfbF1YZWH38nM7O0yVTJul3zOFqVYi IiIiohLBtGns6U2b7TbP1fKkw1TprL00ePddBK2HvXurqggIsDS+/baqPg1UyiygWomIiIiISgTT prGnN21WmNdFwmRm7jXVVHakpj4sV+5h+fIP09JUCwpowXLsmGp5qjBtEhEREVHJY9o09vSmzdL8 1qUZXbta3sls21ZVUUDVz09VnzZMm0RERERU8pg2jT2NaVPLmTaLs15p13y+NVDa47MsbyziVqqf bJknA+DGnfyAXSt8gnuVn9u52qKeHWODs27dUH1Wk5O2vBoxouJ8PwzAsE9j5sts5l258rByZUvC 3Lv34e7dlkKlSpbG0kbLgcOGDatSpcoLL7wwdepU6YJ79+6hvU6dOuXLl69UqVK7du3S09NVn9Xe vXs7dOhQo0YNDKhcuXLr1q0PHDig+nS0rRARERERlRimTWNMm48WZ73Srsm+nVcjuA/am60Ziypu UUZivJKfKwPy7t1pEDZEW10WrKINQBC16ZVFes0bMcISMhs3tiwooOoByWmg6nZUt6dZTtadjRNB R7ru37//xhtvqKYC1atXz8zMlAGgWnUQO7dt26a6C0iXqhARERERlQimTWP8JK3TjGcwIOpssnQN 3LdGCqvTD6o+nHMJkdLYe3cYqmMPRUkVIVMGaL8yGnvhOKr37t+Pzjz67sZp0mvenTsPa9VC0LIs KKDqAclpoOp2VLenWU7WbdSoUUREBOLljRs3AgICpGvUqFHoaty4cVJSEqqXLl369NNP0eKn+0Bw ixYtwsPD71iPDet27twZA5o3by69Gss2mDaJiIiIqGQxbRpj2vQkbULnHYu1AV9sXahareqvGCzt OXdvo3r/wQOp+i7tLwPkrVEsraNmLju573ye5XH1TEiIJWpiQcEzktNA1e2o7qKlzZkzZ6q6ToMG DdCl/+gs8iRaatasqep27t27hwGVKlVS9QKWbTBtEhEREVHJYto0xrTpYdpEkqwZ0he9VRZ2z76d p1qttD/gabOgXQYgYZab00nfVXf5j7OPxkqvuyRtllqSAxEjVV2nfPny0msD7WrEw4dLlixp1apV 5cqVy5Urp7qfeQZl1V1A2lWFiIiIiKhEMG0aY9r0MG0eunpWG7D30mnVauUsbWJRIx4+TM+5MmT/ 2tZRM19Y4K/1Dty3RnW7o0ykTVUpzFnaBBkwYsQIVbcjAzQOG4mIiIiIihXTpjGmTQ/TZsPwoeiq HhSA2wZhQ1SrlfZJ2ht38lWToQ0ZR2R85cBuqskdCFmlOWcZ5MCGDRtWqFAhP9/pvfTCCy9g3dmz Z8vvbUJeXp7DCSW43r9/X9WJiIiIiIof06Yxpk1P0ubUIzFoLzen07bzqfKZ2LGHolQfzrmCbwlq s2lWRk42Wu7cvxdx+sAbkRNkQNPVYwJTdkrX/QcP1p1JkvEV5nWRAW4pYtqU8Aaqbkd1e7oNg3XH jx+PrubNm8fHx0tQzMrKWrhwYdOmTWUAsigGrF69WnqTk5Pfffdd63y2E9avXx+NyKWqTkRERERU /Jg2jTFt2oZJrd1+kQHn865XDuyGattoy6HhFuVK87tm5l6TAfk/3W0cMUpbS7/IAJtGbfGLWyID 3ILk5WkStJDwBqpuR3V7ug3jdd9++20ZYEN65Rto9QICAqQgAzSTJ0+WdqFaiYiIiIiKE9OmMaZN t9OmxEssCZctX6a6++IpqUr4FAicwxLXNQwfWnG+X7k5nWot7vf51sD4rDTpPXT1bMCuFUik8qdQ MKbZmrGTk7ZIr7uQrYoSr1Q+cz6F6vZ0Gy7XnTlzZrNmzSpWrFiuXLnatWt37Nhx79690nXv3r2+ ffvWqFEDXTVr1hxh/YuiziYcMmRI9erVnfUSEREREXkd06axpzdtEhERERERFQXTpjGmTSIiIiIi Ik8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPa JCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2ix7cssCta9ERERERE8upk1jTJtlj8pzpZvaVyIiIiKi JxfTpjGmzbJH5bnSTe0rEREREdGTi2nTGNOmrWdmd5RF1UsfledKN7WvRERERERPLqZNY0ybtspQ 2nzeyr4MbdqgJbdfP1UVffpYGj/4QFWNmZxBv119We0rEREREdGTi2nTGNOmrScjbR4+nFulSm7V qrnJyaoFBbRgOXhQtRgzOYN+u/qy2lciIiIioicX06Yxpk1bT0bahO7d0Zj7z3+qKgqo+vurqhlm ZtBvV19W+0pERERE9ORi2jT2NKbNyUlbXo0YUXG+X/m5nX2Ce30aMz8+K0316dJmcvb5ZmvGVpjX pXJgN7+4Jfk/3VUjHj7Mvp3XIz60elAAZsBtwK4VaEH7/QcP0IJ1c+7elpEaDEA7ejEGVeN9MCZx DvTpTl8WZ8/m1qhhyYdxcbmxsZaCj4+l0TwzM+i3qy+rfSUiIiIienIxbRp76tImkqGWJ/WL6tal zZohfbUyFqwoA/Lu3am/YrC+C0uDsCESR5uuHoPqujNJMlgTeeYQ2pusGo2yy30wJnEO9OlOX9aM HGmJiK+/bllQQFUj4x1SI6wMZhD6VfRlta9ERERERE8upk1jT13arDCvi0S72AvHUb13/3505tF3 N06TXtCyn//O5fcfPAg5sVuq1YMCZMCghEhp6RgbjAGddyyWKtrR6xe3BOWpR2JksGZy0ha0oxdl l/tgTOKcGdeu5data0mJWFBAVSPJ0CE1wspgBmNqX4mIiIiInlxMm8aeurRZI7iPJL3WUTOXndx3 Ps9yn+pJLxbtw7FSLTenkwzQ3thMvZ6FKm6lWnf5j6iGpiWg/PnWQJTbbZ6LMm5R/mTLPJTRi7LL fTCm8pw5QUEqK6LgGc9mUPtKRERERPTkYto09tSlTaQ75EYJe7IgJc4+Gqu6HX1LkE2L/Gam/YAK 87qgnJGTjfKrESNQrrW4H8o1Q/qi3Ch8OMrpOVdQdrkPxlSeM02yYlF4MIPaVyIiIiKiJxfTprGn 8VuCEPmG7F/bOmrmCwv8tbw3cN8a6dVapAo2LTZpU3vzU9ImVFvUE+WsWzfQ+Oa6ybhFGfES7TIA jPfBmMpzpjnMiupTs46oETpMm0RERERE9pg2jT2NaVNvQ8YRSXqVA7tJi5b9pAo2LcafpIU2m2ah OixxHW6jM4/iVn7VE+0ywIb9PhhTec40pk0iIiIiouLAtGnsqUubTVePCUzZmZGTjfL9Bw/WnUmS pKe9MylVLFIFmxb9twShqn1L0JD9a2XAqAMbUa0R3McnuBequJVf1ES7DHC5D8ZUnjPNg6xog2mT iIiIiMge06Yxx2lTT7V6pBSmTcl19ot8W6x+gFTBpiX/p7sNw4dqjbKgRfuDnPJ+JpZPtsxDVb4r CEvU2WQZIFX7RdsHYyrPmca0SURERERUHJg2jT11720euno2YNeKxhGjKlj/DEnF+X7N1oydnLRF dZtIm5B9Ow+T+AT3Kj+3M25Rli+wFffu35cvAZp3LA5V3KKMFrTLAJf7YEzlOdOYNomIiIiIigPT prGn/fc2yyKV50o3ta9ERERERE8upk1jTJtlj8pzpZvaVyIiIiKiJxfTpjGmzbJH5bnSTe0rERER EdGTi2nTGNNm2aPyXOmm9pWIiIiI6MnFtGmMabPsUXmudFP7SkRERET05GLaNMa0WfaoPFe6qX0l IiIiInpyMW0aY9ose1SeK93UvhIRERERPbmYNo0xbZY9Ks+VbmpfiYiIiIieXEybxpg2iYiIiIiI PMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGns6U2bl27mf7Fwa5XuC8t3nvtMx9lYVAcRERER EZEJTJvGnt602W7uZgmZ2qI6iIiIiIiITGDaNPb0ps0KXeZJyMy8xi9QJSIiIiIitzFtGnt60ybf 0iQiIiIioqJg2jRWomlTC3gHMq40Gh5evvPcuj8uX5d0RnUX0Iadv57XZtamin7zfXoFz9yeLL3Z ebd7hMZXDwjC6rgNWLELLdIlXA7Q5rdZVDcREREREZEJTJvGVNpEwnRGcqNnnKXNGn2CtXK5TnMO nb2qRlhpXfUGhWplLOjKu3Ov/uAV+kYsDYaE5d/9SdZ1OQBserVFdRMREREREZnAtGnsUdqUfGij mNJmh6Dt9x886BgcK9XPA7eqEVbaMN/+S3efuoiW7LzbvcN2ozAoMkG6sC5m6Lx4h1TRbl3V9QCN tGNRdSIiIiIiIncwbRp7PGnz2IVrqKZmXZdqzb4hMkBow+LTslRTAe19S6yLqjZD3R+XmxygkXYs qk5EREREROQOpk1jjydtqnpBS4Uu81TdSht2/8ED1VTA/m9jSlWbweUAjbTrR7rld4WpViIiIiIi emowbRorlDZxq6e1e8w4bSJMStVZ2lR1HZswaT+DywEaaddGukulzAKqlYiIiIiInhpMm8ZK9Sdp VV2Hn6QlIiIiIqJSgmnT2OP8liDtK3w+nR+jRlhpw1RdR/8lQKhqMwxZu9/kAI20Y1F1IiIiIiIi dzBtGns8adPkX0BRdZ38uz81HBquDZAFLdofOHE5QKP1qjoREREREZE7mDaNPUqbzkhu9IyztJl8 PrvR8PDynefWGxS6LumM6i6gDVP1wrLzbges2OXTKxir4xZltKg+K5cDhPFWiIiIiIiIjDFtGlNp U6+ICVPPWdpUdSIiIiIiojKLadMY0yYREREREZEnmDaNMW0SERERERF5gmnTWImmzQpd5smi6kRE RERERGUW06axEk2bRERERERETwymTWNMm0RERERERJ5g2jTGtElEREREROQJpk1jTJtERERERESe YNo0xrRJnsglIiIi8jZ1nUFUdjBtGmPaJE+o1wQiIiIi71HXGURlB9OmMaZN8oR6TSAiIiLyHnWd QVR2MG0ae+rS5jMdZ8ui6uQR9ZrgjgEDBrRo0UJVSiuDnTx37lzHjh19fHyet1KtublS1ajW0s3l Y/EYH6yWLVsOHDhQVYqHy00UfUBJ4k9W6VGaf3B4VnvdU3JWO1N8Z5S6ziAqO5g2jTFtlkbPWKmK IzLAXrly5dSIYqZeEwpeO+3LNg4fPlylSpWVK1equrcZbNo8453s2rWrbEWo1jJ49eDysXA4oE0b HGluv36qKvr0sTR+8IGq2oiPj8cdol2N7dmzp2fPnq+99lr16tWrVq1at25d3KVHjhyRXg22i61j H1TdCYd3tbc2UfQBJcbhg+VF1pOaP1mmODzM0vODU/QBJhX9wTI+YYrOekLxrHaqxE45/Z2gL6vr DKKyg2nTGNNmaSTRUVUckQH23n33XTWimMlLAuhfIfRlG+3bt3/ppZdu3ryp6t5msGnzjHcSXdhE bGysqtvxyj6UAJePhcMBuGCoUiW3atXc5GTVggJasBw8qFpstG3bFnfIhg0bpCr3jw0fH5+oqCgZ ILDd2rVrf/bZZ6peGPYtMTERBayLW5S/+uora4+FzGnD3U1A0QeUGP5klR6l+QcHij7AmPHPplt4 Vj9esm82iuOUk5nty+o6g6jsYNo0xrRZGkl0VBVzGjRogFVwgaLqxUxeEkD/CqEv66WlpVWpUsXj Kw8znG3aPJc76XITLgeUBi4P02BA9+44xtx//lNVUUDV319VbRw+fBj3RuPGjVU9N/f111+fPHly QkKCXJ+h8M4772DMa6+9JgM0X3/9NfYBe6LqOiEhIa+88kpERARWxC3KaFF9XtqEKPqAEmDwYHkL 7j1QFY+43EmXm3A5oDQwOMzS8IMjivWsNv7ZNM/lCVN0lvOJZ7VzJXbK6e8EfVldZxCVHUybxp7e tJl8PrvZ2DUVusyr3C3Qb0lc/t2f1IiHD2OPX2g7Oxrt5TvPxW2LiWsjD51RfQ8f1v1xOVZ/f3qU qj982GrqBrSgXdUfPryRfydgxS6fXsGYoVrPRR2DY7Nu3FJ9JribNvFigPE1a9ZU9eInLwmgf4XQ l/XGjx+PdvsrD208BtSrV69q1ar169efOnWq9Iq4uLhOnTrhwgW9NWrU+Pjjj/fs2aP6CmZwSI0w zXgn7aluHWftgNdaHAUeIBwFblG2efV1OQC0+YcPH/7SSy9hmM19ZYazw9QYDDh7NrdGDewGHpTc 2FhLwcfH0uhQly5dME9QUJCqO3L27FmMwbUInolUkxW2jnZc7qh6YcnJyU2bNsUAXBLZf7jLhmeb gKIPKAH8ySoTP1ml5AcHij7AmFs/m87wrC49Z7WmmE45yy4W3An6srrOICo7mDaNqbSJhOmM5EbP lOa0WbNviFbGgnCoRujG6Jfoo5nS2ztsN6oV/ebff/AAVdwisqKlb/geGZB3516DIWHairLU6BN8 JTdfBrjkbtrs3Lkzxg8cOFDV3SHbAlU3R14SQP8KoS/r/eMf/0C7/WeKZDxeC6Wg0V9pqSYdvL5G R0c769XIAPOMd9Ke6tZx1n7mzBlc/UivBi1oNzlASPusWbOkIFSfac4OU2M8YORI7Ebu669bFhRQ dejkyZO4LsG1oKo7cfHiRetBPH/hwgXVZIVLRjRiT1S9sJSUFLmixS3KqtUJzzYBRR/gjGVvnFAj THP2YMls/MkqPT9ZpeEHB4rvrBZu/Ww6Y3zC8KwuybNaU0ynnHVKtVf6srrOICo7mDaNPUqbkg9t PMFp03/5TgTFkN0npFo9IEiNePiw+bjI8MRTd+7dR3n1wXQZ0GbWJundlnpeWuLTslCNO3lBqmiX AYMiE6QFuRTVsVGHpKoPtMbcin95eXkVK1bE+PT0dNXkDtkWqLo58pJgUu3atfEqcu3aNVUvIK8u jRo1wgsSqngZ+9e//oWWli1bygBo1apVaGiorIsBXa1fvfDWW29Jr8Y6k+cvpeBsJzUuN+FsQJ8+ fdDeuHHjg9bf08KtXJD16tXL5ACBFkBXWFjYzZs3cW9gRdVnmsvDNB6A5rp1sSeWBQVn0/Tr1w+T uPyndBwghuE6SdULYOtox56ouk5ISEidOnVWrlyJAbjFuvZvL+h5sAlR9AHOYC1n1AjTnD1YMht/ skrPTxaaH+8Pjij6AAPu/mw64+yeRCPwrC7Js1pTfKecQ+o6g6jsYNo09vSmzey826gicEq1XKc5 MsCeDKjcLVCqWAVltCBGojpq4wGUX/BfIL1Qf/AKWSXn9l1UtU349l8qA1xyK/7Nxn38zDMtWrRQ dTfJtkDVzVGvCeZUqVIFrzeqooNG2L59u6oXfFynevXqqm4HpywG+Pj4qHoB60xFunpwtpMal5tw NqBhw4Zo1/8rOMpoadCggVRdDhBogRkzZqi6R1wepssBQUHYE8vi7LN+uKzBA+Tr62twKQYjR460 HtDzS5YsUU06aK9ataqq6LRv316usTAAtyijxdrjgGeb0BR9QHHjTxbay8pP1uP9wdEUfYAzbv1s GuBZjfZSclaL4j7l7KnrDKKyg2nT2NObNlXdrgXhEDHy1RERFf3mI4JqveU7z5UB0G7uZrTIr27i FuVP5m2RLsBIbS39op/BmFvxr1GjRhgcGhqq6iVCvSaYg1cavN6oio7l5cuu3aYxJCTkww8/rFGj hry6C5RVdwFpVxWPONtJjctNOBsgM8vXLQiU0VKtWjWpuhwg0AK4JFV1j7g8TJcDAP0GQ+Sjbnjq UHU7eN7p1KmT5WCef37ixImqtTB0YU9UxREMUCVHvLWJIg4obs4eLDTat9s08idLgxYo7p8sQL/B kBL7wSniAJcwgyp5xNk9iUb7dptGntUatEARz+qSOeXsqesMorKDadNYobSJWz2t3WNlMW36L9+p tdgsMgCW7TuJKuLovfv3cYsyWlSf87SJRY1wxXzaPHToEEbiZeb+fcvnfkuMek0wx/iTUapSQN+o /ZOqPRmgcdjoluL7ZJR3rx5UxVMuD9PlAMBeONsRrOjr6+vj4+PsKufMmTMtW7bEJrChiIgI1VoY JsGAl19+WdXd5JVNFH2AM1jLGTXCNGcPlsPZ9I38yVJ1K7SAqniqTPzgFH1ACeBZjfbScFaXzCnn kLrOICo7mDaN8b1N2xb5yh8s0Ucz7z94gDxpMwBybt+Vtz0nb0nCLcryoVmhfZL2Rv4d1eQm82lT vh+od+/eql5S1GuCOfKFCvpPQAk0gqoU0DfWrFkT5VmzZmkv6pcvX9YP0DhsdIuzndS43IT9RYDw 7iejVMVTLg/T5QDAXjjbkWnTpmF1Z78gFB8fX6dOHQz46quvbL7TQk8O39kXSxjz1iaKPsAZrOWM GmGaswfL4Wz6Rv5kSVWgBVTFUy4PE7ARZ9spmR+cog8oAc7uSTSCqhTQN/KslqpAC6iK+0rslHNI XWcQlR1Mm8aYNp2mzUNnryJt9g3fYzNANB8XiZZ6g0Jxi7JqtdK+JajNrE0Z2TlouXPvfsSB029M KDTMgMm0eefOnUqVKmFkamqqanKfbAtU3Rz1mmDO1KlT8Xpj/40RaARVKaBvrFatGsorV66Ul+TE xMQ2bdroB2h8fX3ROHfuXPsXb5Oc7aTGulmjF+/XXnsNA3Cto+oF5Esd0Cu/1ISjaNKkCVpsvvXB YIBAC6iKp1wepssBgL1wuCO48+UvE5w8eVI16SxcuBAPaNOmTXEdo5qcCAoKwj548GcYvLiJog8o AfzJQntZ+ckCbMThdkrsB4dnteBZbawkTzmH1HUGUdnBtGmMadO25ctF27QWLNUDgrSyDBDjo9U3 zWKZuPmwarXKv/tT41ERWq9+USNcUfnPETXCat68eWjBS4Kqe0SmBVU3R70mmJOW5vgPYVtfDY2u HuQbBfXkhRZkgKZ79+7SrlEdpjnbSY3LafGCKmOEanX+hfWnT582OUBIu6p4yuVhuhwA2AuHOyIX Fl26dFH1wmT/HdLeixCfffYZ9sH+L8i5pKZzxN1NFH1ACXD2YMkhq0oBfSN/smSAkHZV8ZTLwwRs xOF2SuwHh2e14FltTNZ1yOunnEPqOoOo7GDaNPYobTojudEzZTFt5ty+23XpzirdF5brNKfJ6FWH zl61GSCOXbimtaOsWgsgcA5bl9hwaLh81VCtfos/D9wqfzHFDJX/HFEjrF599VW0BAaqL8v1jEwL qm6Oek0wrX379i+99JLNPyTLq5eqFNA34gT97rvv8DqKl6s6deqMtP6VOv0AzcWLF3FhUbduXYx0 OMAMhzupMTMtfl7kX81tRuI6oFOnTpi8atWquO3YsaPNmxguB4D9tJ4xPkxwOQB74XBHGjdujD2U f3G3J/vvkP4KBtvF1nGNouruUNM54tYmij6gxPAnqwz9ZGEjDrdTMj84RR9QYnhWP96zWtZ1yLun nDPqOoOo7GDaNKbSpl4RE6ZeKUyb5BXqNcG05ORkvK6HhoaqeqlUJnay6Fwepmf3Q2RkJK5Fiv4b X2FhYdj64cOHVb0YuNxE0QeUGP5klR6l/AeHZ7V3PSVntYHiO6PUdQZR2cG0aYxpkzyhXhPcMXjw YPu/sl3alImdLDqXh+nB/fDOO+9Uq1bN5e/5uIR5Bg0apCrFw+Umij6gJPEnq/QozT84PKu97ik5 q50pvjNKXWcQlR1Mm8aYNskT6jWBiIiIyHvUdQZR2cG0aYxpkzyhXhOIiIiIvEddZxCVHUybxpg2 yRPqNYGIiIjIe9R1BlHZwbRpjGmTPKFeE4iIiIi8R11nEJUdTJvGmDbJE+o1gYiIiMh71HUGUdnB tGmMaZM8oV4TiIiIiLxHXWcQlR1Mm8aesrS5c2cZWIiIiIiIqCxg2jTGtFn6FiIiIiIiKguYNo0x bZa+hYiIiIiIygKmTWNMm6VvISIiIiKisoBp0xjTZulbiIiIiIioLGDaNMa0WfoWIiIiIiIqC5g2 jTFtlr6FiIiIiIjKAqZNY09j2pw8b82r/YMrdp5bvtMcH//AT0ctj18V/Sjs7dyZvTW2x6Sw6t3m YwBuAyaHo0U/AMszHWfLcn7z9jbDl2I2TDVzQaSZAdg62mv3XKANbtgvCC0N+i6yVImIiIiIqCxg 2jT21KVNREctB+oXLfjlbd9Rv+8im17kwPzYOG0MFq2rXp+FWhmLmQGzF0RKee/qzajeiY0r942l OmBahGVdIiIiIiIqC5g2jT11abNCpzmS9GJXWt7PvBcXF70i6t0hSywxz7oMmhEhAzqOW3E/Lq7z +BVSRbs2Bos0YvHtuWC3NTRmb43tPTnczICc7TvKW3ej75SVqEYu2ygjJXyqXSUiIiIiotKNadPY U5c2a3SfL9Gu9fClyxavP795uyXg6Rbtjc3UDVtRxa1U6/ZZqB8mjVhsPoWrLcYDvhizHF3yYdr+ U1eiXKtHoOolIiIiIqKygGnT2FOXNpEw5WOr2oIYOVv3+5byriMWrUWqFTrN0Vq0Riz34wp9wlZb jAdsC98kvXtXb24xaDEK/pPCVC8REREREZUFTJvGnsZvCUqP2jZkRkTr4Utf+HaeRD4sA6dbPtSK xSZtIitK1Vna1DfqF5cDfHsuQG/vyeGyxZjwTaqLiIiIiIjKAqZNY09j2tQvG0LV70xW9psrLe5+ klbfqF9cDkDiRa8k3irfznvURUREREREZQHTprGnLm02HRAcuGhtRvQ2lO/Hxa0rSJvaW5f6bwlC VfuWIIRDGSCLNGLRN+oXlwOwD9pner8Ys/xRFxERERERlQVMm8Ycp0091eqRUpg2tRBos/hNUL82 mR8bJ3/9Ur+gxdlfQNE36heXA7C8OdjyG5tYIpZueNRORERERERlAdOmsafuvc1DkVsCJoc3/j5I /hRKxc5zm/0QMnnemkdhz/qnSjDGxz+wfKc5uEUZLfoBWCQlYrFp1xaXA7BguxiAPbmn/yYhIiIi IiIqC5g2jT3tv7f5eJemA4KRNtuNXFaonYiIiIiIygKmTWNMm49tiVoRJW9+hgSvL9RFRERERERl AdOmMabNx7NIzsRSo/v8Qh+jxUJERERERGUB06Yxps3Hs1ToNAeLb88F8auibbrUrhIRERERUenG tGmMabP0LUREREREVBYwbRpj2ix9CxERERERlQVMm8aYNkvfQkREREREZQHTpjGmzdK3EBERERFR WcC0aewpS5tERERERERewrRpjGmTiIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aY NomIiIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmTiIiIiIjIE0ybxpg2iYiIiIiI PMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmT iIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGmMaZOIiIiIiMgT TJvGmDaJiIiIiIg8wbRpjGmTiIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aYNomI iIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmz1MklIqLHTT0jExERGWLaNMa0Weqo Kx0iInp81DMyERGRIaZNY0ybpY660iEiosdHPSMTEREZYto09tSlzWc6zpZF1UsfdaXjjgEDBrRo 0UJVHHE5wGMtW7YcOHCgqpRBzxemWu2UqsMsvkfTiwx28ty5cx07dvTx8bG5z6WqUa2l22P80XOp BE5al5so+oDHSD0jExERGWLaNMa0WeqoK52Ci2/7so3Dhw9XqVJl5cqVqm7H5QBnsOLo0aNff/11 g61jWkyOkape1sihaVSrHa8c5tatW6taoaCa3Ofxo2mS8f1gkvFOdu3aVbYiVGsZTJsuHwuHA9q0 wZHm9uunqqJPH0vjBx+oqo34+HjcIVpq3bNnT8+ePV977bXq1avjdKpbty7u0iNHjkivxuRJ6/Cu 9tYmij7gMVLPyERERIaYNo0xbZY66kqn8HW/vmyjffv2L7300s2bN1XdjssBzshGNaq1MExbu3bt zz77TNXLLINjhKIfZkpKiq+vb4MGDRo2bIjC8ePHVYebPH40TTK+H0wy3kl0YROxsbGqbscr+1AC PPvRQ7CqUiW3atXc5GTVggJasBw8qFpstG3bFnfIhg0bpCr3jw0fH5+oqCgZIIxPWuxbYmIiClgX tyh/9dVX1h4LmdOGu5uAog94jNQzMhERkSGmTWNMm6WOutIpfM2tL+ulpaVVqVJFf5low+UAA40b Nx4+fPjhw4edbV18/fXX2AQ2pOplk/ExQlEO8+LFi3/4wx/q1q2L1aFOnTqoolF1m4Z1PX40TXJ5 P7jkciddbsLlgNLA5WEaDOjeHceY+89/qioKqPr7q6oN+QHED6Oq5+a+/vrrkydPTkhIkByLwjvv vIMxr732mgzQGJy0ISEhr7zySkREBFbELcpoUX1e2oQo+oDHRT0jExERGWLaNPb0ps3k89nNxq6p 0GVe5W6Bfkvi8u/+pEY8fBh7/ELb2dFoL995Lm5bTFwbeeiM6nv4sO6Py7H6+9OjVP3hw1ZTN6AF 7ar+8OGN/DsBK3b59ArGDNV6LuoYHJt145bqc0Vd6RS+5taX9caPH492/WWiDZcDzLBu3OnVPyZH L65NVd3btK0j+r700ks1a9acOnWqdAFOYrQ3bNiwatWqPj4+n332WUpKiuqziouL69SpEy6mMaBG jRoff/zxnj17VJ+OthVninKYH3zwwcsvv6y9nynvc6JRquY5ezSt+27ZeQyoV68ejrR+/fr6ewmM 7weZwSE1wjTjnbSnunWctQMyCY4C5wCOArco26QUlwNAm9/hGWVSUX70zp7NrVEDu4EHJTc21lLw 8bE0OtSlSxfMExQUpOqOnD17FmOQ2fDjoJqsjE/a5OTkpk2bYgCypf2nZG14tgko+oDHRT0jExER GWLaNKbSJhKmM5IbPVOa02bNviFaGQvCoRqhG6Nfoo9mSm/vsN2oVvSbf//BA1Rxi8iKlr7he2RA 3p17DYaEaSvKUqNP8JXcfBlgTF3pFL7m1pf1/vGPf6Dd4EOJLgeYYd2446t/QIxBLzak6naMVwfj AdI7a9YsKQjpunnzprzloocgd/LkSRkAqlUHOSQ6Olp1F5AuVXHE5WE606tXL+ySfGpRgyoae/bs qermOHs0rfv+PLKTFDT6iKKadPT3g2pyRAaYZ7yT9lS3jrP2M2fOIC1LrwYtaDc5QEi7wzPKPJc/ WcYDRo7EbuS+/rplQQFVh3AmI+DVr19f1Z24ePGi9SCev3DhgmqyMj5pU1JSJG3i1ubfaOx5tgko +gBnLHvjhBpRNOoZmYiIyBDTprFHaVPyoY0nOG36L9+JoBiy+4RUqwcEqREPHzYfFxmeeOrOvfso rz6YLgPazNokvdtSz0tLfFoWqnEnL0gV7TJgUGSCtCCXojo26pBU9YHWgLrSMad27dq4tLp27Zqq 23E5wAzr9ZvTCzhMjl5sSNXtGK8OxgOkFxfEYWFhiJe42O3Tp490jR49Gl2vv/56QkICqggV7du3 R4u/7lOJrVq1Cg0NlXsA68pX1Lz11lvSq7Fsw3AnXR5mCXD2aFr3/flGjRrhwh1VHOa//vUvtLRs 2VIGgLfuB5dcnnIuN+FsAB53tDdu3Pig9RcccSthCXne5ACBFnB4Rpnn8jCNB6C5bl3siWVBwdk0 /fr1wyQu33rFAWIYcrWqF8DW0e7wpA0JCalTp87KlSsxALdYFy2qzxEPNiGKPsAZrOWMGlE06hmZ iIjIENOmsac3bWbn3UYVgVOq5TrNkQH2ZEDlboFSxSooowUxEtVRGw+g/IL/AumF+oNXyCo5t++i qm3Ct/9SGWBMXemYU6VKFeNLK5cDzLBev7mIB1WrVlUVO2ZWNxggvTNmzFB1HeQKdOnflkFyQAsu o1XdDk56DPDx8VH1ApZtuLqjMMDgMEuAs0fTuu/Pb9++XdULPvdYvXp1VbdTlPvBmMtTzuUmnA1o 2LAh2vXvFqKMlgYNGkjV5QCBFnB4RplX9B+9oCDsiWVx9iFZnMx4gHx9fZ1FVjFy5EjrAT2/ZMkS 1aSDdocnbfv27SWTYwBuUUaLtccBzzahKfqAx0I9IxMRERli2jT29KZNVbdrQThEjHx1RERFv/mI oFpv+c5zZQC0m7sZLfKrm7hF+ZN5W6QLMFJbS7/oZzCgrnTMwSUaLtRUxRHjAejSU612jHsBvcV3 sShbx5W3quvI0dnT70xISMiHH35Yo0YNufoXKKvuAtKuKk5gQPEdphnOHk3rvtu22zR68X4w5mwn NS434WyAzCzfWyNQRku1atWk6nKAQAs4PKPMc3mYLgcA+g2GyEej8SSs6nbwDN6pUyfLwTz//MSJ E1VrYejCnqiKIxigSo54axNFHPBYqGdkIiIiQ0ybxgqlTdzqae0eK4tp03/5Tq3FZpEBsGzfSVQR R+/dv49blNGi+pynTSxqhCF1pWOO8af1wHgAuvRUqx3jXvkg3Msvv6zq3mawdbmgd0gGaO/J2JMB GoeNesV9mGY4ezSt+250RF68H1xyeU663ISzAfJweyttqoqnivijJ7AXznYEK/r6+vr4+DhLxWfO nGnZsiU2gQ1FRESo1sIwCQZ4fNJ6ZRNFH+AM1nJGjSga9YxMRERkiGnTGN/btG2Rr/zBEn008/6D B8iTNgMg5/Zdedtz8pYk3KIsH5oV2idpb+TfUU3uUFc65sg3keg/QmnD5QAzrNdvTi/g5MOKHnzJ h0kGW2/SpAmCxNWrV1XdTs2aNbHurFmzcEUrLZcvX3Y4oX1QsVHch2mGs0fTcjx2R6RvNH8/OGx0 i8tTzuUmnD0W3v0krap4yuVhuhwA2AtnOzJt2jSs7uwXSuPj4+vUqYMBX331lc13IOkV5aT11iaK PsAZrOWMGlE06hmZiIjIENOmMaZNp2nz0NmrSJt9w/fYDBDNx0Wipd6gUNyirFqttG8JajNrU0Z2 Dlru3LsfceD0GxMKDXNGXemYM3XqVFxaGXy9h8sBZliv35xewAUFBaHX4A8YGK8OxgMMeuWPTLz1 1lu4ppdwcvr06cDAwBYtWsgAZFEMWLlypfQmJia2adPGOp/thK+99hoakcdU3Y7LwywBzh5Ny/HY HZG+0fz94Ovri8a5c+caBG9jLk8562YdP6DC2WMhXwKEXvmFQxxFkyZN0GLzLUEGAwRaQFU85ZUf PeyFwx3BnS9/yUb/7cqahQsX4gFt2rQpAqFqcsLjk9aLmyj6gMdFPSMTEREZYto0xrRp2/Llom1a C5bqAUFaWQaI8dHqm2axTNx8WLVa5d/9qfGoCK1Xv6gRhtSVjjlpzv+CvHA5wAAuAR1S3QU+++wz bML+rxpqHK6lZzzAuPeDDz6QATakV755VU8CCcgADS52pV2oVh2Xh1kCnD2aDvdZ32j+fujevbu0 a1SHaS5POZfTOnsszjj5AyenT582OUBIu6p4yuVhuhwA2AuHOyIBrEuXLqpemOy/Q9p718Ljk1ZN 54i7myj6gMdFPSMTEREZYto09ihtOiO50TNlMW3m3L7bdenOKt0Xlus0p8noVYfOXrUZII5duKa1 o6xaCyBwDluX2HBouHzVUK1+iz8P3Cp/McUldaVjWvv27V966SWDd6JcDnBGXV3aUd1WmBaT43pR 1R2xX8uG8QDjXpgxY0bLli2rV6+Oa9Z69erhGl3+EAjgFP/uu++QN9BVp06dkdY/a+hsQpzt8s6e fa+ZwywZDh9Nh/usbzR/P1y8eBFBtG7duhjpcIAZxqecmWmdPRbIjZ06dcLkVatWxW3Hjh1t3v1z OQDsp/VM0X/0sBcOd0S+bFneobUn+++QPgoW5aRV0zni1iaKPuAxUs/IREREhpg2jam0qVfEhKlX CtNm6aeudExLTk5GMAgNDVV1Oy4HFEVYWBgmP3z4sKo/oUrPYRbro+ktZWIni66YfvQiIyMR6jz7 ZUu9EjhpXW6i6AMeI/WMTEREZIhp0xjTZqmjrnTcMXjwYPs/06/ncoDH3nnnnUGDBqnKk6tUHWbx PZpeVCZ2suiK40cPJ1u1atVc/sKkSyVw0rrcRNEHPEbqGZmIiMgQ06Yxps1SR13pEBHR46OekYmI iAwxbRpj2ix11JUOERE9PuoZmYiIyBDTpjGmzVJHXekQEdHjo56RiYiIDDFtGmPaLHXUlQ4RET0+ 6hmZiIjIENOmMabNUkdd6RAR0eOjnpGJiIgMMW0aY9osddSVDhERPT7qGZmIiMgQ06axkkub6gWc iIiIqDSRCxUiIg8wbRpj2iQiIqKnmlyoEBF5gGnTGNMmERERPdXkQoWIyANMm8aYNp8EAwYMaNGi hao44nKAx1q2bDlw4EBVKYOeL0y12ilVh1n0R7P4zgcvMtjJc+fOdezY0cfHx+ZRk6pGtZZuj/Gx cHlWF31ASeJZXfqVwBnl8QxyoUJE5AGmTWNMm2Xe4cOHq1SpsnLlSlW343KAM1hx9OjRr7/+usFV DqbF5Bip6mWNHJpGtdrxymFu3bq1qhUKqsl9Hj+amqLPYMz4njTJeCe7du0qWxGqtQxelzs8zDZt cCC5/fqpqujTx9L4wQeqaiM+Ph7Hq8WYPXv29OzZ87XXXqtevTrOt7p16+IeO3LkiPRqXJ7VRR9g UtEfLOMTpuisJxTPaqdK7JRzyeUM+rtRX5YLFSIiDzBtGmPaLPPat2//0ksv3bx5U9XtuBzgjLwS a1RrYZi2du3an332maqXWQbHCEU/zJSUFF9f3wYNGjRs2BCF48ePqw43efxoaoo+gzHje9Ik451E FzYRGxur6na8sg8lwOFh4jq5SpXcqlVzk5NVCwpowXLwoGqx0bZtWxzvhg0bpCqHb8PHxycqKkoG CJdnddEHGMPhJyYmooDdwy3KX331lbXHbTyrHy/ZNxvFccq55HIG2Tf7slyoEBF5gGnTGNNm2ZaW llalShWDSzSXAww0btx4+PDhhw8f1r8k2/v666+xCWxI1csm42OEohzmxYsX//CHP9StWxerQ506 dVBFo+o2Det6/GiKos/gkst70iWXO+lyEy4HlAYGh9m9Ow4h95//VFUUUPX3V1Ub8hOKn1ZVz819 /fXXJ0+enJCQIMEGhXfeeQdjXnvtNRmgcXlWF32AgZCQkFdeeSUiIgL7hluU0aL63OHyhCk6y/nE s9q5kjzlXDKeQX836styoUJE5AGmTWNMm2Xb+PHj8WJpcInmcoAZ1ldkp1c5mBy9uNRQdW/Tto7o +9JLL9WsWXPq1KnSBTiJ0d6wYcOqVav6+Ph89tlnKSkpqs8qLi6uU6dOuJDFgBo1anz88cd79uxR fTraVpwpymF+8MEHL7/8svZ+przPiUapmlf0R9PZDJaDtx4+BtSrVw/3Vf369fX3MxjfkzKDQ2qE acY7aU916zhrB1yD4ihwFuEocIuyzVWpywGgze/wnDTJ4NE8eza3Rg1sBfd5bmyspeDjY2l0qEuX LpgnKChI1R05e/YsxuASHD8vqsnK5Vld9AHGkpOTmzZtihkQV+w/eGkSz+rSc1Zriu+Uc8l4BnSB fVkuVIiIPMC0aYxps2z7xz/+gRdLgw9fuRxghvUV2fFVDuByDb3YkKrbMV4djAdI76xZs6QgpOvm zZvyL+h6CHInT56UAaBadXC9FR0drboLSJeqOOLyMJ3p1asXdkk+MahBFY09e/ZUdXOK/mg6m8Fy 8M8/j6tMKWj0GUY16ejvSdXkiAwwz3gn7aluHWftZ86cQa6QXg1a0G5ygJB2h+ekecaP5siR2Eru 669bFhRQdQinOi7oEaJU3YmLFy/KTl64cEE1Wbk8q4s+wFhKSoqkTdza/DuRecYnDM/qkjyrNcV3 yrlkPINlnwqOS1+WCxUiIg8wbRpj2izbateujRfLa9euqbodlwPMsL4iO73swOToxYZU3Y7x6mA8 QHpxMRoWFoZ4iWuXPn36SNfo0aPR9frrryckJKCKi6f27dujxV/3ocNWrVqFhobKPYB15as43nrr LenVWLZhuJMuD7MEFP3RdDaD5eCff75Ro0a4UEMVd9S//vUvtLRs2VIGgLfuSZdcHqbLTTgbgDMH 7Y0bNz5o/Q1I3ErU6dWrl8kBAi3g8Jw0z/gw0Vy3LjZkWVBwdmf069cPk7h8Dwr7j2EIGKpeAFtH u8FZXfQBBkJCQurUqbNy5UrMgFvsnv1bf2Y4uyfRCDyrS/Ks1hTfKeeSZzPIhQoRkQeYNo0xbZZt VapUwcuqqjjicoAZmMF4EvRWrVpVVeyYWd1ggPTOmDFD1XVw/YQu/VsiuEJCCy5hVd0OTnoM8PHx UfUClm24uqMwwOAwS0DRH01nM1gO/vnnt2/fruoFH4SrXr26qtspyj1pzOVhutyEswENGzZEu/79 JZTR0qBBA6m6HCDQAg7PSfNcHmZQEDZkWZx9SBZnO+5/X19fgwwDI0eOlB1esmSJatJBu/FZXfQB zrRv317yD2bALcposfa4h2c12kvJWS2K+5RzyYMZ5EKFiMgDTJvGmDbLNryg4mVVVRwxHoAuPdVq x7gX0FvEiwMDsnVcWKu6jhydPf3OhISEfPjhhzVq1JCrPYGy6i4g7ariBAYU32GaYfxomuFsBsvB 27XbNHrxnjTm8jBdbsLZAJlZvshEoIyWatWqSdXlAIEWcHhOmmfm0US/wRD5jCiesVXdDp7iO3Xq ZN3Z5ydOnKhaC0MX9kRVHCn6AJcwgyp5xNk9iUb7dptGntUatEARz+qSOeVc8mAGuVAhIvIA06Yx ps2yzeWns4wHoEtPtdox7pWPLb388suq7m0GW5erKIdkgPZP7PZkgMZho15xH6YZLh9ul5zNYDl4 w/vEi/ekSy4P0+UmnA1wedntcoBAC6iKp8w8mtiIs+1gRV9fXx8fH2fx4MyZMy1btsQmsKGIiAjV WhgmwQCDs7roA0oAz2q0l4azumROOZc8m0EuVIiIPMC0aYxps2yTb57Qf1TMhssBZmAGUBU78qGs onypgzGDrTdp0gQXTFevXlV1OzVr1sS6s2bN0i7yLl++7HBC+wsyG8V9mGYU/dF0NgMaQVUK6BvN 35MOG93i8jBdbsLZo+ndzxyqiqfMPJrYiLPtTJs2Das7+826+Pj4OnXqYMBXX31l82Uwei7P6qIP KAHO7kk0gqoU0DfyrJaqQAuoivtK7JRzybMZ5EKFiMgDZSttrvH1NV4wRsVEL2HaLNumTp2Kl1WD r9ZwOcAMzACqYicoKAi9Bl9Yb7w6GA8w6JU/KvDWW2/hGk4uwk6fPh0YGNiiRQsZgCyKAStXrpTe xMTENm3aWOeznfC1115DI647Vd2Oy8MsAUV/NJ3NgEZQlQL6RvP3pK+vLxrnzp1rf1lsksvDtG7W 8SkhnD2a8nUp6JVfF8RRNGnSBC0236diMECgBVTFU2YeTWzE4XZw38qf9NB//bJm4cKFeLyaNm2K AKCanHB5Vhd9QAngWY32x3tWl+Qp55JnM8iFChGRB5g2jTlOm3qq1SNMm8UtLc3FXwx3OcCA5dLD EdVd4LPPPsMm7P96m8bhWnrGA4x7P/jgAxlgQ3rlGyb15MILZIAGlybSLlSrjsvDLAFFeTSFsxkc HrW+0fw92b17d2nXqA7TXB6my2mdPZpnnPwpiNOnT5scIKRdVTxl5tHERhxuR66nu3TpouqFye45 pL2JJ1ye1UUfUAKc3ZNyyKpSQN/Is1oGCGlXFTfJug55/ZRzybMZ5EKFiMgDTJvG+N5mmde+ffuX XnrJ4F/cXQ5wRl0s2FHdVpgWk+PVXdUdsV/LhvEA416YMWNGy5Ytq1evjiuMevXq4RJc/uAB4BT/ 7rvvcF2Frjp16oy0/tVCZxPizJd3MOx7zRxmyfD40dQ4nMHhUesbzd+TFy9exCV73bp1MdLhADOM D9PMtM4eTVxhd+rUCZNXrVoVtx07drR5e9DlALCf1jMuH01sxOF25NuY5a0qe7J7Dukv/V2e1UUf UGJ4Vj/es1rWdci7p5xLHs8gFypERB5g2jTGtFnmJScn4wIoNDRU1f9/e3cDHVV953/cY0gDptls bHjYnBzKsnL4a8uipa3oP0UOUl2qFBFRZHMoZRGMUSgi0lL+iEgjlfWBRWR5LEIEFCMiUsEHtLal VK1oKYupopRSSinSsilVSjH/78z3x4/LnZk7d27uPCXv1/mcnHt/9zd37tyZkfmYyUyMpBNa4skn n5Sd//KXvzTrrVTu3MyW35tpfTyEJS8OsuWC3cyNGzfKi/iW/GGbSvqobvmEjOFRnRcy8IgKvAd9 oQIAAdA2vdE2W4O777479uvInZJOCOxrX/vazJkzzUrrlVM3s+X3ZvoeDyHKi4NsuQA3Ux6N5eXl Sf9ALqmkj+qWT8gkHtW5LwOPqMB70BcqABAAbdMbbRMAALRp+kIFAAKgbXqjbQIAgDZNX6gAQAC0 TW+0TQAA0KbpCxUACIC26Y22CQAA2jR9oQIAAdA2vdE2AQBAm6YvVAAgANqmN9omAABo0/SFCgAE QNv0lrm22dy8l4SSs3xwXYTkceTe9I5rPiGEEEIIyVSibdM9mLNxdcvYyI0xNTEktM38S9IySdts VbGtMlFc8wkhhBBCSKZC2/RG28y/0DbbVmyrTBTXfEIIIYQQkqnQNr0Faptvv9W4eP47U2p3j7k+ kim1jUsWyKDZ6tAW2+Y117jjmtDiuMrkrl0vlJQUV1V9yY6k2ja/EOUazIssGtfsjGtrfkXuweLi cxobX3aNu7tlbFzzCSGEEEJIpkLb9JZy2/z1xvXv3Fz9m+9O+MO82R8ufVAiC7L6zs3/LpvMpFNo m5G4JrQ4zjJ58uT7vXr9Hxl54okFdpC2mcnI2fY+4TohVkFBgXPa+vWLZVDuTblPnePubhkb52RC CCGEEJLB0Da9pdY2pU82jrvx4IP3HF78gCsyKJtchbMttk2bjLTNOXOmymppaYmzojgntJHkY9sc PHigc5rcg3I/yrjcp85xd7eMjXMyIYQQQgjJYGib3lJpm2+/tXv8yN/P/X9/XHCvJlIhm5vtqmx6 Z/zId9/aYebTNtPcNo8ff7esrFRWR40aZrdK7IS2k1xum7Hp3ft8uchzzz3qGh8xYrCMl5ef+9FH jafHtVJ6xM4khBBCCCGZDW3TWwpts3HJgg/uGPeHB++2aT55UuIckQmNi+ebC+Rs29z1UvN9M5tv vKF52LWRn3dNbX590+mttiW+/9PmybdF5tw6vvmNH6YwwTXNNS6ZMiEyPm7M6ZHbb42MfOuW0yOJ Y7vNihX3R4rOWWetXv1fdqtEJ2zZ8tiUKbX9+lV9+ctf6tv34muuuXrWrDt/9asX7DR9A61lx51b X3ppbVXVpTfeOOzDD99esmTuJZf0HTbs6/v3/9xOOHZs9113TZb9y6Y777z14MFfOHeSNMf+/Nsf rWz6wcSTS2o+kZ+yLCN2q+2Qb79wZPV3TsicNdNO/Grrh3aCTaK2+fT3P5bxd7f/0Y7s+9UfZKTh e8ftSAujd4Fr0CNvvLFR5ldW/pNrXFJf/5DubfnyuafHtVJ6xM4khBBCCCGZDW3TWwptc/eU2v13 TTo4Z5rN348c/vufPnSOyIR3ptSaC+Rs27Q90Jm3tri3jvnG6eVrr23+YJvfCa5pzkHNltVm07uv RlZP7IlcXFYfe+SMaQkibUQXhg0bpOXkJz950m6VyMjDD39P22AsO82sn2LHnVv79++nC+PHf0MX xPTpk+yEadMm6oL66lcHHDnyS+d+PPLR//521Z1/16JoIyMyrhN05M1Nf7JbNc726JzpGpS889PD Mr7hvo/tyAuLjsnIzpfclVXPpHCNJ02ql6qpqZb5M2ZMdI1Ltm9/Wvc2fPhVp8e1UnrEziSEEEII IZkNbdNbKm1zzPUH7r79wKzJNh+/t/vjPY3OEZmwe8xwc4GcbZvT72j+2TORjifLP99oit/37zJb dVWy4PvNn3zQ/Mh9ZnVend8JrmnOQc1HjZHfiMqmlQ9HVl/fZGZq+UwWaSO6UFn5T1pOjh9/126V yEjfvhdL91u5ct6f/7xTB//wh188++yKsWOr7TQbLYpxB19//dm33tqsy9u3b9i58wVZ+NrXrrAT Roy49oMPfiqre/du+/d/Hy4jDz00y+7EOz9bd1SK35Ozjv/p97+TVfnZ8L3jMrLtiaM6QZYlj9/1 t0MfHJDV4x/te2npX2Tkmbkf6QQbnekalJw8uffR20/KpiMHIlfx8bF9S2o+kXz0l33OaRI9k8I1 njQpXerYsd0dOrSX+Xv3Rk6aK3I/6t4qKjqfHtdK6RE7kxBCCCGEZDa0TW+ptc393711//TbbP6y /dW//PzHzpHffvfW3TeNMBfIl7/b1KZ34w1nrEr2vxZZ/d3rZvU/Rvud4JrmHLT5r7rIJn0zbf2C yPJN3zxjQuJIG9GFgoICLSd2k0ZGBg8eJMXv9ttvnj590pw535We+cYbjncLn5lobYzfNk+efF/i Wr7kkr52gvRPexHtotdcc7Ud8c7j/+9v0gP/8P7v7Ygsy8ja6Sd0VTvkwT2nJ0hLlJFltZ/YEY3O dA1qtj8Z6bQ/fux/ZflXWz+U5S0LjjknaPRMCtd40qR0qUWL6mTywIFVrnEb3VthYbvTg7Jz79iZ hBBCCCEks6FtekvtnbR7J43Zd+d4G+mWEueITHjnztx+J+0nHzSvXx75y8nrh5v3r2qGXWsm2BF7 EV0dfp3fCc5B5zRnfvWS2fruq5E/HJWFpQ+65ySItBFdkE6i5cRu0sjI229vGTr0ai2E1rBhX//j H3e4Jkt0q8ega/mLX/yiHZT+qeMS7aJ9+15sR7yzpOYT6X6ffHJ6RJZlZOktpkzKssRuTXVQ03R4 v2ySgvq3j3+zvi7yZ5x73/qDa05LEvcuSJQ+fXrJZOfX1biie6NtEkIIIYTkRWib3lL7lKB3x98o fdLmo8ZdEueITMj1TwmSUqc1LzY6wbUq7VRXE7XN2Aka17TYjP+PyNYV/2XeVfvL078k9I60EV3o 2rVCy0nsO2l14Z13Xt6y5bHlyx+4885b/+//vVSq4O2332yn2URrYwptU5d1IbZtfvnLX7Ij3slM 25RsmvdX2fqT1f8rPx+9/aTzGlsevQtcg3Hz9tubZWZ5+bnOk+YM76QlhBBCCMmv5FfbNBUwMbkx ZikkKbTNd9/asXvcje/XVn8wYZRGjkbYVdkkE3L9G1CkE2oJfGtLpCj+fY9ZlegEu9rCd9Jqh5TI tTjHbR5fFNk6ckTkZ/VI99bEkTaiC/qFGSL2U4Kcq5ojR34pVTDuLx6jtTFg24x9J+3gwYPsiHd8 vpPWbvUYjC2uzvzm7cjn0Gp+uibyltoQo3eBazBu9POBpkwZ7xq32bbtKd2b3LOnx7VSesTOJIQQ QgghmQ1t01sqbfPdd3+9cf0737xuT81IKZauyKBskglmalROt80PtkV64MqHzapEJ9hV/RCg/55r Vh+c7XeCRr/URCKtMm7h/ONbp9/K+19nfsKQZ6SN6MLy5XO1nKxc+YDdKpGRb3xjxBNP/Pd7772q v0b78MO3Fy36vlRB/ZNLV6K1MWDbvP76oXv2/FhW9+7dduONw2TkgQfkOXd6Px7RTwlad/ff9FOC jhz4XcM9cT4lSJdt4g7KTmTwf1497Bq3eezbJ/SCv3/vdLl1Rs+kcI0njc9LHT/+bnHxOTKzsfFl 1yYb+w0oK1bcf3pcK6VH7ExCCCGEEJLZ0Da9pdY2xa+feWr3TTf++j+Gvzd+hDRMiSzIamTwzKop crFtzr/XFDzNN6pPL+sEu9rCb0DZtOr0VhvnBMnd3zbj2ze6NyWOtBFdkAJTXn6urJ7xq7DoBK2C sZYu/U87zQzFcG71WNaFO++8VRfUV786QJqtzkyaRN+A8tejZ3wDip3vMbjzpcjH/9i4tkr0a1Rk 565xm0jJi3KNJ425WDzOaUuXfl9Gqqq83masv6yW+/SMt0ZrpfSInUkIIYQQQjIb2qa3lNtmxNtv NS6e/86UW3Z/87rdY294Z+qt7yx5WAbNVodcbJsfNTYveSDyzlXph9+eFKmIripoV/dtb558W+QN sRNqmt/44ek9JJ1g88yjzbeOP+OziFwTnl0ZGRx+XeQNva5NieOsMXPmTJXVkpJi558Cysivf/2j Bx6YeeONw/r2vfiLX/xiVdWlkyfXvPLKE3aOxBTEGM6tHsu6cOzY7rvumizXcsklfadNm3jw4C90 ms9IsfzRyqYV3zq5pOYT+fnKo01/+ZOpmpK41TFRn/zFs39aOdl0V9cmyetP/1nGf/p4wrfRyklT rvGkMReLxznty1/uLSPLl891Djoj92BpaYnMkfv0jE1aKT3inEwIIYQQQjIY2qa3QG3Tt1xsm0mT qBnaJJ3gP9+5PbKf/7zbPe4ZZ42RitKr1/+REefHnLp6TpqibdM1mLNZMy3yTtrf/zr+22hzIevX L5Y7Tu5N92cIaaX0iHMyIYQQQgjJYGib3mibMUlaJpNO8JkdW8x+ftTg3uQZV5lsbHy5rKy0f//T f5BJ23Tlf149LFWzfmrCt9HmQgYMuFTuxzh/1WlbZaK45hNCCCGEkEyFtumNthmTpGUy6QQ/sTsZ 842U3kYrSVomaZvO6HtrJb949k+uTfkR2yoTxTWfEEIIIYRkKrRNb7TNmAy/zsQ1bpN0gp/oHsb/ R/M7r7g3JUuOtM2+fS+O+30quZalt3yyrPaTH61sCvdrNjMX2yoTxTWfEEIIIYRkKrRNb7TN/IuW yWe6d5foiGvZtk2POSznzbJtlYkSnU8IIYQQQjIf2qY32mb+Rcqkdz/RCbHjLOfjsrtbxiY6kxBC CCGEZD60TW+0zfxL0jfKJp1A8im2VSaKaz4hhBBCCMlUaJveaJv5FymTSbkuQvI4H/86SVzzCSGE EEJIpkLb9JbJtgkAAAAArUe0beYNUwET8zMnJbRNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI 2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt01tbbJtHjn086YltnSavLKxZIj8nr/uZ jJhtUd4Tzhq3SLNj3+E+32uQOeff9fimnb8xm6PmvbTzy3XrO9Quk61d7lhVvWzrtj0HzTYAAAAA rQJt01uba5vHjp/odfc62xg1vWc9+dHf/u5zgh2suHOVXS64efHbv/1QJ0g7tePO6FYAAAAArQNt 01uba5szN76h3W/cqldPfvJJzWM/1lUZ9zlBVyVjV/5IJsg0XR21/GWdUHTLUh159de/l9UTJ0++ 8D/7Bz+8WbcCAAAAaB1om97aXNu0v7dsPBg5m/JTV8+/63GfE3RVsvv3f3JOqJxarxPs7zyHLtyy 9vX3Dvz5mI4DAAAAaE1om97aXNssrFmiVdCsn2qPRbcs1dWkE3TVY4I0zIKbF9tpEmmqi179H90K AAAAoHWgbXpr623z5Cef6Gqithk7QVc9Joi9h5tmPfuLoQu3lE78gZ0/45nXzWYAAAAA+Y+26Y13 0ob/TlqX5361TyeUTFhuhgAAAADkP9qmtzb9KUGyaj8EaNazv/A5QVcl+ilBdkL1sq06oeq+Dct/ +s6+I02yLBM27fyNTnD+8hMAAABAvqNteovfNp3MaCA52DY/+tvfL7qnQeufjYzYLzhJOsEOJvoG FDvoSu3qn+gEAAAAAK0AbdNbnLYZohxsm+LIsY8nr/tZlztWFdYskZ+yLCNmW5T3BNsedx040ud7 DTLnczOf2LTzN2Zzc7PUTrlI3znri6JfhdKhdlm/uc/Me2mn2QwAAACgVaBtemuLbbOFbNs06wAA AADaJNqmN9pmymibAAAAAARt0xttM2W0TQAAAACCtumNtpmyoluWasw6AAAAgDaJtumNtgkAAAAA QdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16 o20CAAAAQBC0TW953zbPWjROY9YBAAAAICNom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABA ELRNb5lum0ePfzT5Z+u6rLqjcElN+aO3j3t11cG/HjXbHNXx7Q9/2++ZuUVLbylZPqH2J6s/+vvf zIzm5k2/2dlr3d1y8T4N39t15IC9iNkMAAAAABlB2/SW0bZ57MTx3k/Osv1QU7HqzsMf/UUnOAft skQKqk7YcXhfweKb7bhzmk4AAAAAgMygbXrLaNuc+cZGbYZTtj8pq3Pf3qKrtkzqqmTiTx8/+ckn 9e9u19Uuq+7QCaNeXq4j415ddeLkSfmpqxKdAAAAAACZQdv0ltG22Wvd3doMm/72saxKn9TV7mum 6QRdlRz5+JhzQsHim3WC1E4dafzzQVmVn7oq0QkAAAAAkBm0TW8ZbZuFS2psOXRGxnWCHdFV4Rqx b6PVVeGaAAAAAACZQdv0lhNtU6ITXKvCNeJqm/aXn3YEAAAAADKDtuktO++kPXr8IzN0ptjq6Bqp rJ+qq7yTFgAAAEB20Ta9ZedTgoY9/9/7mo7IyPGTJ9Z/sGPAxgd0Qmx1dI04PyVIVsf+aKVrAgAA AABkBm3TW0bb5kd//1vf9XNsP3RGJ7hWhWvk7Q9/6/wGFPurTolOAAAAAIDMoG16y2jbFFI4Z7+5 6aKGezosq5Xe2PWxb496efm2g3t0a2x1jB3Z9Jud5z9+V+GSmj4N39v54e9iJwAAAABABtA2vWW6 bQIAAABA60Db9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAA AAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAE bdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfa JgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAA AAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt 0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9om AAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAA CIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3T G20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYA AAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAI grbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdMb bRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAA AAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiC tumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xtt EwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAA AARB2/RG2wQAAACAIGib3mibAAAAABAEbdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK2 6Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20T AAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAA BEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbp jbYJAAAAAEHQNr3RNgEAAAAgiNbdNkePHm2WTokd8UbbBAAAAIAgWn3bdNZL16oftE0AAAAACKIt tE3hWvaPtgkAAAAAQbT6v9s0FfMUM+obbRMAAAAAgmgLnxJkimbqVVPQNgEAAAAgiLbQNkWwqilo mwAAAAAQRBtpm4HRNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdNbpG1u zwi9hQAAAACAzDPFLFSmViaQubZprhAAAAAAkHGmmIXK7DoB2iYAAAAAtH6mmIXK7DoB2iYAAAAA tH6mmIXK7DoB2iYAAAAAtH6mmIXK7DqB7LfN0aeYdQAAAABAikytSlysTDELldl1Allum+Z8UDUB AAAAoGVMuUpQr0wxC5XZdQLZbJvmTFA1AQAAACAMpmLFK1mmmIXK7DqBrLVNcw6omgAAAAAQHlO0 YqqWKWahMrtOgN9tAgAAAEArYSpWG//dpjJngsIJAAAAAC1jylWCemWKWajMrhPIctsU5nxQOAEA AAAgKFOrEhcrU8xCZXadQPbbJgAAAAAg3UwxC5XZdQK0TQAAAABo/UwxC5XZdQK0TQAAAABo/Uwx C5XZdQK0TQAAAABo/UwxC5XZdQK0TQAAAABo/UwxC5XZdQKRtmkWAQAAAAAICW0TAAAAABA+2iYA AAAAIHy0TQAAAABA+GibAAAAAIDw0TYBAAAAAOGjbQIAAAAAwkfbBAAAAACEj7YJAAAAAAgfbRMA AAAAED7aJgAAAAAgfLRNAAAAAED4aJsAAAAAgPDRNgEAAAAA4aNtAgAAAADCR9sEAAAAAISPtgkA AIAsaMh/5pbkjHUNG0lexNxhp7i25njMQftD2wQAAEAWSFv7TT7LzbbZjJwXW9jy6I6jbQIAACAP 0DZDR9vMC7RNAAAAIL1om6GjbeYF2iYAAEDa9fHHzG5dzG1LxsxupWiboaNt5gXaJgAAQNpJmzKv XxILvXE9+eSTHTt2bN++vVnPkqzc9pY466zwXzGmu23KMZul9MhM20zpzNM28wJtEwAAIO0CNC55 5S2KioouvfTSN954w4ym4oILLnj++efNSgLer++9t/oUrG0ePnz405/+9D/8wz/IghmKEcrhxUq0 25ZcXUptU67ILEW5VuNKNMfPZf2I2za3b99+8cUXy0O0ffv2n//8581oC6R0hmmbecG7bR49erRL ly5mpbn5wIEDffv2LSwsrKqqOnjwYNwReShWVFTIpWQheqHmgQMHbtu2TZfDRdsEAAD5waNx7du3 79/+7d82b94c2zbl55EjRx566KF//dd/1cGUyEs0s5SY9+v7lF79JxLgtos1a9ZcffXVX//61x97 7DEzFCOUw4uVaLctubpW2TZ79uzpce8EkNIZpm1mi9xNHsykU7zbpusiY8aMmTVrlizIz5qamrgj ZWVl+6NKS0tldfv27QMGDJCFdKBtAgCA/JCocWndqq2t/etf/xq3bSrtjTKyd+/eyspKWd61a5fM l3H5KctxR6Iv5CJk2Vq8eHHnzp2LioqGDRsmq2bGqTkVFRWyh44dO86fP9+19b333rvyyivlgt26 dZN+GJ3uixyPubVn8rjtYuTIkffdd9+cOXOqq6t1RA9D6XL00CJkOfbmWzpB6bL8vPXWW+W2dO3a 9cc//rGMyK27/PLL5eIXXnihnR/i2Wh525SfN91006c+9Sl5ADz33HMy8uabb1522WXt2rXr1auX vcg//dM/ychnPvMZOXuyKuNKlmW+vC6XPcitTul4RNy2KTdfHpBmJSruaYk9jbEP46qqKt00derU T3/60zJ5xYoVkQufusti0TazKPKQisdsdvBum8J5qU6dOh07dkwWmpqa5BESd6SkpESqpvzXQxZk VR7SUjhlIR1omwAAID/EbVzOuiWrrsYlL8Lk55EjR6ZNmyZFSEeefPLJ6MY/f/WrX7333ntlQX7q 1tgR3YPLOeecIy/xZbdS5GQ17py33npLpsmCc+vw4cOfeOIJWdi6dWvPnj110I8At10O7x//8R/l RaRUQVmQVRl0HowuO0dib74V94Jr1qyRhYceeqhv376yILfuW9/6llyR9CXnfBHK2QilbS5dulQW 5AZ+6UtfkoUhQ4bU1NR88MEHUiNdF5HzJscsC85xmS8VThaeeeaZ8847Twd9its25SEkrXLChAlS 3Q8ePCgjHqfFeRrtw1geA/Lw1mUhmxYuXCj3wvPPP9+5c2c7qAsutM3skvvFxWw4U0pts6CgwCw1 NxcWFsrP2BF5FkjPLC0tlYXAv9j8+c9/bpYcYgdpmwAAID9Im9q8ebO8tpaWpa9jXHVLxLZNUVRU dM0110gF0hHdJGRcO5j8lOW4I8751oUXXvj1r399+fLlv/vd72TVOUeu5aabbvqXf/mX9u3b67jr GmVVyUtAM+pDgNu+adOmz3zmM7r8D//wDxs3Rl7zyfXqiNBl50jszbc8Lug8e/YPRHVruGcjlLap q1IvP/WpT8mC/NyzZ48O6lapnaNGjfrnf/5nPWY7rmS+rCo5ZjPqT9y2KaTWzpw5c8aMGSNHjpTV 2NOS9DTqvaacm5zLcdE2s07uI8sMxUipbWqfVLocO+Kkv9iUB6frLzm9HT16tLq62jVZVmVQNpn1 KNomAADID9KmpFlJv9LSFVu3RGzbNEunOEfsy3RnX3KNxO5BSMmUqjls2DD9WBfnHHmxdd99973/ /vuyBx2Pe42pCnDbb775ZrlqS1ZlUBZ0q9Bl50jszbc8LigNU3/h5rx1ujXcsyGvZU1v80FqoVRK XZYF6WmyINeuI9Iw9feWzmm69frrr581a9Zbb70l4zpiLyWc81Mlx29uSTxyKuQgZSH2tKR0Gp2b nMtx0TZzgdxNwqzEk1LblNLY1NQkC9L6ZDnuiCU988orr5QF119y+uEqnHGrpqBtAgCA/CBtSl67 2NIVW7dESm3zq1/96ve+9z1ZuOeee+w7aV0jsXsQ3/72t6VwvvPOO7Zl2b9y/PrXv/7GG2/Iq/8V K1boZZ1br7nmGqkNslWaw+jRo3XQjwC3vbKyUv/GTyxcuFBeZcpC586dn3/+eTmABQsWxB5e7M23 Yi8oP+UMyMiECROGDx8uI/369XvggQdkYe3atTon3LORUtscMGDAzJkzdXnGjBmXXXaZLMgxvP76 61IXx48fP2TIEBm59NJL5SbLwvLly2WrLAwaNOjll1+WOY888oiOSMP82c9+Jgviqquuki4qW6WO jhw5Ugd98m6bq1at0g+yij0tsadRfyo57XJLzcqZm+yyc9CJtpkXUmqbY8aMmT17tizIo2LcuHFx Ryx5mshDSxZcf8npky2cIm7VFLRNAACQH7RxCS1dsXVLpNQ2pfZ86UtfKiwslJ9agWJH4r5MHzFi hLSmjh07Ll68WFY3bdokPUGb59atW6XmydbJkyfrZZ1b33vvPekSslVIo5ARn1K97T/+8Y/l2u2X vkg1klU5NulUctif/vSnp0+fHnt4sTffir2g/LzwwgtlsrQdfZfy9u3be/bsKSP6a1UZCfdsyCta 09t8kFY5cODA0ihZkFUZlGPo1atXu3btpGS++eabMvLiiy+ed955MiKvyGWrjDzzzDPSzKVh3nrr rTry+OOPf+5zn5NjlmW5lBRO2SqkdsqIf3L85pY4yJG0b9++oKBATqacQBmJPS2xp1F/Krlz5ZTK aZddyapzk112DjrRNvOCd9uUO1fp6sGDB+WRoI8H/b6T2BG1bds2/cWmcP4lp474pIUzUdUUtE0A AJAfbOPy4GqbrUYO3nZ5dWuWMiWlthmXHLNZyoa4bTO7aJt5wbttZp30zERVU9A2AQBAfqBtesvw bS868w87M6DlbfNT0U8GyhbaJoLJ8bbpjbYJAADyg7QpP8zs1sXctmTM7Faq5W0zu2ibCIa2CQAA AKQXbTN0tM28QNsEAAAA0ou2GTraZl6gbQIAAADpRdsMHW0zL8Rtm3kUc9D+0DYBAACQBdLW8p25 JTnD1QpIzsbcYW0AbRMAAAAAED7aJgAAAAAgfLRNAAAAAED4aJsAAAAAgPDRNgEAAAAA4aNtAgAA AADCF2mb74bEfIMMAAAAACAPmZoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoakNbfNI0eOjBkzpri4 +KwoM5q6adOmVVVVmZV8069fv+nTp5sVAAAAAEjM1MSQtOa2WVNToz1TmdEUNTY2FhQUbNiwwazn GzlyOX65FWYdAAAAABIwNTEkrbltlpWVScncvn27WQ+kurpa9nPy5Emznm/kyMvLy0eMGGHWAQAA ACABUxND0prbZkt+pakOHDhQUFAwatQos56fRo8eLbdCbotZBwAAAIB4TE08kxQKs5SikNumFrym piY5oKKiog4dOgwfPnzfvn166JZOk4XZs2eXlZWVlpbOnz9fNwnpRWPHjpXBwsJC+SnLrqbkPUF3 HstsTsX9998vF1y9erVZP0V3mNabedFFF8llt2zZYtabm2VZRnr37m3Wm5tPnDghe+7Zs6fsobi4 eMSIEXv37jXbHOT45YLz5s0z6wAAAAAQj6mJDlJ5lFlPRVra5siRI3VBdenS5dChQ3r0SscXLVqk C0o3ycyKigozdIqM2D0knWCGYujWlAwbNkwuGPteXN1hWm/m3LlzZUTuVF0Vo0aNkpE5c+bo6smT JwcMGBC93GmdOnXav3+/TrBee+012SS3xawDAAAAQDymJp6iPdMyo76lpW327t179+7dstrY2Nin Tx8ZmTJlSvTgDZ0mm9avXy+t6ejRo5MnT9ZNsiCb7B7kp+5h0qRJPidYMijMSiDl5eWyh+PHj5v1 U3TPab2Z+/btk9Xi4uITJ07IqvzUD9e1v72U2imrffv23blzp6xKTa2urpaR2tpanWDJ8cu43Baz DgAAAADxmJoYZSpmtGSapRQLZ1rapvOXgbIsIz169DDrUTpt4cKFZt2hZ8+essljD0knWDIozEog BQUFcfege056DDot2M0UVVVVMtLQ0CDL0ldl2flFLNJUZcT51llpszJSWVlp1h1kvLCw0KwAAAAA QDymJka56qVr1Y+0tE3nJ7jKsowUFRWZ9SidJu3IrDtIKZJNHntIOsGSQWFWAtHrMisOuuekx6DT gt1MMX/+fBkZPny4LOt7ehcsWKCbhO4hloybGQ6JxgEAAADAMjUxKrZb5mjbdFUdnWZWzpS0hiWd YMmgMCuBeL+TNvYYQryZ4tChQwUFBTLz8OHD8lOWnX8XqnuIy8w4Rd9J26VLF7MOAAAAAPGYmhiS DL2Ttnv37mY9SqeZlTPl1Dtp9TeK27ZtM+un6J5jjyHEm6kGDhwog1deeaX8lGUzGnXRRRdJNf3o o4/MemK6Zz4lCAAAAIA3UxNDkpa22atXr127dslqY2OjfpOH/XQcpdPMypn043NkD/rxObIf3YPr U4I8JlgyKMxKIPpe1kTfgJLWm6mWL18e3UeELJvRKP12lv79+0sZ1t+RHjx4cMWKFc6/7VT19fUy k29AAQAAAODN1MSQpKVtDh8+XBdUly5dpAjp0SsdNytnSvTVIHYPSSdYusmsBHLgwIGCgoJRo0aZ 9VN0z2m9maqpqUnfMSs/ZdmMnjJo0CC9oIvZfMqIESPkVji/zBMAAAAAYpmaGJK0tE3pRaNHjy4q KurQocPIkSP37dunh27pNLMSQxrX2LFjy8rKpGLJzzFjxri+QzLpBOV9LT5VV1fLVTj/wFLontN9 M9WQIUNkJ/LTrJ9p4cKF/fr1kwOQPtmtW7dx48a99tprZluUHLnsXAqnWQcAAACABExNDEla2qYe aOuwZ88eKXL6NSRWHt3M9evXy/E3NjaadQAAAABIwNTEkNA2k5s5c2b//v3NSlQe3cwBAwbMmDHD rAAAAABAYqYmhoS2GUQbuZkAAAAA2hRTE0MSctssitIDbcXayM0EAAAA0KaYmhiSkNsmAAAAACBP mZoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoaEtgkAAAAAiDA1MSS0TQAAAABAhKmJIaFtAgAAAAAi TE0MCW0TAAAAABBhamJI8q9tnjVukTNmtAWmTZtWVVVlVnLGWVFmJUv0GCwzGqNfv37Tp083KwAA AADylqmJIWnrbbOxsbGgoGDDhg1m/RQZnzNnTt++fb2LVvpk63qd9BgsMxpDzp6cQzljZh0AAABA fjI1MSR5/E7aUNpmdXV1WVnZyZMnzfoppmCdYkYzKFvXG5f3wcjZKy8vHzFihFkHAAAAkJ9MTQxJ m26bBw4cKCgoGDVqlFl36N279+zZsxsbG72LVvpk63rjSnowo0ePljMp59OsAwAAAMhDpiaGJPy2 uf9Pfxm59KUOtcuKblk6avnLTR//zVULD/z52NiVPyqd+IPCmiXyU5ZlxGyLeu2DQzJYcecqmVAy YfnQhVt27Dtstjm0vG3ef//9UqJWr15t1uNJWrQSWbt27bBhw0pLSwsLC4uKinr06DF27NjXXntN t8bdrXNQl5uamqTIycU7dOgwfPjwvXv36la1f//+kSNHyiaZIJ1ZJuulzOZonZYr1WOQn7LsKoRy PDJYUVEhE0pKSoYOHbpjxw6zzcG121hyDmXCvHnzzDoAAACAPGRqYkhCbptHjn3c9duPaQ/USPPU BT36Q//7kdRIu1UjIzKuE4Rrq0Rq5yuN7t+b6SazEoi0QelI27dvN+vxRHtWym1z2rRpesFYOsG5 bDkHdXnEiBG6oDp16nTw4EGdcOTIka5du5oNUdI8dUEnHDp0SGqkjlgyIuM6QZhRB6mdr7zyitl8 im4yK/FIa5UJcj7NeoykewAAAACQdaYmhiTktjm14efSAHvdvW7XgSOyuvv3f+rzvQZnLZy87mey 3HvWk7LJOWHSE9t0ghj44LMNb75//ETkbymPfnS85rEfy4T+/7lRt1rO3QZTXl4uFej48eNmPZ5g NamoqEguNXfu3MOHzW9l9+/fv3Llyn79+ulq3N06B3W5d+/eu3fvltXGxsY+ffrIyKRJk3TC1KlT ZbVXr167du2SVZmmE4ROmDx5sizbPdgJdg9i4MCBDQ0NegaOHj1aU1MjE/r3769brchOPU+C7EEm yPk06zGS7gEAAABA1pmaGJKQ2+b5dz0uDXDbHvP7N7H9/T84a2HP/xeZIIO6KnRCj+lrzXqMEydP yoTi25aZ9VOcuw2moKAgaQUKVpO6d+8ulxoyZEh1dXVtba30TNcvDOPu1jmoy87fu8qyjPTo0UNX zz//fFndtu10S9cJQld79uwpyx57iHXixAmZUFxcbNZPiezUx4kqLCw0KzH87AEAAABAdpmaGJKQ 22ZhzRJpgCc/+USPVciysxYmmlB0y1Kz3ty8+rV3r5r/XMmE5QU3L9bLSmTZbD5Fx81KINKOklag YDVJSqCWPSfph/bPJnVEly3noC47PyxXlmXENjo9+NgJQlcTTSgqKjLr0b+3vOqqq0pKSrR4K1k2 m0/RcbOSgEzwaJsAAAAAcp+piSHJubZZ98MdOj82OsGKO5iS9L2TVu3YsWPt2rV1dXXDhw8vLi6W /QwZMkQ3xe7W1RV12aMrtrxtyoFFp8ehE6y4g076TtouXbqYdQAAAAB5yNTEkITcNvWNsi15J23p xB/I6qJX/0f/blMcO37CuQcrtrimSj8lyPlm1FjRnuVVtHw6dOiQ7Mc2vQ4dOsiq/atO4XofrC57 vA9Wf3faknfSlpaWyuqiRYts3z527Fjk8jG3N7a4uuiePT4lCAAAAEDuMzUxJGn5lKDz73pcPyVo zx+Pxv2UoF53r9NPCZJpF91zxqcEFd2yVFY3vLVXa6RMGPzwZuceLNmJDEovNeupmz9/vnSkdHwD St++fRcsWLBz505taAcPHpw5c6bsR0qmTujfv7+sVldXHzkSOVHS1vTvMIVO0GX7IUCNjY0XXXSR jEyZMkUn6KcEyaV0wp49e+J+SpDsQT8lSKbpHuynBOlHGW3YsEEPUiYMHjw4cvmY2ys7kUHppWY9 Rn19vUzw+AaU6F5TPo0AAAAAMsnUxJCE3DaPHPu4cmq9lkPNmEdf0QU9+kTfgHLw6F91gn4CrTNa UCU6wZr30k47J3arHwcOHCgoKBg1apRZd9B2FMtsTsbMjjF79mydsGLFCjN0yqxZs3RBJ+iy/VIT 5fz+EqmplZWVZkPUmDFjdEEnJPoGFPsdKvoJtE5aUIVOsKRG6rgyow4jRoyQM+n6Mk+nRBcEAAAA kDtMTQxJyG1T7P/TX0YufalD7bKiW5aOXvFy08d/kyro/BAgKZZjV/6o7FsrCmuWyE+po3IRsy36 CbRTG34u/bPg5sVSXOt+uEMGE/XJWc/+otPklYHbpqiuri4rK4t9j6i2o1hmczJvv/22NLeLLrqo qKhIalhJScnQoUM3bNhgNkdJhevWrZts7d69u/5W0HkVutzU1DR69GjZSYcOHaR57tu3T7eq/fv3 y6BskgkyTSbLReybdYUUy7Fjx8oNLCwslJ9SR+UiZlv0E2inTp0q/VOOQYprXV2dDOr16gQnKcOd OnWKu1XOnuxcCqdZjyfuBQEAAADkFFMTQxJ+23RpPPhnqYIeX3CSXXv27JGu1dDQYNbzWWNjozQ6 jy84SZP169fLOZRrN+sAAAAA8pOpiSEJv232m/tMw5vv62f87Pzdh1X3bZC2ObXh57o1B82cObN/ //5mJa/069dPerJ+xs/OnTurqqqkbU6dOlW3ZsyAAQNmzJhhVgAAAADkLVMTQxJ+29T3tTrT7Tur D//lI92KEEXfnXqGbt26OT/nFgAAAAD8MzUxJOG3zW17DlYv21o68QdFtyzt+u3HJj2x7dD/UjXT Ytu2bdXV1aWlpUVFRV27dp00aZL9DCEAAAAASJWpiSFJ+99tAgAAAADygqmJIaFtAgAAAAAiTE0M CW0TAAAAABBhamJIaJsAAAAAgAhTE0NC2wQAAAAARJiaGBLaJgAAAAAgwtTEkNA2kXYrV648cuSI WUFQGzdu5FmGpFrB062NP9RbeA/yHwoAQAuZmhiS1t82p02bVlVVZVYyq1+/ftOnTzcrbdioUaNe ffVVs4KgamtrN23aZFayhGeTyuJ5SKoVPN1y4aGeRS28BxOdPf49AgD4ZGpiSLLQNhsbG+fMmdO3 b9+zosxoesh1FRQUbNiwwayHx8+tkOuVa5eZZj2Qn/zkJ4VRsmCGMs7jNvoR98XT4MGy2+YpU8yq mjw5MjhokFlN1RtvvCHH6b8G7NixY+LEib169erQoYOc4a5du9bU1Ph/JLsEO0X+jyHrL8F5Nqn0 nQflcRL8aAVPtxY+1Fty9kIRvQNDvgdbfvZCeQYBANoCUxNDkoW2qf8SW2Y0Paqrq8vKyk6ePGnW w2OO/hQzeia53vLy8hEjRpj11O3du7dTp049evTo2bOnLOzbt89syCyP2+hH3BdP8pqnoKC5sLB5 zx4zIgsyItm924ykasiQIXKcL7zwgllPRm+XS3Fx8datW80MH+QxtmvXLlmQy8pPWZbbG93ii16p S9xjyHrb5Nmk0ncelMdJ8KMVPN2CPdRb+EwMkd40s5K6uPeg7tMlpbPX8mcQAKCNMDUxJFlom717 9549e3ZjY6P+e2lG0+DAgQMFBQVpesHh81aMHj1ajkGOxKynoqmp6XOf+1zXrl3l4qKyslJWZdBs ziDv25hU3BdP4rbbZM/Nw4ebVVmQ1dpas5oqvS/kfjHrPvTt23fevHk7d+7U5iALAwYMkJ306tVL J/ixevXqioqKjRs3ygXlpyzLiNnmg/9jyG7blEcgzyYhl03feVDeJyGpVvB0C/ZQb+EzMUSR+y/s ezCUs9eSZxAAoO0wNTEk2fy7zRb+k5zU/fffL/tP9wsO71sh1y5b5VWCWU/FoEGDunTpYn8Do7+Z kUFdTcoemJyHbt26FRYWdu/eff78+bpVvfbaa2PHjpWXZbK1pKRk6NChO3bsMNtO7SEuM8OfRC9/ Dx9uLimRa5HDaN6+PbJQXBwZDGbcuHFyYPX19WY9kMOHD8tO5AXZiRMnzJAPe/bs6dOnj1xQXhEG eCK4JDqG7LbNNv5sshKdh+iB83RLTegP9ZY8EyMnOrfvQZcAZ68lzyAAQNthamJIWnPbHDZsmOx/ u7ywSifvWyGvTmSrHIlZ923SpEnyaljfGGbJqgxOnDjRrHvSA5s9e7YuWM4XiGbIQV5FvfLKK4m2 WjrBJ48XT3V1ci3NfftGIguyGsz+/fvlVZe8OjTrQTU1NekNPHr0qBnyQaqLvsaVn7JsRoNKdAwB XoLrfuIyM3xr488mK9F5iB44T7fUhPhQVy15JuqR5Pg96BTg7AV+BgEA2hRTE0PSmttmeXm57P/4 8eNmPT28b4Vcu2yVIzHrGaQHdv7558srDFmVVyQjR46UkX79+ukEMXDgwIaGBj1FMqGmpkYm9O/f X7da0T0Fv6c8XjzJNXftKvuPRBYC31dTpkyRI3T9IiIAqSWyn4qKCrPuw+rVqysrKzds2CAXlJ8t f/9eomPIbtts488mK9F5iB44T7fUhPhQFy18JkZOes7fg04Bzl4uPIMAALnP1MSQtOa2WVBQkNb9 q6S3QrYWFhaalQzSA9u2bZtZP/XOqw4dOpj1GCdOnJAJxcXFZv2U6J7S9eKpvl72H0ngN+XJyz45 5k6dOsV2gJTU1dXpLV27dq0Z8qG6unp39INW9BTJsoxEtwThcQyBf+ETijb+bLISnYfogfN0S0Ho D/UWPhP1YHL/HlSBz55cJLvPIABA7jM1MSStuW3Kv6ke+9drt8xo6pJeXLZmsW2alVNcg6tXr77q qqtKSkr0NbSSZbP5FB03K6lL+uJJ9t2C3Tfrm99mzZpl1lMnrxrHjh2rN/PBBx80oymSy5qlQJIe Q3bbZht/NlmJzkP0wN3jrkGebirdD3XZrVlKhR6PWTnFNZgL92ALz55cKrvPIABA7jM1MSRt9520 eu2WGU2d98X1nUtdunQx6xkU98Ccg/b/jsfSCVbcQf/S+vJXznCnTp2Ki4uPpvKXlk6HDh3q16+f 3EB5wGzcuNGMZpafYwjwEjx6v8VnZvjWxp9NVqLzED1w95E7B3m6qTQ91Fsu7ml3DubCPdjCs5cL zyAAQO4zNTEkrf9TgpzvjEoH71uxfft22ZqVT2WIe2DOwdLSUlletGiRfel87Ngx5wQr7qB/aX35 u2DBAjm2yZMnm/UUvfHGG5WVlbIHOUh5JWdGM8vnMWS3bbbxZ5OV6DxED9zricPTTaTvod5y0bOe 0/dgy89eLjyDAAC5z9TEkORu2/Te6sf8+fNlDyl9UEQA3sdZX18vW7PyifNxD8w5WFRUJMsbNmzQ L3DbtWvX4MGDnROsTp06yeDSpUt1ZqrS9/JXjke/q2D//v1mKBUrV66Uk9CnTx95GWeGMs7/MWTl JbjVxp9NVqLzED1wnm5ecvyhHve+cA5m9x4M5ezlwjMIAJD7TE0MSRbaZvRf5zjM5lPiDqYkrd/D rocXy2w+ZcSIEXIMWfk27bjH4xzUD1R0mjx5si7oBOu2227Tccts8Cd9L3/1xdO4cePMeor0tsRl f32Rbub64nEdQ3bbZht/NlmJzkPcA3YO8nTT2xJXLjzU9UjMyinOwezeg2ZH8fg/e7nwDAIA5D5T E0PSmtumqK6uLisrC/Y/mL3p4cUym6PkeuXa5R94s55ZsccjnIMnTpyYOnVqRUWFvP6orKysi377 nnOC1dTUJK+runbtKjPjTvCWvpe/vXv3loPRD6IMQG9LXLTNWG352eQU9zzEHrBwDvJ009sSV160 zezeg7qfuHyevdx5BgEAcpypiSHJ5jtpM2DPnj3y731DQ4NZz6z169fLtTc2Npr1tirpy99gnnvu OXml1Xb+BinrbZNnk8rueUiqFTzdsv5Qz64W3oOJzh7/HgEAfDI1MSStvG2KmTNnxn77dmYMGDBg xowZZqUNS9PLXzm9RUVFWfyTywzLhZfgPJtUFs9DUq3g6UbbTEfb5N8jAIBPpiaGpPW3TWRdml7+ tjVt/CU4fGoFTzfaZjraJgAAPpmaGBLaJtKOthkKXkTCD9pmvqNtAgCyy9TEkNA2kXYzZ86srKzs FtW9e/d9+/aZDUhm/vz5et5ERUXFjh07zAYggTx9uvFQtwLcg5w9AECITE0MCW0TAAAAABBhamJI aJsAAAAAgAhTE0NC2wQAAAAARJiaGJJQ2+aPfkQIIYQQQgghJC9D2ySEEEIIIYQQEn5om4QQQggh hBBCwk+baptnRcUdtFxbAyfcveVF9CZbrq2tL0eefXbM175W3L59Dt7eNB1SmnZLCCGEEEJaZ3K8 beqr27jOuBn+EveCOmi5tgZOsL0Fu1SORA/ecm1tfakZMsTc1CjX1swk0VUnGm9h0rRbQgghhBDS OtOm2qZ3wt1tsL0Fu1SupXXciqQpKymRm7l94ULXeCaT6FQnGm9h0rRbQgghhBDSOpMXbfOMI05b wr2uYHsLdqlcS+u4FUmTCzcz0TEkGm9hEu120R13uEYIIYQQQghpDW3ztUWLxl59dUV5eWG7diXn nDP0K1/ZsWyZc4LuxHJucsZj64mtW2ePHduza1e5iuL27UdcfvneJ55wTti3bp0MyqaiwsLRgwY1 bd7ssbfY6OS47JwDTz0lN7O0uFiOQX7KsozYrX7ifaL06uTI5fjlVnQoKhrev7/cLv8TbHSma1By 6ec/L+P106fbkefmzpWRPj172hHvRHec/Bh0mizIvVZWUiKna/7EiXZr0jPpPUF3HstOSBqd33DP PXIvXNSjx8Gnn541ZozclvM/+9k9a9boHO+HnO4hLucEWbi/trZbly6yk+4VFc6TIEl6Hnw+qide d50MLr3zTtc4IYQQQghp62kFbVPnOMmr51fmzUs0wY67kmjryZdfHvCFL+hWq1NZ2f6GBp1waMOG LueeazZEDbvsMl2wO/GOTo5LJ8hVSEs0Q6fIiIzbnSSNuZiD80TpyMiBA3VBye2yV6EjHhNsdJNr ULL829+W8apeveyIdEUZmTdhgh3xTnTHyY9BxxfdcYcuKN2U9EwmnWCGYuhWP9H5+kZc4Xx0VV9x hUxI+pAzQ/E4J0hf1QXLVn0/58HPo3rFd74jB/bE3XdLI/3Jww87N9nEXooQQgghhLSJ5OnfbTpv w8A+fRruuef4iy/K8tEf/lA/u6X/hRc652hiL+tMoq1zxo+X8b4XXLBzxQpZlVfhUglkpHboUJ0w +YYbZLVPz57vrl4tq7tXrep93nmRfaX+CjvRpfQqZLeyc1mVn3J1MjLp+uud07zjfaIiV+y4isb6 er2KKTfe6HOCjc50DUpObN1aXloqm3Y9+qisHnn2Wam7ksMbNzqneUT3nPQYdJpsWj97tjQ3ubFy AnVT0jPp/1TLoHAN+olecOtDD0k90+UXHnhg+8KFstC1c2eZkPQhZxO5cLxj0PHzP/vZ1xYtklU5 A1rR+/XurRN8ngcZ9HhUy/Hbkqm1M6XfdRNCCCGEkFaeVtA2XZFKIxOK27d3jUu8L5toq77Idr6P UV67y0hlx4662qOyUladnxajzUHYEZ9JdKmeXbvKeOxVyFXbkVTjOlGRK/a8iqQTbHSma1AjtVA2 SdGV5fkTJ8rykKoq5wTvRHec/Bh02sLbb3cOapKeSf+nWgaFa9BP9IJSgyWu5Q5FRTIh6UPOJnLh eMeg49seecSOSKWXEd2/JOnNlIW4E4Su7m9okHrpfAOtlOFe3bs3bd5sRzTOSxFCCCGEkDaUVvBO 2tUzZlx1ySUl55xTcPbZOl/IsmuaRDe5Bm0SbS1s1043uci4c4K0BXsR2yLsiM8kulSiqygqLLQj SeN9onTV4yqSTrDRma5BjTQo2SSdRzrJl88/X5Y31NW55ngkuuPkx6DTpKE5BzVJz6T/Uy2DwjXo J84Lupb17tBjiCXjOtNGx12DkrjjzsHA50Ho6siBA8cNHmy3ai79/OenjxrlGiSEEEIIIW00+d42 6266SefEcs2UJBrXJNqa6KW/0Ala3jxel/tPoksl7QZJk/RE6XLsVdiGk3SCjc50Ddpc+eUvy9ba oUPlZ3lpqXOHSRPdcfJj0GnOEZukZ9L/qZZB4Rr0E+cF4y7rMcSlM23iDkrijjsHk97MpI/qoV/5 ytq77rJbNXK3xr7dlxBCCCGEtNHke9ssLS6WCYvuuEP/HFFybMuWRJdKNK6Jff2tuahHD3kJ/tEL L7jGbRK9KVHYEZ9JdKmWv5M26YnS5dir6F5R4XOCTaIzqdl4773RPUXcdu21rq3e0UslPQad5hyx yZ130nosJ33I2diLuBJ33DkY+DwIXaVtEkIIIYSQJMn3tikvymXChro67Ta7Hn108KWXJrpUonFN r+7dZWvsNwfeX1sr4/0vvHDbI4/otRx8+ukV3/mO/WxV+3kqjfX1sirHoLsSOsF/OpWVyaWW3nmn q6rpVchu9TNd5CqkkMiI/08JSnqidFmuQj/CR26LXoVctc8JNonOpE3Xzp2jOzsr0aeYJopeKukx 6DTniE3SM+n/VMugcA36ifOCcZeTPuRsEj1gontyH5tz0Od58HhU+2+bzksRQgghhJA2lHxvm/rB qk76KlnYOboay07QzJswwWyIcm4adPHFZvRMuvXwxo2uL5MYcfnlumD34DO3XXutXtDS8UTfVyEl xF7WO0lPlC7rV5JYXc49116FjnhMsPE4kxr9Zg45ftd40ugOkx6DjjtHbJKeSf+nWje5Bv3EecFE y94POZtEDxjnso1zMOnNTPqolrZZP3368RdfdEYeZrRNQgghhBBiku9t88TWrVNHjpSXxQVnn13Z sWPdTTfJoOtSuhrLTrCZNWaM/rIoduvC22/v17t3h6IiuaJuXbqMGzxYv1tCs2/duuorrpCtRZ7f g580ckEpgV07d9a/mnPuQWrA2KuvLispKWzXTn6O+drX7Lcv+knSE6XLcgBy/HIr5LaMHDjQ+YUW SSc443EmJdNHjZLxiddd5xpPGt1h0mPQaa5Bm6Rn0uep9r4WjzgvmGhZ4v2Q0yR6wDiXbVyDSW+m 96Na2qauutA2CSGEEEKISY63TZKxJK0ESSf4T/eKCtnVq/Pnu8aTJsRjIIQQQgghhKQ3tE2iSVrk kk7wmUV33CH7if3qSD8J6xgIIYQQQgghaQ9tk2iSFrmkE/xEdyJmjRnj2uQnelnXICGEEEIIISQX Q9skmqLCQolr0JmkE/xE9tChqGjs1Ve7PkPVZ0I5BkIIIYQQQkgmQtskhBBCCCGEEBJ+aJuEEEII IYQQQsIPbZMQQgghhBBCSPihbRJCCCGEEEIICT+0TUIIIYQQQggh4Ye2SQghhBBCCCEk/NA2CSGE EEIIIYSEH9rmWeMWOePaGiDTqqurevVyDWY9Z0W5BjMcPQbLtdWmX+/e00eNcg0SQgghhBBC8iy0 zXDbZmN9fcHZZ2+oq4sdnzN+fN8LLvAuWulLtq7XGT0Gy7XVRs6enEM5Y65xQgghhBBCSD6FtmkT StusvuKKspKSky+/7Bo3BesU19YMJFvXGzfeByNnr7y0dMTll7vGCSGEEEIIIfkU2qZNy9vmgaee Kjj77FFXXukal/Q+77zZY8c21td7F630JVvXGzdJD2b0oEFyJuV8usYJIYQQQggheZPcb5v7N780 sm5Nh5olRTcvHnXv2qaXXnbVwgObXxp73+OltUsKb14sP2VZRuxWyWtPbZHBim8tkwkltUuG3vPY jqefd07QtLxt3l9bKyVq9YwZrnFnkhatRFl7113DLrustLi4sF27osLCHpWVY6+++rVF5oDj7tY5 qMtNmzdLkZOLdygqGt6//94nnrCTJfsbGkYOHCibZIJ0Zpmsl7ITpP7JleoxyE9ZdhVCOR4ZrCgv lwkl55wz9Ctf2bFsmXOCxrXb2Mg5lAnzJkxwjRNCCCGEEELyJjneNo+8sLXrpOXaAzXSPHVBb8Ch LVulRtqtGhmRcXMLpducuVUitfOVJ56zE5zTXIMpRdqgdKTtCxe6xp2J9qyU2+a06mq9YCyd4Fy2 cQ7q8ojLL9cF1ams7ODTT+uEI88+27VzZ7MhSpqnLuiEQxs2SI3UEUtGZFwnSMyog9TOV+bNsxOc 01yDzkhrlQlyPl3jNkn3QAghhBBCCMlycrxtTn3oSWmAve5cseuZyG8jd298oc93HnXWwskPrpPl 3lMflU3OCZMeXKcTJANnrGqof/b41ldk+eiLW2vmPi4T+k9fZSdonLsNlvLSUqlAx1980TXuTLCa VFRYKJeaW1NzeONGHdnf0LDyu9/t17u3rsbdrXNQl3ufd97uVZEb3lhf36dnTxmZdP31OmHqyJGy 2qt7912PPiqrMk0nCJ0w+YYbZNnuwU6we5AM7NOn4Z579Awc/eEPa4YMkQn9L7zQTtBEdup5EmQP MkHOp2vcJukeCCGEEEIIIVlOjrfN86f8QBrgtobN9oi3N2x21sKed6yQZRl0Tegx+Qd2xJUTr7wi E4pvWewad+42WArOPjtpBQpWk7pXVMilhlRVVV9xRe3QodIzXb8wjLtb56AuO3/vKssy0qOyUlfP /+xnZXXbI4+4Jghd7dm1qyx77CE2J7ZulQnF7du7xiM79XGiCtu1cw3a+NkDIYQQQgghJJvJ8bZZ ePNiaYAnX4n8WlIjy85amGhC0c2ny+TqlRuvuvuxktolBeMjF9TIsp2g0XHXYEqRdpS0AgWrSVIC tew5ST+0fzapI3Z+7KAuOz8sV5ZlxDY6PfjYCcJ7QlFhoR1ZPWPGVZdcUnLOOVq8lSzbCRoddw26 IhM82iYhhBBCCCEk19Pq22bdgqd0fmzsRTRxB1NK+t5Jq9mxbNnau+6qu+mm4f37F7dvL/sZUlWl m2J36+qKuuzRFVveNuXAotPjsBfRxB10Rt9J2+Xcc13jhBBCCCGEkLxJjrdNfaNsS95JW1q7RFYX Ldugf7cpORbzqbaa2OKaavRTgpxvRo1NtGd5FS2fObRhg+zHNr0ORUWyav+qU+J6H6wue7wPVn93 2pJ30pYWF8vqojvusH372JYtkcvH3N7Y4uqK7tnjU4IIIYQQQgghuZ68+JSg86f8QD8laM+m+J8S 1OvOFfopQTLtoqlnfEpQUbRDbnhsk9ZImTD47sece7CRncig9FLXuP/MnzhROlI6vgGl7wUXLJg0 aeeKFdrQDj799MxvflP2IyVTJ/S/8EJZrb7iiiPPPiur0tb07zCFTtBl+yFAjfX1F/XoISNTbrxR J+inBMmldMKeNWvifkqQ7EE/JUim6R7spwTpRxltqKvTg5QJgy+9NHL5mNsrO5FB6aWucZv66dNl gsc3oET3mvJpJIQQQgghhGQuOd42j7ywtfLMLzgZ8/21uqA3INE3oBw89Q0o+gm0zmhBlegEm3mL n7ZzYrf6yYGnnio4++xRV17pGpdoO4rlmpYoZnaM2WPH6oQV3/mOGTpl1pgxuuDcg/1SE+X8/hKp qZUdO5oNUWO+9jVd0AmJvgHFfoeKfgKtkxZUoRNspEbquHJtlYy4/HI5k64v83Qm0QUJIYQQQggh uZIcb5uS/ZtfGlm3pkPNkqKbF4/+/tqm6PtgnR8CJMVy7H2Pl926tPDmxfJT6qhcxG498corUx96 UvpnwfhFUlzrFkQKTKI+Oevhhk4TTHd1bfKZ6iuuKCspiX2PqLajWK5pifL28uXS3C7q0aOosFBq WMk55wz9ylc21NU550iF69ali2ztXlGhvxV0XoUuN23ePHrQINlJh6IiaZ771p3+nhjJ/oYGGZRN MkGmyWS5iH2zrkSK5dirr5YbWNiunfyUOioXsVtPbN06deRI6Z9yDFJc6266SQb1eu0cGynDncrK 4m6Vsyc7l8LpGncm7gUJIYQQQgghOZTcb5uuNG58QaqgxxecZDd71qyRrtVwzz2u8XxMY329NDqP LzhJU9bPni3nUK7dNU4IIYQQQgjJp+R+2+w3fVVD/bP6GT87n3m+6rsrpW1OfehJcwNyLzO/+c3+ F17oGsyL9OvdW3qyfsbPzhUrqnr1krY5deRI55wMZMAXvjDjG99wDRJCCCGEEELyLLnfNvV9rc50 m7T88AvmzzJJiIm+O/UM3bp0cX7OLSGEEEIIIYT4Te63zW0Nm6vvXVtaG/m7za6Tlk96cN2hU58A RMLNtkceqb7iitLi4qLCwq6dO0+6/nr7GUKEEEIIIYQQklry7u82CSGEEEIIIYTkQWibhBBCCCGE EELCD22TEEIIIYQQQkj4oW0SQgghhBBCCAk/tE1CCCGEEEIIIeGHtkkIIYQQQgghJPzQNkneZeV3 v3vk2WddgyTVbLz33ndXr3YNEuJKK3i6tfGHegvvQf5DQQghpEWhbaaaadXVVb16uQYzk369e08f Nco12AYz6sorX50/3zVIUk3t0KGbvv9912CGw7NJk8XzkDSt4OmWCw/1LKaF92Cis8e/R4QQQnyl FbTNxvr6OePH973ggrOiXFvDjVxXwdlnb6irc423PH5uhVyvXLvMdI2nlJ88/HBhu3YSWXBtylg8 bqOfxH3xNPjSw7LLKTf+1jk4+YbfyuCgiz90DvrPG4sXy3H6rwE7li2beN11vbp371BUJGe4a+fO NUOGBP61QLBT5P8Ysv4SnGeTJn3nQeNxEvykFTzdWvhQb8nZCyXROzDke7DlZy+UZxAhhJDWn1bQ NvVfYsu1NdxUX3FFWUnJyZdfdo23POboT3Ft1cj1lpeWjrj8cte4/+x94olOZWU9Kit7du0qC/vW rXNNyEw8bqOfxH3x1Fj/WsHZnxS2+2TPmp/riCzIiGT3qtfttJQypKpKjvOFBx5wjSeK3i6X4vbt tz70kGumR+QxtuvRR2VBLis/ZVlur92aNHqlLnGPIettk2eTJn3nQeNxEvykFTzdgj3UW/hMDDF6 01yD/hP3HtR9uqR09lr+DCKEENIm0graZu/zzps9dmxjfb3+e+naGmIOPPVUwdlnp+kFh89bMXrQ IDkGORLXuJ80bd78uX/+566dO8vFJZUdO8qqDLqmZSDetzFp4r54ktx27X7Z6/D+h3RVFmS1dujv 7ISUoveF3C+ucY/0veCCeRMm7FyxQpuDLAz4whdkJ726d3dO887qGTMqyss33nuvXFB+yrKMuOZ4 xP8xZLdt8mzSpPU8aLxPQtK0gqdbsId6C5+JISZy/4V9D4Zy9lryDCKEENJW0pr+brOF/yQnzf21 tbL/dL/g8L4Vcu2yVV4luMb9ZNDFF3c591z7Gxj9zYwM2gnesQcm56Fbly6F7dp1r6iYP3Gic85r ixaNvfpqeVkmW0vOOWfoV76yY9kyu1X3EJed4yeJXv4e3rit5Jy/y85eW/Tm9oVvykJx+7/LoGua z4wbPFgOrH76dNd4Sjm8caPsRF6Qndi61bXJI3vWrOnTs6dcUF4RtvzzORIdQ3bbZht/NtkkOg/R A+fpllpCf6i35JkYOdG5fQ+6EuDsteQZRAghpK2Etuk/wy67TPa/feFC13i48b4V8upEtsqRuMaT ZtL118urYX1jmI2syuDE665zDiaKHtjssWN1wXK+QDRDDvIq6pV58xJttewe/MTjxVPdTe/Lzvpe cFQiC7LqmuAz+xsa5FWXvDp0jaeaps2b9QYe/eEPXZs8ItVFX+PKT1l2bU01iY4hwEtw3U9crplJ 08afTTaJzkP0wHm6pZYQH+qaljwT9Uhy/B50JsDZC/wMIoQQ0oZC2/Sf8tJS2f/xF190jYcb71sh 1y5b5Uhc4xmIHtj5n/2svMKQVXlFMnLgQBnp17u3nTOwT5+Ge+7RUyQTaoYMkQn9L7zQTtBE9xT8 nvJ48XT8xVe7dv5Y9i2RBVl1TfCZKTfeKEfo+kVEgEgtkf1UlJe7xj2yesaMyo4dN9TVyQXlZ8vf v5foGLLbNtv4s8km0XmIHjhPt9QS4kNd0sJnYuSk5/w96EyAs5cLzyBCCCG5Htqm/xScfXZa969J eitka2G7dq7BDEQPbNsjj9gRfedVh6IiO+LKia1bZUJx+/au8eie0vXiqX76btm3RBZcm3xGXvbJ MXcqK4vtACml7qab9Jauvesu1yaPVF9xxe5Vq2RBT5Esy4jdmmo8jiHwL3xCSRt/NtkkOg/RA+fp lkJCf6i38JmoB5P796Am8NmTi2T3GUQIISTXQ9v0H/k31WP/eu2Wa6v/JMLGg20AAAV/SURBVL24 bM1i2/QeXD1jxlWXXFJyzjn6GlrJsp2g0XHXoP8kffEk+5a4Bv1H3/w2a8wY17j/yKvGsVdfrTfz wVtvdW31GbmsaySlJD2G7LbNNv5sskl0HqIH7h53DfJ006T7oS67dY34iR6P92Au3IMtPHtyqew+ gwghhOR6aJv+4/3eP712y7XVf7wvru9c6nLuua7xDCTugTkH7f8dj2Xna+IO+k9aX/7KGe5UVlbc vv3RVP7S0plDGzb0691bbqA8YDbee69ra2bi5xgCvASP3m/xuWYmTRt/NtkkOg/RA/d64vB006Tp od7yxD3tzsFcuAdbePZy4RlECCEk10Pb9B/9PA/nO6PSEe9bsX3hQtmalU9liHtgzsHS4mJZXnTH Hfal87EtW5wTbOIO+k9aX/4umDRJjm3yDTe4xn3mjcWLKzt2lD3IQcorOdfWzMTnMWS3bbbxZ5NN ovMQPXCvJw5PN0n6HuotT/Ss5/Q92PKzlwvPIEIIIbmettM2vbf6yfyJE2UPKX1QRIB4H2f99Omy NSufOB/3wJyDRYWFsryhrk6/wG3Xo48OvvRS5wSbTmVlMrj0zjt1ZqpJ38tfOR79roL9DQ2uTX6y 8rvflZPQp2dPeRnn2pSx+D+GrLwEt2njzyabROcheuA83byS4w/1uPeFczC792AoZy8XnkGEEEJy Pa2gbUb/dY4j7jTXYEpJ6/ew6+HFck0bcfnlcgxZ+TbtuMfjHNQPVHSafMMNumDna2679lodt1wT vJO+l7/64mnc4MGucZ/R2xKX/fVFumOuLx7XMWS3bbbxZ5NNovMQ94Cdgzzd9LbElQsPdT0Sj8Hs 3oNmR/H4P3u58AwihBCS66FtppTqK64oKykJ9j+YvaOHF8s5R65Xrl3+gXcOZiyxx+MaPLF169SR IyvKy+X1R2XHjnU33eSaYNO0ebO8ruraubPMjDvBO+l7+dv7vPPkYPSDKANEb0tctM3YtOVnkzNx z0PsAbsGebrpbYkrL9pmdu9B3U9cPs9e7jyDCCGE5HRa0ztpM5A9a9bIv/cN99zjGs9M1s+eLdfe WF/vGm9rSfryN1iemztXXmm1nb9Bynrb5Nmkye55SJpW8HTL+kM9u2nhPZjo7PHvESGEEF+hbaaa md/8Zuy3b2cmA77whRnf+IZrsA0mTS9/5fQWFRZm8U8uM5xceAnOs0mTxfOQNK3g6UbbTEfb5N8j QgghvkLbJHmXNL38bWtp4y/Bic+0gqcbbTMdbZMQQgjxFdomybvQNkMJLyKJn9A28z20TUIIIdkM bZPkXWZ+85uVHTt269JF0r2iYt+6da4JJFHmT5yo501SUV6+Y9ky1wRCXMnTpxsPdZsA9yBnjxBC SGihbRJCCCGEEEIICT+0TUIIIYQQQggh4Ye2SQghhBBCCCEk/OR02wQAAAAA5C1TE0NC2wQAAAAA RJiaGBLaJgAAAAAgwtTEkNA2AQAAAAARpiaGhLYJAAAAAIgwNTEktE0AAAAAQISpiSGhbQIAAAAA IkxNDAltEwAAAAAQYWpiSGibAAAAAIAIUxNDQtsEAAAAAESYmhgS2iYAAAAAIMLUxJDQNgEAAAAA EaYmhoS2CQAAAACIMDUxJLRNAAAAAECEqYkhoW0CAAAAACJMTQwJbRMAAAAAEGFqYkhomwAAAACA CFMTQ0LbBAAAAABEmJoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoaEtgkAAAAAiDA1MSS0TQAAAABA hKmJIaFtAgAAAAAiTE0MCW0TAAAAABBhamJIaJsAAAAAgAhTE0NC2wQAAAAARJiaGBLaJgAAAAAg wtTEkNA2AQAAAAARpiaGhLYJAAAAAIgwNTEks+596P8DFzZMN+MZTiEAAAAASUVORK5CYII= --=-IwNDuukp2aQD4pakG3ym Content-ID: <1550404367.14010.110.camel at jeltsch.info> Content-Disposition: inline; filename="query_19_02_16b.png" Content-Type: image/png; name="query_19_02_16b.png" Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAABM0AAANSCAIAAAD53663AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAOvwSURBVHhe7N0LlFTlveb/XqtDCMNBhoGQDgsZ wuiwGIdBJNE+Douow9EoMUr4d0SDxgsSLlFUBInHGMQb6iGGYJSbBAFREewoeggiXhARFUFAFIxE AUVUxCAQRIT+P1W/t3c2b9Xetbuqr/T3s95Va7+/9619qdpF74eqri7aunXrpk2b1q9ff9VVVz06 f8FmAAAAAAASU5D8++HImQAAAACA/JEzAQAAAADViZwJAAAAAKhO5MzqUVRU5JZyST7TjBo1qqys zHXqpdatW7/77ruuk69qWUkNyXvfop7ral9hmM1JsmmdV9OnT7dlAAAAoBpVIWcuefaZcXfemtme XrzIzahd2sNvf/vbrrN588svv9y9e/dvfOMbpaWlq1atctXDvfbaazbnBz/4weuvv67K7bffftxx x33zm9/s0qXL/PnzbVomb1ty44036pJdq7JufAAIjyaJCoG1a9e2b9/+rbfe0vLkyZO/853vaDe0 YKM9e/YsLy+3ZfHWHHTvvPPO733ve9pV3d51111W1Ojpp59uy9K3b1+br9swVXJu94wzznjggQds 2e6lx/Okk0567rnnrBjPthJeiccmJJF8pkk4P2bf4kWtP/MRE+vGSzLN5kTNDG9a51WnTp3s7AIA AACqURVypiKlhjKp7mbUrtS1eehiWvFy/PjxWrjiiit+9rOfWdGj+ogRI7Sg2wsvvFALffr0sTik ENWuXbvUpGy8bd17773Kq5ZUTXg0U3g0fqZn7Nixv/rVr2y5ZcuWr6S1aNFC3T//+c8nn3yyDRlv zdbVripLPPPMM1rW7THHHKOKjXbt2vXZZ5/VsiK6lm1+5u7l3O4vf/lLxXVbtru/9957FuCtmER4 JZ7MXYqSfGaVxOxbvKj98VZYvQdocxJuWmfXhAkTXAcAAACoJvnkzA8//HDbR9vkgw8+VNfLmatW rVIO+cY3vqHoUlxcrEr4kteWNee000775je/2aFDB3sXUfW1a9cq6Wm7zZs337Bhg4rvvPOOso0q qXtmE16zbUu081qDLXtat25ta37rrbe++93vWtEoGv2X//JfXCeb8LZ0gIpbrpOm0SFDhtgRLVy4 0FUradTY8vDhw7WH2hlFvvjjPfPMMx999FFb1jSFPWVCO7qs++CW0qx7/PHHh9+n1dqUkLWgUUXr vn37alnZQ8vB7qXmheTcro6iX79+thy+u73Zq4o9s1rWSrQ/qutWyzZqdwmvRMnn29/+th7Mn/zk J+raHLHlYG2iJ1Fr0yN555132qjRcuY5psopp5ySeWZmzvR2ILxvwSGUlpaGu8ERaW0//OEPbStR 6w+vUGyaeNuVzAP0TrPMldvaEm5a54OdAwAAAEA1qlrO/OCDDz7evv3THZ9+9tmOHZ/t+OTTTz/6 aJuXM3XZesUVVyi26bI7fMlrbPmcc86ZMWOGFp544oljjjnG6sHH+fr3729vueja+tJLL7ViVuE1 f+9735syZYoWnn32WV2aW9ETZFHx5owdOzb4XGhW4W1961vfssv39u3bBxf32rqOevz48T/4wQ9s WiB8Xy1rjmaWl5crVKgSc7zf+c53NNOWNaqkpyCqhcw3FUVr9qiowwzWIFrWzmvBRjt16vT000/b G49WSd/PUVdyblcPuGVXsXtpKyNGjFDcskrwzCrm3XjjjVrQrY2K3SW8EgV+nTxayZgxY9QN9kTC awu8+OKL9n8E4ZmZ55jylUKaVvv666/bTLvNnOntQHjfevfubW+Jm8wj0tpsK8p4UesPr1CC3fa2 GwgfoHeaZX0pBbc5N61XepcuXVwHAAAAyGXBgizf4JNZrFrO3L59+2effbbri1270zR7x6c7vJyp 9KXrYFsOX/IaW9YcLZjM9zwVZo4//ngt6Eo6/nf8wvdS3uvQoYNilS797aI8UzhbhpenTZs2a9Ys 14kQ3paWdb2uBd1RG7VKeiQVsXR0thzw7uuWKpdjjtcLwwF7U1HBOPybk+E1i3Xjc+bNN9+sNeg2 qHgr8WTdrtYZPOC6u+gR6NOnj4KWVWxIgnMj/CjZhPBKunbteuaZZ95zzz32q4PhNYSXtf6LLrro e9/7no7I6t621DV2jqkSfAWOisFt5kxvB8L7FhyCCbrBEelWL5/0YOT6wysU1W3B227MAYY3l1pv WvilZLc5Ny12PgAAAAA5KST+7Gc/mzp1quunqati+FOZUrWc+cnHH3/++ed79uz5x759//jHvt1f fKHY6eXMcLDR1W1wa2xZl7/BHBOeI126dJkyZUrwllcU717mySef7Nmzp+scTunIruB1dFq2osKS 4qItxwhvq0WLFkFisSgYjOqhy7xwD98363LU8WonvQdKlPRspvebk+E1i3WVYINP3oqWLdPaqPZW wcY2YRVvJWFR2xWt034FNPPu4UrwvOvWYpIEE4KV6DlS1vrJT35ib7WF1xBe1tk8duzYN954Q2uz etZtBaLOzMyZ3g5IsG/e5MwjCk+IWr8EK5Rgt73txhxgcJplrjw8M+emtZ7gGAEAAICcvKiZNWRK 1XLmp59++sWuL7788suDB7/++sCBf+z9x+d//9zLmaWlpbfemqo88MADdrH77W9/u7y8XNe7d911 l1X69OmjC2hVdA19wQUXqBJcQJubb75ZYeaRRx5x/QjevWTVqlXagXvTX3WTSQ/Btddeq4Wrr77a tvvggw/a2245hbel9djX8/zhD3+wjy9q1PLAFVdccc4556Rn/fMuuty3X96T8HqC5ajjVQi0z+WG nXzyycrSWvB+czK8ZrGucsv3vve9p59+Wsu61bL2ORgNs0pmPRC1XenXr5895lGrNaeccsoNN9yg hX//938PQnUwIViJnh0lrtdee83eeYt69PTgPPfcc3rMdS+rh2dmnmN6pu5M/5ajzkabb7eZM70d kGDf9CCMHj3aipJ5RJpg5//06dOj1i/BCiU4KG+7mQeoW+80i3opJdw0v58JAACAqgqiZlTIlCw5 8+23316zZs2rr76qKOXnzE8+2bVr175//OPAVwf2f7V/z969n3/u58xnn322U6dOuuL/yU9+Yhe7 ijqtW7dWJlHGs4qina6ANUd0HayK1QNr1679n//zf7pOBN3FuH46ZrRr184+zJnV66+/3qNHj298 4xu6tW+LdauoZNMyueHKCdp/xQmtp3v37hZsiouLbc2qB8E1mK8Aedxxx1l4CIoSLEcd75gxY4Lv mzXKSEFCC//mpLrhNUvQVbzv0KGDugqZ4b9rYgsBq+g2zIYkZruiZPXLX/5SC+G7mHBFj5UesfDj JsGEYCUKQnoqdc7YV6FGPXpPPPGEnm7N1ENk9fDMzHPsmWee0ZmpZ0rr1z6oYvfKnOntgAT79uKL L2oTuvtJJ52kbuYRaSvHHHOMKpdeemnU+iX8iBkte9vNPMDM0yxz5TbTbuM3LVpzcIwAAABAQhY1 o0KmZMmZb7311htvvLFixYphw4aFc2bU389U3c3IYBe7ebj55pt1New6jUDU8Qbfwev69dUDDzxw xhlnuE5VKO0HXx6b90qq6tFHH63qh0Wrfd9q7WAzBZvWK12RWLdWBwAAAJJTSInJKVly5rhx4265 5ZYxY8acffbZ4ZyZh29W/g5eVZ100knBL0CKvSET5gZiuakhbiCWmxriBmqSd7xho0aN+lnEnwOt P7Tz9t25VaWHN3iLNe+VJPfd735XW1S4Ki8vd6Vkqn3fauFgowSb7t+/v30bLQAAAFC9suTMqN/P BAAAAAAgJ3ImAAAAAKA6kTMBAAAAANUpd86k0Wg0Go1Go9FoNBqtSs3ly0qH5cy/1pjJRZPVKgAA AADgiDNmjFtoEFwWjJZkTjxyJgAAAAAUhJzpIWcCAAAAQEHImZ56mjOLBk225vpAXStKcx0AAAAg hJzpqcucGRMmY4ZQ+zZu3Dhu3LjS0tKorPXqq6/26dOnefPmTZs27dChw3XXXbd79243lsy+ffuu v/76kpKSJk2atGvXTsv79+93YxUVq1evHj58eNeuXZs1a6YJ2sSQIUN0XrnhZHIehSxatOiMM87Q VnQgJ5988uOPP+4GyJkAAACIRs70kDORm0WsgKtWWrZsmbKfG6vUs2dPN5yMYqq7ZyVV3FjGDhjF 2meffdbNSMDdrZKrhowfP96Nhbixyru7DgAAABBCzvToynlrUdGmoqL13/0uORPZdevW7ZZbbtm4 cWPWrNWrVy8VBwwYsH37dnXff//9vn37qjJ79mybkNPChQs1v23btitWrFBXt1pWRXWbUFpaOmHC hHXr1h08eFBdLZx22mma0LVrV5uQRPxRvP3221a/4IILdAiq6Ly9+OKLbVRs1HUAAACAkEaSM3V5 7JZyqYP3M4MMmdlsggSV9dt29rrriaZDp7W4cvqwOcv2ffW1m1FRsWvf/hGPvlxy7awmQ6a2ueaB QbOWbt/1DzeWtnPvl1fPXd52xExN0K0mq+LGKgUb2vb3vf0mPd1s2P1a4X0vrNfQibeVq97x13Ns pnS/eb4q3cbOc/0EtmzZ0r9/f/tAqZ6V3bt3h+NKeDngFQ8cOKB01Llz5yZNmmg9WpuloLDgLprZ qlWrli1bTpw40YZOPvlkDYUjn4W6Hj16uH5VpLfj77AOTcV9+/a5vp6aXbtUKSsrc/1cdFCaryTp +hUV2n9VFPlcP8OOHTs0obi4WI+PKyWmO4rrVLriiitUPPHEE10/g91Lz6CeRx1ys2bNdICZzwUA AAAaocaQM3UZbFw/lp8zb45miTE/eefM9tfNDpbVlBVtwt79B5T3wkNq7UbN2rHHpR1N6HrTo94E 3SWcVCUYOm7M3GBZTUOTl75ly6++94m6+w8cLB48Rd0b/vxa+q65ffLJJyUlJZZPjAUqsQnh5UC4 ePDgQXvjLqxt27YffPCBTTBWn6zHOMSGpk+fruXwp1iVjlQJh7rk0iv2d9g+NJuZM9u3b+/6uXTs 2FHzdZ64fvq9RFU6derk+hmCxK5tuVJidkfXqdStWzcVH374YdfPYPcKnkGj58LexQUAAEBjdsTn TBcxK7lqtCw5M5ULM1RjzgxYilNz/ZBgaPgjLx08dGj2ir9at+2ImTZhzIKVVhk5L/VJy7sWrbFu EESDCYNmLdUahjz4onVVtwnGimqdrn9oxd8+VmXn3i9tnbu//KrJkKkaum7+K+ouWLPZZlrsTGLE iBGKIj169NAjoO7bb7+tZcsnNiG8HAgXx40bp+XS0tJ169apq+A6YMAAVYYNG2YTTPoeqQ2Vl5cr mip6adM2dODAgTZt2mhUT7G6O3fuVCyUHTt22IQqsQ25TiWFWBWDz83qdLIo26xZM5uQk2Zqvn0m 9uQ0Lcev4eqrr9aEdu3auX5V6I7iOpVsHxTgtebmzZurq+NavHixG668l+Konkd1N27caM+m5tsE AAAANFpHds504TIdL91SrqhZ33OmfdJVQdG6xYOn2ITgvUqlwfAExUVvwsbtqYdJt9bt8ttHbIKx otryTVnelbp4xnMaso/OXl/+qpY7jH7QhpLo3Lmzcoj9zqHRcjqtJM2Z9iZb+MOZWd8qTN+j6L77 7nP9w40cOVKjQ4YM0bJ9HvWcc86xoapKb8ff4UWLFlk9YJ9BVZp1M3Kxe9myQrVyphWj1nDbbbfZ XWLefoxh93WdSlYcPny4LQSC3xG1buazeeyxx7o+AAAAGqvGkDNdJ6ObVX3Pma6fUbF3GjOb6t4E 64p1mw6d5vppVlRTUnWlkOc3brPRV9/7pPfdT2ph+CMvubEEiouLlUPsbTpjb9OJdcPLgXBRQcu6 Hi+AWTHqE6SKqRpt1qzZ7t27TzzxRC2H/1xHlaS34++wLF68uFevXvZbi4pqW7Zs0bSYdyM99l5i 5gOVuYYDBw4MHDgwtRNFRXfffberVpHd3XUq2W+Z9u3b11L99u3b7a3j4CPH6Ttl2cnkcRoAAABH qiM+Z7qlSnnmTN2GBfW81VrOVPMmWDd4wzMqZ7p+hk7XP6TRkfNW2Aqf3fChG0ggj5zpTYjKmWIT TGbFc8YZZ2jCsGHDdNumTZvwLlVJejtxGzJz5szRtORfBpvw9zM/+eQT+25bHcKCBQtcteq0BnGd Su3bt1cx/Gc/9+/fr0qQddN3yvJsKqC6PgAAABqrxvA9QFXSUN/PDD4Wu2vfP/+af1hVPzfr+hnG Pvm6RlsO/5NuW101w1WTOfbYY5VDYj43a+/jhX9V0pvQvXt3xZjwV+xkFb5LVkplNkeuuOIKV606 W4PrRLN3TYcPH+76uST5vtmVK1daFLzooosUOF01L1qJuE6lfv36qRjOmfZVQ17O5HOzAAAAyETO 9NRlzmw27H7LeKu3+N9JY3U118+oBF/z02/S01t2prLB/gMHy1e/d9rv3Ntc4e8BUjf4HiDlRptg rKjm+hm0cvuaWbWLZzznqskE3wO0ceNGdfUgKzem04oLOaeccoqWBwwYsHPnTnWVW7p06RKeMH78 eC1r2vLly+2dtO3bt8+YMSP8/bESvkuUDh062LRly5a5UtXZGlwn5OKLL7Zj1LmkcKg5xcXF9n05 SeT8+5kzZ85U3tYjqbRplUKkjiHjKGbPnq1i3759dQjq6nG2A/E+N9u1a1c9j+rqeO3ZHDlypE0A AABAo0XO9NRlzrxg2pIg5llzA9nin1fZ99XXpeNSf98yswUT7M9dhpsqUX/XxPWzOWPCUzZHOdaV klFW8f6uiUUXsQlKjNYNjB071hZsgpx55plW8bjhtMxKpltuuUVzCvmC1kxuONsEJWQ3lkyfPn3c PSup4said0D278/+hnYmd4cMbrjyi3PDmjRpsnRp6v8pxCrBM2j0eBb45ioAAACOAORMT5acGcUS Y36y5sxPvtg3aNbS9tfNjvrOnviKEuMtT61SdGw27P7iwVM6jH7wounPhb82dufeL0c8+nLJtbO0 ft1q2b69NixztZkmLFmnCU2HTjtQ9V9r3LJlS//+/Zs1a9a0adOLL7547969lk/csFY+YULHjh2L i4s7depkHxz1Jsh9993Xq1cvrUTTNHnQoEGvvvqqG0vLvEumG264QXOSf5Y1zNafyQ1XVDz++OMK ado97aSCcfA+ZHL79u277rrrFNsU7XR7/fXXhwOk21421Zgzd+/erX3o0KGDDkTPl4Lu8uXL3Vjl 3TVHz6NGdaTKnHp+3TAAAAAaMXKmp6jo54flzLACs2VY1pzZUPS883HlzP5Tn3H9wlhccZ1apByr 7QbvzgEAAACoLkdezny9KtzdQorGvEjOjLNo/VZ7w3P2in9+G2oh6iRnTtbDn/FXNwEAAABUC3Km x//cbBg50xKmWrtRs/L40GxWtZ8zbYsyduxYV6rkBrJxMwrmVpeNm1Ewt7ps3AwAAACgJpEzPeTM OE2HTlPrdP1D4V/7LFDTNNepFfbLhAMHDsz8s5m2M1m5GQVzq8vGzSiYW102bgYAAABQk8iZHnIm AAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABA QciZnjrOmUWTB1lzfQAAAABoaMiZHnJmY1d0OFdtyI6YAwEAAEBDQc70kDNzqIU9fP/994cNG9ah Q4cmTZo0a9asT58+ixcvdmM1z1JZwFVrl236lFNOcf2KCi1b0fWrIu87AgAAAPkhZ3r4/cwcajpn Pvvssy1atLBoFOaGa1FdbVds08XFxXv37lV39+7dWraiTQAAAADqM3Kmh5yZQ43mzB07drRq1Upp 6tJLL924caMqBw4cWLx48dlnn20TalMd5jrbdPfu3efOnavuww8/3K1bNyvaBAAAAKA+I2d66iZn BuEtaG4gzSp/XP9cs/uHHfvwDc9v23jmf/6hydQhnR/5zZrPtobnqK3esaXH/Fs12uWR3z61eZ2N mp1f7r16+dy2M0doVLcjXn5UFTdWKVjPtr1/7/f0JG2xZNa1961/IahnNnfPtAnrlpxYfpvupU3o jgOevX/59k1uLIGxY8cqSvXr18/1s9m2bdvAgQNbtmzZpEkT3WpZFTdWmdDmz5/fokUL5bTt27dr nc2aNevSpYue1mDC7t27L7744qZNm2qorKxsy5Ytdvcwm+k6h1P6veWWWzp37qx9aN68ef/+/d9/ /303VlGhXdIdjzvuuH379qmrW0uJqtuEnNJbLrrxxhsvuOACdbX+66+/3oo2QV599VWtsF27dtoH HWzfvn1Xr17txtJsfsBVKwXF8ePHd+zYUSvp1KnTxIkTbRQAAAAoBDnTU39zZvGUwbagCGcLaoqC 4Tlq7WaNCpZ1lyCI7j2wv+ujNwVD1rrNG7vv669sggmGjps7JliOb+6eFRUKrt6QNTecQK9evRR+ nn32WdfP8MknnyhZWUYKqKK6TbCKvSkqp512mi3IgAEDggnKb7ZgSkpKgjUEbMh1Qg4ePBherWnb tu0HH3xgE7xg6cXOJNKrLFKSVJDW5nS7bNkyK7oZlXPClBWff/55N5wxwVUrWVFp2RYCs2fPdjMA AACAfJEzPfXxe4Cssu6zD1fv2GLLKz99/+3PP9JC25kjwnPUBr4w8+ChQ4OWzrLuRc9NtwljVi6w ioY0YciLD1pXdZtgrKjW6aHrV3z8N1V2frl35Ip5NirBBNcPaTptqA0t/egddQ8cPLj4g7fO/ss9 NppEs2bNFHWUrFw/w4gRIzRBKe7tt99WV7c9evRQ5eqrr7YJqaiUTqpBMFu8ePGKFSu00KFDh2BC sIaNGzfaGkaOHJlewT/ZTNcJGTdunOqlpaXr1qXeLlZAVYJVZdiwYTZB9BTbb5leeumlutWyfQw4 Id1FtKAAPHbsWOXMcNH07t17/vz5+/fv1/KuXbuGDBmi0fBXBwW8OxordunSRWlWXa3Bsreivk0A AAAA8kbO9NTfnJl1WdEuWLam/Knuxr9vt2772dfZhODNTA2FJ3R55Lc2wVhRLerzrsEE1w8J3krt u+i+h999bdve1PNRJRZ+XCebzp07a4Jyo+tXVFiGPPbYY62bXkEqqYq3rBAbTIhZQ8Bmuk6IvVcZ /qCsQpoq7du3d/20OXPmpFeQomVXTcbupQXF1DZt2vTv3z9czOrAgQMabd68ueuHZL2jFZcvX+76 6V+OVcUeJQAAAKAQ5ExPA8uZxVMGB8vhIbFuEESDT9taV7wJxopqBw8dcqXDBRNcP0TZMvhwrzWF 2MlvLXXDCdj7mYpMrp+hSZMmmqDc6PrpT7Gq0rRpU+tqWbIuFxcXB8WYNQRspuuE2D5kUt3NqHTR RRepfvHFF7t+YrZCLZSXl2vBYmpQNCr26dOnRYsWwVfRih2jx4Zcp1LyIgAAAFBV5ExPA8uZ3nLQ VUq0blTOzJxgrBhMyxQ/4f3dO8a+/mTfRfe1/NPwYOaNrz3hhnMpLS1Vzon5/cxCcqYt20LmGjJT os10nZConCluRtq+ffvs3ddjjz02+W9mmsy1Sbh42223WTeTTQjLWk9eBAAAAKqKnOnRZfbWoqJN RUXrv/vdBpkzq+tzs66fIeeEwMItb9rMFtOvdKVcbrzxRj0Bffv2df0MCT83G7NsC5lr6NSpk+tX ysy0pnv37oq1OaPj8OHD05tKueKKK1w1GbuX61QKF1u2bKnlyZMn2+9nyt69e8MTwrLWkxcBAACA qiJnehr8+5n2PUDB1/wMePZ+mxD+HiB1gwljX3/SJhgrqrl+hmb3D7MJq3f4fwuk5+N3Tt/w0pbd O7WsfXhq8zqb6b1lGiP89zPte3oU8xYvXnzOOefYBPseoK5du9qonialPlW87wGKWbYFrUH3VXfj xo22Bq05PfGfNEd1ZTnXrzR+/HjVTznllOXLl1sK3b59+4wZM3r27GkTRPusOYqjCxYs0K2WY96k zaT54jqVwkVb5+OPP247oGM5++yzwxPCstaTFwEAAICqImd6cuTMMFfNi5czLY9lbcFoeGbUslrU 3zXZ9/VX3effHAxZUyXq75q4foYLlkwL5ngzvXrQhi2rwrfgLFq0yL6p1WOjUX/XREnPJlglZtkW ysrKbMGUlJQEawhMmDDBDae5atqZZ57pqoez0Z07d7Zv315drUFdW48qqtuEnNIrO2yLEi7at8uG WQIXmyDWzRQeteVA1iIAAABQVeRMT1zOrEY1lzPX79zWY/6tTaYOOW7umKc2p/7wRmDnl3tHvPxo yaxrNapbLavixioF63H9DJ/s+2LQ0lntZ1+X+cVCyrRaZ2n5uKbpP3DS7P5hvZ64a8K6JW44MT3+ w4YN69ChQ3FxcdOmTRXqFD7dWPrNw4EDB7Zq1apJkya6vfTSS4M/XCnhpJR12RZ279598cUXa+XN mjW74IILtmzx35s1Y8eObdu2rd3FlSrdd999vXr10t21kx07dhw0aJD9gRCxr/857bTTrCunnHKK KvYHPJNIb9DfYrh44MCB6667TgFbW1eCve2227wJYt1M4VFbDmQtAgAAAFVFzvTUTc4snEW+cOpD VkQpAAAAoKaRMz3kzCMcORMAAACoaeRMDznzCFfnOdN2ICs3AwAAAGjgyJkeXe1vPeGETZMaWs5s Om2oNddHhKZprlMXbAeycjMAAACABo6c6Um/n7lkU9nx6wc2qJwJAAAAAPUEOdPjPjc7qWz9WQPJ mQAAAABQZeRMDzkTAAAAAApCzvTwuVkAAAAAKAg509NQvwcIAAAAAOoJcqanof5dEwAAAACoJ8iZ niM/Z/KXNgEAAADUKHKmp25yZm1mv9rcFgAAAIBGiJzpIWcCAAAAQEHImZ4jP2cCAAAAQI0iZ3rI mQAAAABQEHKmp45z5vqd23rMv7XJ1CFdH73pqc3r3HDarv37Rrz8aMmsazXa5oFrBi2dtf0fu9xY 2vLtm7rPv9nu++yHG4J12mjQDZrVA0F9zWdbez1xV9NpQ1tMv3LYsjn7vv7KzQAAAACABMiZHj9n 3hzNEmN+onJmu1mjguXiKYMV+WzC3gP7u80bGwxZ0+Qd+/bYhE27PlUsDIaa339FsGwTgm7QrB4I 6uF9UFO4dTMAAAAAIAFypidLzrRk6KmhnDnwhZkHDx0atHSWdQc8e79NGLNygVVGrpin7l1rFlk3 CIHDls2xykXPTT9w8KDuaF01mxDIWR/+0iPah9l/XWHdklnXuhkAAAAAkAA501PHOfPtzz9Sd+Pf t1u3/ezrbELXR2+yyu6vvlRXOdC6nR663iYc+/ANVrE16Na6ajYhkLO+88u96gabKJ4y2CYAAAAA QBLkTE9RUdHWE/pvOv74usmZrl9ZaTptqHWbTB0SzAk31b0J1g1SYlAJJK9nVgAAAAAgJ3KmJ/V+ 5pL7NxUdnjN1GxbU8xafM4OUmDNnqtmE4imDw11yJgAAAIC6Qs70pN/PPGHTpIX14nOz7WaNsgnB 52Z37d9nFU+HB0fbBG8NajYhkLyeWQEAAACAnMiZnqKtL25d8hv//cxMNZQz7XuAhrz4oHUzvweo 39OTtuzeqcr+gwfK31t92oLf2QTdMbiL1lDI9wC5PjkTAAAAQF7ImR73udnjy+omZ0b9XZN9X39V Wj4uGAo3m7Dx79ub3T8sKCb5uyZB8yZYVzIrAAAAAJATOdOT+txs0eGfm41iiTE/UTlz9Y4tPebf 2mTqkM6P/OapzevccJqi5i2rnuo+/2blSUXQDg+Ovui56cu3b3LDFRXPb9uoUd332IdvWLjlTVth 8G2xwSYymzfBupJZAQAAAICcyJke/++ahBWYLcO8nFntdu3fZxGxxfQrXQkAAAAAagU509OAc2bf Rfct377p4KFD+77+Kvh1zX5PT3LDAAAAAFAryJmeBpwzLViGW5OpQ1Z++r4bBgAAAIBaQc70NOCc ueyjd/s/M7XF9CubThuq27LFk1fv2OLGAAAAAKC2kDM9R8jvZwIAAABAXSFnesiZAAAAAFAQcqaH nAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAA AFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFn esiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkA AAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQ cqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZ AAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqanoJz5+psbbvvzigvue+bfxv9F7eeTltzx+AoV 3XBIOGcWDZrsNasDAAAAQENEzvTknzPnPL/6x79fNOTBl+98+q0pL/1VTQvq9rn7LxpykyqRMwEA AAAcqciZnjxz5oPPr+5z96I7Fr05+cW/ek1FDWmCm5oWzpkBciYAAACAIwA505NPznz9zQ1n/W7h zf+57g/PbbRmuxt0NaQJK0MfoCVnAgAAADhSkTM9+eTM28tX/OJPy+5c/FbQ3v9sj1q4ogm3PLbc 3SGvnLlr3/4Rj75ccu2sJkOmtrnmgUGzlm7f9Q8bsnv98bn1zYbdf+wNDz+/cduZf/hPTev8m0fW bP0syQSz9J2PyiYvbnHldA3ptvfdTy5Ys9mNAQAAAEAy5EyPnzOVLaNYYpT+9y4eMX/VTf+5LqZp wnn3LnZ3qHrO3Lv/QLex84IJ1tqNmrVjzz6NWrd48BRbUEq0BbV+k55OMsEExXBb/NYHbhgAAAAA EiBnerLkTEuGnnD9/9351HXlq0f/+Z/Ndjdcua581Wl3POnuUPWcOWbBShsaOW+FunctWmPdEY++ rK4tr/vws9Vbdtjyyvc/ffujz7XQdsTMJBPMKf+xYP6qv+0/cFDLj7/xvs0MB1EAAAAAyImc6ckr Z97x5JVzVw5/9J/NdjdcuWLua6ff9ZS7Q9VzZtebHrWh3V9+pe7BQ4es2+n6h9S15fREf7np0GmZ xcwJWdnMFldOd30AAAAASICc6cknZ/5s4qKLZiwb9OCKoNnuhiuacN49i9wdqp4zw590DTfVNWrL NtNbLh48JbOYOUGUXe9atObE28qbDbs/+IStmm0CAAAAABIiZ3qy50zdhgV1c8v85T/+wzMXzXgp aLa74YomjJ2X//cAReVMNY0GC1HLWYve8vBHXrJuZrMJAAAAAJAEOdOTz/uZK9dt6H3Hgn6Tnz9v 2lJrtrtBV0OaoGnuDhE5MwiTBw8dcqVKwedmd+3b70ohNhSznLXoLTcdOs26i9/6QDtw4OBB6wYT AAAAACAJcqYnn5wpM59ddcrtC35y77N9Jz3vNRU1pAlualrWnNn95vmW68Y++boXNYPvAeo36ekt O3ersv/AwfLV7532uwVatqH0xOzLWYvecpAz12z9TFu/bv4r1g0mAAAAAEAS5ExPnjlTHliyqvcd C/5t/F/Omrjkx398Vk0L6qrohUzJmjMnPvtmEO2CZkP7vvq6dFy5N2RNo8FC1HLWord86QPPW9da 2xEzg2WbAAAAAABJkDM9WXJmFEuMYa+/ueG3c5f1+/3CXrc+/v9uX/CziX8ZO+8lFd1wSNacKXc/ s7bLbx8Jfw2PG0hHzVueWtX95vn2PT0dRj940fTnlm/arqHwzKzLWYve8u4vv7rioZdaXTVDKz/5 jj+v2fqZjQYTAAAAACAJcqbHz5lhWbNlfqJyJgAAAAA0dORMDzkTAAAAAApCzvSQMwEAAACgIORM DzkTAAAAAApCzvTUQc584b2davV/GQAAAACSIGd66uz9zKh0V9+WAQAAACAeOdPD52YBAAAAoCDk TA85EwAAAAAKQs70kDMBAAAAoCDkTA85EwAAAAAKQs70kDNzK5o8yJrrAwAAAEAIOdNDzqz4ZN8X Fz83o9WMq5pMHZI1T5Iz67+iw7kqAAAAUCvImR5yZkX/Z6YGSTJrnoyq1wdnn62IVTFypOuaESNS xTPPdN3GwOXLSq4KAAAA1ApypoecWdF02lCLkR/s+dyVGo6NGyuKiyuaNKnYtMlVtKCK2ttvu0qj Qs4EAABA7SNnesiZDf5jsVdckXr3sqzMdbWg7rBhrtvYkDMBAABQ+8iZnkadM4OE6bWoUasHLnpu utWXb0+9mahb616wZJpNkF379414+dGSWdc2mTqkzQPXDFo6a/s/drmxtAnrlpxYfluz+4dpgqYN ePZ+W1tyO3ZUtGiRypavvlqxYkVqoXnzVLG+CRLgLbfc0qpVq5YtW06cONGG5MCBA6p37ty5SZMm zZs379+///vvv+/G0l599dWBAwe2a9dOE1q0aNG3b9/Vq1e7sZBgKwAAAECtIWd6yJlZWtSo1QM7 v9zbbtYo1Xs9cZe6utWysuKOfXtswt4D+7vNGxvc3ZruEkxQBPVGrdlocrfdloqXpaWppgV182AJ TVw/gxvON8XZfSfrRAixoYMHD5522mmuVKlt27YffPCBTRBXDVHgfP75591wJRtyHQAAAKBWkDM9 fG429+dmYyYs2rrehm587QlbePz9N9yYzraVC6w4csU8de9as8i6ipc2IfjV0KUfvaPugYMHF3/w 1tl/ucdGk9u/v6JDB0WsVNOCunmwhCaun8EN55vi7L49evQoLy9XsNy1a9eIESNsaNy4cRoqLS1d t26dup988smAAQNUGRb6+G/v3r3nz5+/P31suu+QIUM04ZRTTrHRQGob5EwAAADULnKmh5xZUM6U IS8+GEy4+LkZrprW9dGbrL77qy/VPXjokHU7PXS9TbC3Q9X6Lrrv4Xdf27Y39YzmZ/bsVMhU00J+ LKGJ62dww4XlzPvuu8/1Q7p166ah8AdllSRVad++vetnOHDggCY0b97c9SultkHOBAAAQO0iZ3rI mYXmTGXI9rOv02irGVft/HKvq6YFf5DTa6rbBGXL4imDw0NdHvnt5LeW2mhVWc6stywBKkC6fkiT Jk1s1KO6m1FRMWfOnD59+rRo0aK4uNgNFxVp2Q1XsrrrAAAAALWCnOkhZxaaM9d8tjWY8Oon77lq WlTOVHMzKire371j7OtP9l10X8s/DQ9Gb3ztCTdcFQ0iZ7rO4aJyptiE2267zfUz2IRA1iIAAABQ o8iZHnJmoTmz+/ybNdR25gjddps31lXTgs/N7tq/z5ViLdzyps1vMf1KV6oKxav6nLBiEmD37t2b Nm26b1/ko9SyZUvdd/Lkyfb7mbJ3796sK7TIevDgQdcHAAAAah4500POLChnTnzzWdWLpwx+fttG +wTsXWsWuTGdbZXfA9Tv6Ulbdu9UZf/BA+XvrT5twe9sQs/H75y+4SUbOnjo0FOb19n8ptOG2oQq KTBnWmwT18/ghvPdRsx9x48fr6FTTjll+fLlFhG3b98+Y8aMnj172gSlUE14/PHHbVSn69lnn51e n7/Crl27qqhE6voAAABAzSNnesiZkTEyqGc2m7Bt799bTL9S3bLFqUPTrZab33/FB3s+twn7vv6q tHxccK9wswleMWjDls2xCVWizJVvBkyx2Caun8EN57uN+PueeeaZNsFjo/btsmEjRoywBZsQmDBh gtWNqwIAAAA1iZzpIWfmnzMtWKqt/DT1RakrPv6bdS12GkXNW1Y91X3+zc3uH1Y8ZXCHB0df9Nz0 5ds32eiaz7aOePlRZVH7Ayea0+uJuyasW2KjVaVUVUiwcsksehVuON9t5Lzvfffd16tXr2bNmhUX F3fs2HHQoEGvvvqqDR04cOC6665r166dhtq3b39b+i+ERq1w7Nixbdu2jRoFAAAAqh0500POBAAA AICCkDM95EwAAAAAKAg500POBAAAAICCkDM95EwAAAAAKAg500POBAAAAICCkDM95EwAAAAAKAg5 00POBAAAAICCkDM95EwAAAAAKAg500PObMD2NARuXwEAAIAjFznTQ85swFySq9/cvgIAAABHLnKm h5zZgLkkV7+5fQUAAACOXORMDzkzUtHkQdZcv/5xSa5+c/sKAAAAHLnImR5yZqQGlDOPSstcln79 VNkzerTrmlGjUsVzz3XdeAnXEN5ueNntKwAAAHDkImd6yJmRjoycuXbtnlat9rRuvWf9elfRgipq b7zhKvESriG83fCy21cAAADgyEXO9JAzIx0ZOVOuukrFPT//uetqQd3hw103iSRrCG83vOz2FQAA ADhykTM9RWOKxozv/9jyRpkzJ6xbcmL5bc3uH9Zk6pCSWdcOePb+5ds3ubFQzly/c1uvJ+5qOm1o i+lXDls2Z9/XX7kZFRU7v9x79fK5bWeO0Bp0O+LlR1VR/eChQ6rovru/+tJmBjRBdY1qjrrx+xDP gpyEc1142Wzduqddu1QyXLZsz9KlqYWSklQxuSRrCG83vOz2FQAAADhykTM96fczlyyZVPZwY8uZ yoRBkgw3NxzKme1nXxcsq+mONmHvgf1dH70pPKTWbd5YC6I9H79T3ac2r7PJgQWb16h+8p/v0HLO fYhnQU7CuS68HLj99lQ4PPXUVNOCugGbn5WbkRazBhO+S3jZ7SsAAABw5CJnelLvZ/6m6DejiyYN bGQ5s+m0oRbqln70jroHDh5c/MFbZ//lHhuVIPUNf+mRg4cOzf7rCuu2nTnCJoxZucAqg5bO0oQh Lz5oXdU1OmzZHC1PfPNZmxyYsG6J6hrVcs59iGdBLonPP9/TpUsqH6ppQd2AZcKs3Iy0mDXEc/sK AAAAHLnImZ7G+/uZ7WaNsozXd9F9D7/72ra9qUczzEbVgo/CWrd4ymCbELyZufHv29XVrXW7PPJb deduWqnli56bruX+z0zVsm61fMGSaVrWqJZz7kM8l+SSmTnTpUQt5Ce/Nbh9BQAAAI5c5ExP482Z ynVKjBbzrCkfTn5rqRvO9j1AXsV+AzNzQtNpQ7W8ZfdOLZ9YfpuWOzw4WsvtZ1+n5R7zb9Xy+7t3 aDnnPsRzSS4xS4mFyGMNbl8BAACAIxc505P+3OwJ48eVLRza+L4HSGFv7OtP9l10X8s/DQ+S3o2v PWGjQcW64lW8nBm84Wk5U9o8cI2Wt/9jl4pnPDVBt1pWsFTdJkj8PsRzSS6xrCnRfUY2GzcjhJwJ AAAAZCJnevi7Js7CLW9axmsx/UqrBKnPuuJV4j83K/2enqTuLaue0u3iD97Srf1Kp+o2wZO5D/Fc kkuMnAkAAADUBHKmp/HmzJ6P3zl9w0tbdu/U8sFDh57avM4yXvBupHXVrCteJfw9QOoG3wM09vUn bcK41X9Rt92sUSWzrlVXt/YLmarbhJz7EM8lucTySIkeciYAAACQiZzpyZEzw1w1L/UwZ1qiy2z2 TbDhCdYVr7Lv66+6z785KFpTJfgDm/YeptoFS6apa98GpLZo63qbYN3MFuxDPJfkEiNnAgAAADWB nOlpvO9nrvls64iXHy0tH9c0/cdFmt0/rNcTd01Yt8QNJ8iZsvPLvVpJyaxrm0wdolst25fTmgMH D9rX/Ex7e5m6utWyKqrbhJz7EM8lucTImQAAAEBNIGd6+P3MBswlufrN7SsAAABw5CJnesiZDZhL cvWb21cAAADgyEXO9JAzGzCX5Oo3t68AAADAkYuc6SFnNmAuydVvbl8BAACAIxc500PObMBckqvf 3L4CAAAARy5ypoec2YC5JFe/uX0FAAAAjlzkTE+RnND/NwvJmQ2QS3L1m9tXAAAA4MhFzvSk389c cn9Z2WhyZoPjklz95vYVAAAAOHKRMz2p9zPTys4jZwIAAABA1ZEzPfx+JgAAAAAUhJzpIWcCAAAA QEHImZ70Z2ZPOOH4skkDG2vO/OSLfRfPeK7VVTOaDJlaNGiymhsAAAAAgATImR7ez6zoP/UZi5dB cwMAAAAAkAA500POrGg6dJrFyw8+58tRAQAAAFQZOdNDzqzgbUwAAAAAhSBnekI5c+BZLhRWqrmc GUS71Vt29Lh1fpMhU7v89pGn1m12w5WCadv+vrffpKebDbu/5NpZ972w3kZ37v3y6rnL246Yqbvr dsSjL6tiQybnhGD9XnPDAAAAAJAAOdPjv5+pbBnFEmN+onJmu1GzguXiwVPWbP3MzUgLho4bMzdY VtPQ3v0Hut70aLio1m3svH1ffW33zTlBvNGguWEAAAAASICc6cmSMy0ZemooZw6c+cLBQ4cGzVpq 3YumP+dmpAXTOl3/0Iq/fazKzr1fjpy3QgtjFqy0Id1Xaxjy4IvWVT1919wTAlZXc30AAAAAqApy pqeOc+bbH32u7sbtf7du++tm2wQTTFu+absrVQreq9R91Q3W0OW3jyScELC6musDAAAAQFWQMz11 nDNdv7LSdOg0108Lph08dMiVKmX+rUvrBmvIOSFg9fDMKjnhcK4KAAAAoNEgZ3qy50zdhgX1vMXn TMVI60blTNcP8WJk5hpyTghYPZhZVS5fVnJVAAAAAI0GOdPTMD436/ohfG4WAAAAQD1BzvQUyQn9 f7OwTr8HKPiSngH3P+tmpAXTXD8k/DU/6gZrGPvk6wknBKyu5voAAAAAUBXkTE/6/cwl95eVja6T nJnw75q4fsi+r77ufvP8YII1VYI/W5JzQiAYdX0AAAAAqApypif1fmZa2XmVOTOKJcb8ROXM9dt2 9rh1fpMhU48bM/epdZvdcKVgmusfbufeL0c8+nLJtbN0d91qWRU3lpZzgonfCgAAAADEI2d6/N/P DCswW4ZF5UzXBwAAAIAGi5zpIWcCAAAAQEHImZ70Z2ZPOOH4skkDyZkAAAAAUHXkTE/dvJ/ZdOg0 a64PAAAAAA0WOdNTNzkTAAAAAI4Y5EwPORMAAAAACkLO9IRy5sCzXCisRM4EAAAAgJzImR7ezwQA AACAgpAzPeRMFGQPAABAdXPXGUDDQc70kDNREPfTAAAAoPq46wyg4SBnesiZKIj7aQAAAFB93HUG 0HCQMz2NN2cWDZpszfWRF/fToCpuuOGG3r17u059FbOTH3744aBBg0pKSo5Kc9U9e6wbcNX6Ledz UYdP1umnn37jjTe6Ts3IuYnCJ9QmXln1R31+4XBWV7tGclZHqbkzyl1nAA0HOdNDzqzXObMozXWy sQmZiouL3Ywa5n4aVP7UzFz2rF27tlWrVo899pjrV7eYTScXv5NXXHGFbcW4agO8bsj5XGSd0K+f jnTP6NGua0aNShXPPdd1PcuXL9cDElyHvfLKK9dcc81JJ53Utm3b1q1bd+nSRQ/pm2++aaMBbVdb 1z64foSsD3V1baLwCbUm65NVjdInNa+sRLIeZv154RQ+IaHCn6z4E6Zw6ROKszpSrZ1y4QchvOyu M4CGg5zpSeXM+/unksl3uzauv2tyZOfMs88+282oYfbDQMI/G8LLnksuueToo4/+4osvXL+6xWw6 ufid1JA2sXTpUtfPUC37UAtyPhdZJ+hSoVWrPa1b71m/3lW0oIraG2+4iqesrEwPyMKFC61rj4+n pKRk0aJFNsFoux07drzwwgtd/3Dat1WrVmlB99Wtli+77LL0SIqt01PVTUjhE2oNr6z6oz6/cKTw CfHiX5tVwlldt2zfPDVxytmaM5fddQbQcJAzPe79zEllx581kPcz6x0Lja6TTLdu3XQXXZq4fg2z HwYS/tkQXg7TmdaqVau8rzmSiNp0cjl3Mucmck6oD3IeZsyEq67SMe75+c9dVwvqDh/uup61a9fq 0SgtLXX9PXtOPfXUCRMmrFy50q7MtHDWWWdpzkknnWQTApdffrn2QXvi+iGzZ88+9thjy8vLdUfd alkVN1ZNmzCFT6gFMU9WddGjJ66Tl5w7mXMTOSfUBzGHWR9eOKZGz+r412ZyOU+YwqXOJ87qaLV2 yoUfhPCyu84AGg5ypqeo6PtjlmxaUnb86IGN9XOz67ft7HXXE02HTmtx5fRhc5bt++prN6OiYuk7 H5VNXqx6kyFTddv77icXrNnsxioquvz2Ed39nD8ucv2Kij4TF6qiuutXVOzat3/Eoy+XXDtLa2hz zQODZi3dvusfbiyBquZM/RjQ/Pbt27t+zbMfBhL+2RBeDhs/frzqmdccwXxNOO6441q3bt21a9eJ EyfaqFm2bNngwYN1yaLRdu3anXfeea+88oobq1xDVm5GYvE7mckNh0TVRT9ldRR6gnQUutWy93M3 5wQJ1n/rrbceffTRmuY9VklEHWYgZsLWrXvatdNu6EnZs3RpaqGkJFXMaujQoVrPzJkzXT+brVu3 ao6uQvRPkiulaeuq60LH9Q+3fv36nj17aoIuhjI/yuXJbxNS+IRawCurQbyy6skLRwqfEK9Kr80o nNX156wO1NApl9rFygchvOyuM4CGg5zpKZr58+//5je/Ob5skv1+prJlFEuM+anPObP9dbODZTXF QjcjNCfcFr/1gY2OnLdC3WbD7j946JC6ulVYVeW6+a/YhL37D3QbOy+4o7V2o2bt2LPPJuRU1Zw5 ZMgQzb/xxhtdvypsW+L6ydgPAwn/bAgvh51//vmqZ36CyObrp6AtBMLXWK4Uop+sixcvjhoN2ITk 4ncykxsOiapv3rxZ1z02GlBF9YQTjNUnTZpkC8aNJRZ1mIH4Cbffrt3Yc+qpqaYFdbN69913dUWi q0DXj/Dxxx+nD+Kojz76yJXSdLGoovbE9Q+3YcMGu5bVrZZdNUJ+m5DCJ0RJ7U0ENyOxqCfL1sYr q/68surDC0dq7qw2VXptRok/YTira/OsDtTQKZdepdur8LK7zgAaDnKmp2jrzJ+fcMIJZZPc9wBF 5ckjOGcOf+QlRcTZK/5q3bYjZroZFRWn/MeC+av+tv/AQS0//sb7NqHfpKdt9PmN26yyfNN2dZe9 +5F1VbcJYxastIoSqbp3LVpj3XCUjVel4Ld3795mzZpp/vvvv+9KVWHbEtdPxn4YJNSxY0f9/Pj8 889dv5L9XOnRo4d+FKmrH2C/+MUvVDn99NNtgvTp02fu3Ll2X024Iv3lCj/60Y9sNJBeU/4/RCVq JwM5NxE1YdSoUaqXlpa+kf59LN3apdi1116bcIJRRTQ0b968L774Qo+G7ujGEst5mPETVO7SRXuS alqIWs3o0aO1kpz/fa4D1DRdIbl+JW1dde2J64fMnj27c+fOjz32mCboVvfNfEshLI9NmMInRNG9 orgZiUU9WbY2Xln155Wlct2+cEzhE2JU9bUZJeqRVFE4q2vzrA7U3CmXlbvOABoOcqanaOvWF/sX nTB6YePNmTv3fqmuoqZ1iwdPsQmZbEKLK6dbV3fRsioKkOqO+8tqLbcc/icbla43PWp32f3lV+oG m+h0/UM2IacqBb/JeoyLinr37u36VWTbEtdPxv00SKZVq1b6SeM6ISrKCy+84PqVH85p27at62fQ uasJJSUlrl8pvaaCrhuidjKQcxNRE7p37656+H++taxKt27drJtzglFF7r33XtfPS87DzDlh5kzt SapFfbJPFzR6gjp16hRzESa33357+oCOmjNnjiuFqN66dWvXCbnkkkvs6koTdKtlVdIjWeS3iUDh E2oaryzVG8orq25fOIHCJ0Sp0mszBme16vXkrDY1fcplctcZQMNBzvT4f9ekEeZM18+oKBYqQJ54 W3mzYfcrfAajTYZMtQnSf+ozqtivaOpWyxdMW2JDopnBvcItvIZ4VQp+PXr00OS5c+e6fq1wPw2S 0c8Y/aRxnZDUD66MulecPXv2T3/603bt2tnPdaNlN1zJ6q6Tl6idDOTcRNQEW7N9oYLRsipt2rSx bs4JRhXRxajr5yXnYeacIBqPmWIfbNM/Ha6fQf8ADR48OHUwRx119913u+rhNKQ9cZ1sNMEtZVNd myhwQk2LerJUzKx7RV5ZAVWkpl9ZovGYKbX2wilwQk5ag1vKS9QjqWJm3StyVgdUkQLP6to55TK5 6wyg4SBnerLnTN2GBfW8NcScOfyRl4KK12yCPPzau+oqiB44eFC3WlbFjUXnTDU3I5fkOXPNmjWa qR8wBw+mPuVba9xPg2TiPwflOpXCxeC/UTPZhEDWYpXU3Oegqve6wXXylfMwc04Q7UXUjuiOnTp1 Kikpibq+2bx58+mnn65NaEPl5eWuejitRBOOOeYY16+iatlE4ROi6F5R3IzEop6srGsLF3lluX6a KuI6+WoQL5zCJ9QCzmrV68NZXTunXFbuOgNoOMiZHt7PjMyZ9qU+aovf+uDgoUNKkt4E2f3lV/ZW 54Ql63SrZfuIrAk+N7tr335XqqLkOdO+AWjkyJGuX1vcT4Nk7CsTwp93MiqK61QKF9u3b6/lSZMm BT/OP/300/CEQNZilUTtZCDnJjJ//Jvq/RyU6+Qr52HmnCDai6gdueeee3T3qF8EWr58eefOnTXh sssu8761IswOP+qrI+JV1yYKnxBF94riZiQW9WRlXVu4yCvLukYVcZ185TxM0UaitlM7L5zCJ9SC qEdSRXGdSuEiZ7V1jSriOlVXa6dcVu46A2g4yJmeUM4ceJYCITkzqAQ5c83Wz5Qzr5v/ijfBnPIf C1Q5bsxc3WrZVdOC7wHqN+npLTt3q7L/wMHy1e+d9rvDpsVImDP379/fvHlzzdy4caMrVZ1tS1w/ GffTIJmJEyfqJ03md0KoKK5TKVxs06aNlh977DH7Ybxq1ap+/fqFJwQ6deqk4tSpUzN/bCcUtZOB 9GbjfmyfdNJJmqCrHNevZF/boFH75SUdxcknn6yK970OMROMKuI6+cp5mDkniPYi647owbe/N/Du u++6UsiMGTP0hPbs2VNXMK4UYebMmdqHPP64QjVuovAJtYBXluoN5ZUl2kjW7dTaC4ez2nBWx6vN Uy4rd50BNBzkTA/vZ0bmzEsfeD6oqLUdMTNYtglm/GL3LbJqdz+z1lXT9n31dem48mA03NyMXFzy y8bNSJs2bZoq+mHg+nmx1YrrJ+N+GiSjM61Vtj9pnf45GHfdYN8WGGY/YsUmBHQaWz3gBhKL2slA ztXqR6nNMa4a/TX07733XsIJxuquk6+ch5lzgmgvsu6IXVIMHTrU9Q9n+59V8P6DufDCC7UP2hPX T8ytLpuqbqLwCbUg6smyQ3adSuEiryybYKzuOvnKeZiijWTdTq29cDirDWd1PLtvVtV+ymXlrjOA hoOc6cmSM6NYYsxPQ8yZu7/86oqHXmp11YziwVNOvuPPa7Z+5k0wb3/0eVDXsqtWUtS85alV3W+e b18m1GH0gxdNf87+DkoSLvll42aknXjiiapMn+6+CDc/tlpx/WTcT4PELrnkkqOPPtr7z2P7ueU6 lcJFnam//vWv9RNUP6g6d+58e/qvzoUnBD7++GNdUnTp0kUzs05IIutOBpKsVq8X+59yb6auAAYP HqyVt27dWreDBg3y3rjIOUEyV5uf+MOUnBO0F1l3pLS0VHto/8ueyfY/q/C1i7arrevqxPWrwq0u myptovAJtYZXVgN6ZWkjWbdTOy+cwifUGs7quj2r7b5ZVe8pF8VdZwANBznT4+fMsAKzZVg9zJmo Fu6nQWI60/QTfe7cua5fLzWInSxczsPM73FYsGCBrkIK/82uefPmaetr1651/RqQcxOFT6g1vLLq j3r+wuGsrl6N5KyOUXNnlLvOABoOcqaHnImCuJ8GVXHTTTdl/r3s+qZB7GThch5mHo/DWWed1aZN m5y/z5OT1jNmzBjXqRk5N1H4hNrEK6v+qM8vHM7qatdIzuooNXdGuesMoOEgZ3qKvj+GnIn8uZ8G AAAA1cddZwANBznTw/uZKIj7aQAAAFB93HUG0HCQMz28n4mCuJ8GAAAA1cddZwANBznTQ85EQdxP AwAAgOrjrjOAhoOc6SFnoiDupwEAAED1cdcZQMNBzvSQM1EQ99MAAACg+rjrDKDhIGd6GmvOfOml BtAAAAAANATkTE9RUdHWoqJNRUXrzyNn1rcGAAAAoCEgZ3oa69818RJd/WwAAAAAGgJypoecWY8b AAAAgIaAnOkhZ9bjBgAAAKAhIGd6yJn1uAEAAABoCMiZHnJmPW4AAAAAGgJypqdR58wJ05448fpZ zYZMbTJ4Ssnw6QPGPbL8z4v/GfNeemnnc0uv/v28tlferwm6HTFhvirhCWpFgyZb2/bMC/1ufUhr 06ru+9OCJBO0ddU7XvOnYHL30TNV6XbdA6kuAAAAgIaAnOlpvDlToTFIgOEWRL69L7zY9boHvFEl wH1LlwVz1IKh40bNCJbVkkyY/KcFtvzq48+ou3/psuJfpro33FOeui8AAACAhoCc6Wm8ObPp4CmW 8ZY+lnoP88CyZYsfXXT22DmpgJduY+4ttwmD/uPRg8uWDRn/qHVVD+aoWVGt0zV/WpGOizufWzpy wvwkE3a/8GKT9G5c94fH1F3w8F9spsVOt6sAAAAA6jdypqfo+2Maac5sd9X9Fur63vrQww/+57Zn XkhFu1AL3szcuPA5dXVr3S6jZoSnWVHN+8xt0OInXHznIxqyj85eP/ExLXe4erobBQAAANAQkDM9 jff9TGVL+5Bq0BQgJ4d+r9LeaVQLKtZtOnhKUAmKageXHfZ52qDFT3h+/tM2+urjz/Qe86AWhv9+ nhsFAAAA0BCQMz2N9/1MtfcXPT/23vK+tz7U8lfTLOyp3fjH1EdY1bycqZRo3aicGS6GW84Jna75 k0ZHTphvW3x2/tNuCAAAAEBDQM70NOqcGW4L57rfjWwxbKpVqvq52XAx3HJOUNbVqGXdVr+a9s8h AAAAAA0BOdPTeHNmzxtmTX/gyS2Ln9fywWXLnqrMmcHbleHvAVI3+B4gxUKbYM2KauFiuOWcoH0I PsF78Z2P/HMIAAAAQENAzvTkyJlhrpqXepgzg/jntWG/c78euW/pMvtrluGmStTfNQkXwy3nBLUz bkr9ZqZa+UML/1kHAAAA0BCQMz2N9/3MNQuWjJgwv/TfZ9ofOGk2ZGqv38yeMO2Jf8a89B8g0ZyS 4dObDJ6iWy2rEp6gZvlQzasHLecENW1XE7QnB8LfFQQAAACgISBneoqKirYWFW0qKlp/XuP+/cy6 bT1vmKWc2f/2hw+rAwAAAGgIyJmexvt3TepPW/ToInvDc/as/zxsCAAAAEBDQM70kDPruFnCVGt3 1f2HfWhWDQAAAEBDQM70kDPruDUdPEWt0zV/Wv7nxd6Q21UAAAAA9Rs500POrMcNAAAAQENAzvSQ M+txAwAAANAQkDM95Mx63AAAAAA0BORMDzmzHjcAAAAADQE509NYcyYAAAAAVBNypoecCQAAAAAF IWd6yJkAAAAAUBBypqeoqGhr0QmbJi0kZwIAAABAPsiZnvT7mUs2lR2//jxyJgAAAABUHTnT4z43 u3D0+p7nkTMBAAAAoMrImR5yJgAAAAAUhJzpSeXMJfdvOp7PzQIAAABAXsiZHr4HCAAAAAAKQs70 8HdNAAAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMA AAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9JAzAQAAAKAg5EwPORMAAAAACkLO9BQVFW09of+m heRMAAAAAMgLOdOTfj9zyaayMnImAAAAAOSDnOlJvZ9ZVLSpqGj9eeRMAAAAAKg6cqaH388EAAAA gIKQMz3kTAAAAAAoCDnTk/7c7Ambji9bP5CcCQAAAABVR8708H5m/bUHAFDX3L/IAADEImd6yJn1 l7vGAQDUHfcvMgAAsciZHnJm/eWucQAAdcf9iwwAQCxypqfx5syiQZOtuX79465xquKGG27o3bu3 62STc0LeTj/99BtvvNF1GqCjDueqGerVYdbcs1mNYnbyww8/HDRoUElJifeYWzfgqvVbHb70cqqF kzbnJgqfUIfcv8gAAMQiZ3rImQ0gZ4avtsPLnrVr17Zq1eqxxx5z/Qw5J0TRHe+4445TTz01Zuta rVauma7f0NihBVw1Q7Uc5nPPPdc6TQuuVHV5P5sJxT8OCcXv5BVXXGFbMa7aAHNmzuci64R+/XSk e0aPdl0zalSqeO65rutZvny5HpAgr77yyivXXHPNSSed1LZtW51OXbp00UP65ptv2mgg4Umb9aGu rk0UPqEOuX+RAQCIRc70kDOPnJx5ySWXHH300V988YXrZ8g5IYptNOCqh9NqO3bseOGFF7p+gxVz jFL4YW7YsKFTp07dunXr3r27Ft555x03UEV5P5sJxT8OCcXvpIa0iaVLl7p+hmrZh1qQ30tPkapV qz2tW+9Zv95VtKCK2htvuIqnrKxMD8jChQuta4+Pp6SkZNGiRTbBxJ+02rdVq1ZpQffVrZYvu+yy 9EiKrdNT1U1I4RPqkPsXGQCAWORMDznzCMmZehJbtWoVvkD05JwQo7S09NZbb127dm3U1s3ll1+u TWhDrt8wxR+jFHKYH3/88Q9+8IMuXbro7tK5c2d1VXTDiem+eT+bCeV8HHLKuZM5N5FzQn2Q8zBj Jlx1lY5xz89/7rpaUHf4cNf12AtQL0bX37Pn1FNPnTBhwsqVKy3BauGss87SnJNOOskmBGJO2tmz Zx977LHl5eW6o261rIobq6ZNmMIn1BX3LzIAALHImR5y5uT123b2uuuJpkOntbhy+rA5y/Z99bWb UVGx9J2PyiYvVr3JkKm67X33kwvWbHZjFRVdfvuI7n7OHxe5fkVFn4kLVVHd9Ssqdu3bP+LRl0uu naU1tLnmgUGzlm7f9Q83lou7xjn8aju8HDZ+/HjVwxeInpwTkkhvPPK6XyvXqK5KXb+6BVtX6D36 6KPbt28/ceJEGxKdzap37969devWJSUlF1544YYNG9xY2rJlywYPHqzLaE1o167deeed98orr7ix kGArUQo5zHPPPfeYY44J3sO09zZVtG5yUc9met9TO68Jxx13nI60a9eu4UdJ4h8HW0NWbkZi8TuZ yQ2HRNVF/2rpKHQO6Ch0q2Uvn+ScIMH6s55RCRXy0tu6dU+7dtoNPSl7li5NLZSUpIpZDR06VOuZ OXOm62ejf881R2lNLwdXSos/afXvf8+ePTVBqTLzM7Ge/DYhhU+oK+5fZAAAYpEzPX7OVLaMYokx P/U5Z7a/bnawrKZY6GaE5oTb4rc+sNGR81ao22zY/QcPHVJXtwqrqlw3/xWbsHf/gW5j5wV3tNZu 1Kwde/bZhHjuGufwq+3wctj555+vesxHEHNOSCK98ezX/aIAo1FtyPUzxN9d4ifY6KRJk2zB2NAX X3xhb7OEKcK9++67NkFcNUQJZPHixW64kg25TjY5DzPKtddeq12yzygG1FXxmmuucf1kop7N9L4f pdRkC4FwOHGlkPDj4ErZ2ITk4ncykxsOiapv3rxZOdlGA6qonnCCsXrWMyq5nK+s+Am3367d2HPq qammBXWz0pmsaNe1a1fXj/Dxxx+nD+Kojz76yJXS4k/aDRs2WM7Urfe/M5ny24QUPiFKam8iuBmF cf8iAwAQi5zpyZIzLRl6juCcOfyRlxQRZ6/4q3XbjpjpZlRUnPIfC+av+tv+Awe1/Pgb79uEfpOe ttHnN26zyvJN29Vd9u5H1lXdJoxZsNIqSqTq3rVojXXDUTaGu8ZJpmPHjrqo+vzzz10/Q84JSaSv 3CIv3bRyjWpDrp8h/u4SP8FGdSk8b948BUtd5o4aNcqG7rjjDg2deuqpK1euVFdx4pJLLlFleOgz iH369Jk7d649ArqvfQnNj370IxsNpLYRu5M5D7MWRD2b6X0/qkePHrpkV1eH+Ytf/EKV008/3SZI dT0OOeU85XJuImqCnnfVS0tL30j/IqNuLSYpySecYFSRrGdUcjkPM36Cyl26aE9STQtRqxk9erRW kvPtVh2gpilRu34lbV31rCft7NmzO3fu/Nhjj2mCbnVfVdxYNnlswhQ+IYruFcXNKIz7FxkAgFjk TE9RUdHWohM2TVrYeHPmzr1fqquoad3iwVNsQiab0OLK6dbVXbSsigKkuuP+slrLLYf/yUal602P 2l12f/mVusEmOl3/kE2I565xkmnVqlX8RVXOCUmkr9xyBIPWrVu7ToYkd4+ZYKP33nuv64coUWgo /FaMMoMquoB2/Qw6+zWhpKTE9SultpHrgdKEmMOsBVHPZnrfj3rhhRdcv/JTjm3btnX9DIU8DvFy nnI5NxE1oXv37qqH3yHUsirdunWzbs4JRhXJekYlV/hLb+ZM7UmqRX0kVieznqBOnTpFhVVz++23 pw/oqDlz5rhSiOpZT9pLLrnE0rgm6FbLqqRHsshvE4HCJ9QJ9y8yAACxyJme9PuZSzaVHb/+vMaa M10/o6JYqAB54m3lzYbdr/AZjDYZMtUmSP+pz6hiv6KpWy1fMG2JDYlmBvcKt/AaYrhrnGR0caZL NNfJJn6ChsJcNUP8qGi05i4Tbeu65nb9EDu6TOGdmT179k9/+tN27drZdb/RshuuZHXXiaAJNXeY SUQ9m+l99+tesRofh3hROxnIuYmoCbZm+2Yao2VV2rRpY92cE4wqkvWMSi7nYeacIBqPmWIfhNY/ wq6fQf+UDx48OHUwRx119913u+rhNKQ9cZ1sNMEtZVNdmyhwQp1w/yIDABCLnOlxn5tdOHp9z/P+ mTN1GxbU89YQc+bwR14KKl6zCfLwa++qqyB64OBB3WpZFTcWnTPV3IxY7honmfjP5kn8BA2FuWqG +FH72Nsxxxzj+tUtZut2KZ+VTQjeh8lkEwJZi2E1fZhJRD2b6X2PO6JqfBxyynlO5txE1AR7uqsr Z7pOvgp86RntRdSO6I6dOnUqKSmJysObN28+/fTTtQltqLy83FUPp5VoQt4nbbVsovAJUXSvKG5G Ydy/yAAAxCJnerLnzEyNMGfal/qoLX7rg4OHDilJehNk95df2VudE5as062W7SOyJvjc7K59+12p Ktw1TjL2XSPhD0x6ck5IIn3lFnnpZh9NzONrPBKK2frJJ5+sCPHZZ5+5fob27dvrvpMmTdK1rFU+ /fTTrCvMjCiemj7MJKKezdTxZBxRuJj8ccharJKcp1zOTUQ9F9X7uVnXyVfOw8w5QbQXUTtyzz33 6O5Rvzi6fPnyzp07a8Jll13mfctRWCEnbXVtovAJUXSvKG5GYdy/yAAAxCJnelI5c8n9m47nc7PR OXPN1s+UM6+b/4o3wZzyHwtUOW7MXN1q2VXTgu8B6jfp6S07d6uy/8DB8tXvnfa7w6ZFcdc4yUyc OFEXVTFf4JFzQhLpK7fIS7eZM2dqNObPEsTfXeInxIzan4740Y9+pKt5iyXvvffe9OnTe/fubROU QjXhscces9FVq1b169cvvT5/hSeddJKKSmKunyHnYdaCqGczdTwZRxQuJn8cOnXqpOLUqVNjIne8 nKdcerPZn1AT9VzY1/xo1H6xUEdx8sknq+J9D1DMBKOKuE6+quWlp73IuiN68O3v04S/OTkwY8YM PaE9e/ZUFHSlCHmftNW4icIn1BX3LzIAALHImR6+BygyZ176wPNBRa3tiJnBsk0w4xe7b5FVu/uZ ta6atu+rr0vHlQej4eZmxHLXOMlsiv5b8CbnhBi6+MvKDVe68MILtQltyPUzZL1XWPyE+NFzzz3X Jnhs1L5VNcyiiNiEgC5zrW5cNSTnYdaCqGcz6z6Hi8kfB/2DYPWAG0gs5ymXc7VRz8XmiD9b8t57 7yWcYKzuOvnKeZg5J4j2IuuOWPQaOnSo6x/O9j+r4P1qk/dJ61aXTVU3UfiEuuL+RQYAIBY505Pl 75pEscSYn4aYM3d/+dUVD73U6qoZxYOnnHzHn9ds/cybYN7+6POgrmVXraSoectTq7rfPN++TKjD 6Acvmv6c/R2UnNw1TmKXXHLJ0UcfHfPuU84JUdx1ZQY3nKbVauW6UnT9bDLv5YmfED8q99577+mn n962bVtdrR533HG6Orc/7yE613/9618raWioc+fOt6f/TGHUCnW227t5maNJDrN2ZH02s+5zuJj8 cfj4448VQbt06aKZWSckEX/KJVlt1HOhxDh48GCtvHXr1rodNGiQ945fzgmSudr8FP7S015k3RH7 ImV7VzaT7X9W4RBYyEnrVpdNlTZR+IQ65P5FBgAgFjnT4+fMsAKzZVg9zJn1n7vGSUxPoiLB3Llz XT9DzgmFmDdvnla+du1a1z9C1Z/DrNFns7o0iJ0sXA299BYsWKA4l98vVYbVwkmbcxOFT6hD7l9k AABikTM95Mz6y13jVMVNN92U+Qf3w3JOyNtZZ501ZswY1zly1avDrLlnsxo1iJ0sXE289HSytWnT JucvRuZUCydtzk0UPqEOuX+RAQCIRc70kDPrL3eNAwCoO+5fZAAAYpEzPeTM+std4wAA6o77FxkA gFjkTA85s/5y1zgAgLrj/kUGACAWOdNDzqy/3DUOAKDuuH+RAQCIRc70kDPrL3eNAwCoO+5fZAAA YpEzPeTM+std4wAA6o77FxkAgFjkTE8d5Ez3oxsAAKA+sQsVAMgDOdNTVFS09YT+mxaSMwEAQONm FyoAkAdypif9fuaSTWVl5EwAANCo2YUKAOSBnOlJvZ9ZVLSpqGj9eeTMhu+GG27o3bu362STc0Le Tj/99BtvvNF1GqCjDueqGerVYRb+bNbc+VCNYnbyww8/HDRoUElJifesWTfgqvVbHT4XOc/qwifU Js7q+q8Wzqi812AXKgCQB3Kmh9/PPHKsXbu2VatWjz32mOtnyDkhiu54xx13nHrqqTHXN1qtVq6Z rt/Q2KEFXDVDtRzmc8891zpNC65UdXk/m4HC1xAv/pFMKH4nr7jiCtuKcdUGeEWe9TD79dOB7Bk9 2nXNqFGp4rnnuq5n+fLlOt4gwLzyyivXXHPNSSed1LZtW51vXbp00SP25ptv2mgg51ld+ISECn+y 4k+YwqVPKM7qSLV2yuWUcw3hhzG8bBcqAJAHcqaHnHnkuOSSS44++ugvvvjC9TPknBDFfgYHXPVw Wm3Hjh0vvPBC12+wYo5RCj/MDRs2dOrUqVu3bt27d9fCO++84waqKO9nM1D4GuLFP5IJxe+khrSJ pUuXun6GatmHWpD1MHWF3KrVntat96xf7ypaUEXtjTdcxVNWVqbjXbhwoXXt8D0lJSWLFi2yCSbn WV34hHg6/FWrVmlBu6dbLV922WXpkSrjrK5btm+emjjlcsq5Btu3zGW7UAGAPJAzPenPzZ6w6fiy 9QPJmQ3Zpk2bWrVqFXNxlnNCjNLS0ltvvXXt2rXhH8aZLr/8cm1CG3L9hin+GKWQw/z4449/8IMf dOnSRXeXzp07q6uiG05M98372TSFryGnnI9kTjl3Mucmck6oD2IO86qrdAh7fv5z19WCusOHu67H XqF6tbr+nj2nnnrqhAkTVq5caZFGC2eddZbmnHTSSTYhkPOsLnxCjNmzZx977LHl5eXaN91qWRU3 VhU5T5jCpc4nzupotXnK5RS/hvDDGF62CxUAyAM508P7mUeI8ePH68dkzMVZzglJpH8WR17faOUa 1UWG61e3YOsKvUcffXT79u0nTpxoQ6KzWfXu3bu3bt26pKTkwgsv3LBhgxtLW7Zs2eDBg3UJqwnt 2rU777zzXnnlFTcWEmwlSiGHee655x5zzDHBe5j23qaK1k2u8Gczag2pg08fviYcd9xxeqy6du0a fpwl/pG0NWTlZiQWv5OZ3HBIVF30756OQmeRjkK3WvauR3NOkGD9Wc/JhGKeza1b97Rrp63oMd+z dGlqoaQkVcxq6NChWs/MmTNdPxv9g685uvjW68WV0nKe1YVPiKefQT179tQaFFQyP2aZEGd1/Tmr AzV3yuUUvwYNSeayXagAQB7ImR5y5hHi/PPP14/JmI9a5ZyQRPpncfbrG9GFmka1IdfPEH93iZ9g o5MmTbIFY0NffPGF/a95mCLcu+++axPEVUN0pbV48WI3XMmGXCebnIcZ5dprr9Uu2ecDA+qqeM01 17h+MoU/m1FrSB38UUfp+tIWAuH04koh4UfSlbKxCcnF72QmNxwSVd+8ebMShY0GVFE94QRj9azn ZHLxz+btt2sre049NdW0oG5WOtV1Ka/45PoRPv74Y9vJjz76yJXScp7VhU+It2HDBsuZuvX+hyi5 +BOGs7o2z+pAzZ1yOcWvIbVPlccVXrYLFQDIAznTQ848QnTs2FE/Jj///HPXz5BzQhLpn8WRFxxa uUa1IdfPEH93iZ9go7oMnTdvnoKlrlpGjRplQ3fccYeGTj311JUrV6qry6ZLLrlEleGhjxj26dNn 7ty59gjovvZlGz/60Y9sNJDaRuxO5jzMWlD4sxm1htTBH3VUjx49dImmrh6oX/ziF6qcfvrpNkGq 65HMKedh5txE1ASdOaqXlpa+kf5NR91ayLn22msTTjCqSNZzMrn4w1S5SxdtKNW0EPVgjB49WivJ +b6T9l/TFC1cv5K2rnrMWV34hBizZ8/u3LnzY489pjXoVruX+XZfElGPpIrCWV2bZ3Wg5k65nPJb g12oAEAeyJkecuYRolWrVvqB6jrZ5JyQhNYQvxKNtm7d2nUyJLl7zAQbvffee10/RFdOGgq/DaJr I1V08er6GXT2a0JJSYnrV0ptI9cDpQkxh1kLCn82o9aQOvijjnrhhRdcv/Jjb23btnX9DIU8kvFy HmbOTURN6N69u+rh95S0rEq3bt2sm3OCUUWynpPJ5TzMmTO1oVSL+kisznY9/p06dYpJL3L77bfb Ds+ZM8eVQlSPP6sLnxDlkksuseSjNehWy6qkR6qGs1r1enJWm5o+5XLKYw12oQIAeSBnesiZRwj9 KNUPVNfJJn6ChsJcNUP8qGi0wMuCGLZ1XVK7fogdXabwzsyePfunP/1pu3bt7DrPaNkNV7K660TQ hJo7zCTin80kotaQOviMulesxkcyXs7DzLmJqAm2ZvuqEqNlVdq0aWPdnBOMKpL1nEwuybOp8Zgp 9olQ/Yvt+hn0b/3gwYPTO3vU3Xff7aqH05D2xHWyKXxCTlqDW8pL1COpYmbdK3JWB1SRAs/q2jnl cspjDXahAgB5IGd6yJlHiJyfxYqfoKEwV80QP2ofUjrmmGNcv7rFbN2un7KyCcF/q2eyCYGsxbCa Pswkcj7dOUWtIXXwsY9JNT6SOeU8zJybiJqQ84I75wSjirhOvpI8m9pI1HZ0x06dOpWUlEQFg82b N59++unahDZUXl7uqofTSjQh5qwufEIt4KxWvT6c1bVzyuWU3xrsQgUA8kDO9JAzjxD23RLhD4Z5 ck5IQmsQ18lgH8Eq5Gsb4sVs/eSTT9al0meffeb6Gdq3b6/7Tpo0Kbi8+/TTT7OuMPNSzFPTh5lE 4c9m1BpUFNepFC4mfySzFqsk52Hm3ETUs1m9nzB0nXwleTa1kajt3HPPPbp71G/QLV++vHPnzppw 2WWXeV/3EpbzrC58Qi2IeiRVFNepFC5yVlvXqCKuU3W1dsrllN8a7EIFAPJAzvSQM48QEydO1A/U mC/PyDkhCa1BXCfDzJkzNRrzNfTxd5f4CTGj9qcCfvSjH+nqzS6/3nvvvenTp/fu3dsmKIVqwmOP PWajq1at6tevX3p9/gpPOukkFXXF6foZch5mLSj82Yxag4riOpXCxeSPZKdOnVScOnVq5gVxQjkP M73Z7KeEiXo27QtRNGq/FqijOPnkk1XxvjElZoJRRVwnX0meTW0k63b02Nof6gh/tXJgxowZer56 9uypS39XipDzrC58Qi3grFa9bs/q2jzlcspvDXahAgB5IGd6cuTMMFfNCzmzpulJbBX7t79zToiR uujIxg1XuvDCC7UJbcj1M2S9V1j8hPjRc8891yZ4bNS+PTLMLrnEJgR0UWJ146ohOQ+zFhTybJqo NWQ96nAx+SOpf1KsHnADieU8zJyrjXo2N0f8gYf33nsv4QRjddfJV5JnUxvJuh27kh46dKjrH852 L6vgjTuT86wufEItiHok7ZBdp1K4yFltE4zVXaeK7L5ZVfspl1N+a7ALFQDIAznTw/uZR45LLrnk 6KOPjvlf9pwTorjLhAxuOE2r1cr1c931s8m8lyd+Qvyo3Hvvvaeffnrbtm11bXHcccfp4tv+jIHo XP/1r3+tKyoNde7c+fb0XyGMWqHOfHvXInM0yWHWjryfzUDWNWQ96nAx+SP58ccf62K9S5cumpl1 QhLxh5lktVHPpq6tBw8erJW3bt1at4MGDfLeEsw5QTJXm5+cz6Y2knU79k3L9vZUJtu9rMIX/TnP 6sIn1BrO6ro9q+2+WVXvKZdT3muwCxUAyAM501NUVLS16IRNkxaSMxu89evX69Jn7ty5rp8h54RC zJs3Tytfu3at6x+h6s9hFv5s1uj5UF0axE4WLr/DXLBggS7fC/kFNpPzrC58Qq3hrG4QauGMynsN dqECAHkgZ3rS72cu2VR2/PrzyJkN30033ZT5h8XDck7I21lnnTVmzBjXOXLVq8Ms/NmsufOhGjWI nSxcHoeps7FNmzY5fxEup5xndeETahNndf1XC2dU3muwCxUAyAM50+M+N7tw9Pqe55EzAQBA42UX KgCQB3Kmh5wJAACQYhcqAJAHcqYnlTOX3L/peD43CwAAGje7UAGAPJAzPXwPEAAAQIpdqABAHsiZ Hv6uCQAAQIpdqABAHsiZHnImAABAil2oAEAeyJmeOsiZAAAAAHAkIWd6yJkAAAAAUBBypoecCQAA AAAFIWd6yJk15txz/VbD9CS2aNGiZ8+erl9NTkhznQZOD07z5s03btzo+gAAAEB1IGd6yJk1xguZ ajXp4MGDXbt2LSoqmjt3ritVk2rMmXmvSsclrpONTchUXFzsZqSVl5erqAdKD5crAQAAAAUjZ3rI mTWvVnLmuHHjlKBatmxZ7Qkq73CYKe9VpTNjPjnz7LPPdjPS9ODoIVJdD5crAQAAAAUjZ3rImTWv 5nPm/v37W7Vqpfh00UUXuVL1yTscZsp7VenMGJczM3Xr1k13WbhwoetX6t+/v+pt2rTZt2+fKwEA AACFIWd6GnfOXL++4s47K84/v6Jfv9Ttb39b8dprbkiCfPi3v1WMGJGa86tfVaxc6UYl5wQTTMs0 cmSqPmiQ68o116QqV13lusnMmDEjHcSK5syZ40ohixYtGjlyZK9evU488cTS0tJzzz137Nixb775 po1mzX7hoi3v3bv3t7/9re7+r//6r6NGjdq2bZuNmiSbyMom5GRH5zoJrFy5UvPbt2/v+iGzZ8+2 tU2fPt2VAAAAgMKQMz263t5adMKmSQsbZc4MEmC4vfGGP3rppf9c/ulPK957L+kEEwxlWrTIDf31 r6nugQOpu6v74IPp4aT69etn2WnZsmWuVOmee+5xkS6DTQgvB8JFW/71r39tC6Z3796fffaZTUi4 iaxsQk52dK6TwJAhQzT/xhtvdP2QFStW2NrKyspcCQAAACgMOdOTfj9zyaay49ef1whz5g03VLz8 cirdySuvuMh3xx3psVA+/OMfKw4dqrj3XtedMCHpBBNMy7RvX+pdUA3NnJnqvvaam2mxM7H27dtb dtq/f78rVSotLVWcmzlzpp5sq3z88cdPPvnkwIEDrZs174WLtty/f//30vn5/fff//nPf67K+PHj bULOTQTSa0qaLcPs6Fwnl7179zZr1kzztauuFKKHyNbWrl07VwIAAAAKQ870uM/NLhy9vud5jf73 My3jnX/+YV21Dz5IdT/80HUvuyw9nGCCCaZl9Yc/pIbso7OzZ6eWL788PVAFxcXFlp1cP+Tss89W tLvmmmtuuOGGcePGKf6tPPyTvVmzX7hoy+vWrbOuaFmVcyuPKOcmAuk11XjOnKxzraiod+/erp/B 1takSRPXBwAAAApDzvQ04px56FBFeXnqNyR/9jP3aVVr/fq5CUElYN3g85Y5J5jMaWFvvulG//rX 1C+IamHaNDeUmCKTZSfXD1mzZk3fvn0t4AX69ev36aef2gSr2HIgXLTl8NfYalmVE0880bo5NxGw Idepiqijy6pHjx6aHPP3XWxt5EwAAABUF3KmJ5Uzl9y/6fhG+LlZxTkLeJnNeF3lUutG5czMCcab lumXv0yNzpjhPkO7dq2rJ9ahQwfLTpmfmzUbNmxYtGjR9OnTR40a9X//7/9V2LvmmmtsKDP7WYwM iracmTNLS0tdPy1mE4H0mmo2Zyr0amabNm3COxzG52YBAABQ7ciZHl1vN9bvAVIatPj3xhupiPj1 166rZoJugZ+btfSopq1k9cgjqdELLkjdDhjgilVhf6tDMr8HKNPOnTsV9oKU+K//+q/q6lSwrtjH YsW6thzzudlM3iYC6TXVbM60bwAaOXKk62dYvny5rU0PmisBAAAAhSFnehrx3zUJcuZ776US4MyZ rhvEp6BrX/MzaZLr3n130gnG/lSJmvJk1qj56af//ODuH/7gilUxffp0y04z7fuEQn7xi1/MnTv3 3Xfftff3Pvvss8mTJyvsKV7ahMsvv1zdG264YdeuXeoqQ/br1y+dBw/LmT/72c90nqj7/vvvn3/+ +ar8/ve/twk5NxHo3bu36uXl5VFvNkaxo3OdaPv372/evLlmbty40ZUyBH/XZMaMGa4EAAAAFIac 6WnEOXPiRBftrP3iF/9cNkG3wL9r8tRT/xwNmuemm1x9xQpXqQrlqzZt2ig7Zb5Hl8qI2Uyr/C3Q BQsWuFKlqVOn2oJNsOXrr7/eFswZZ5yxc+fO8IRMwSYCd955pxur5AZysWSYlZuRpi2q0rNnT9fP xt771cMV9RljAAAAoKrImZ5GnDP37auYOjX1OVUlw9GjU+HQC4FBd8uWihEjUh9/vfLKivA3qeac EHjiiYpf/eqwbxvyPPlkqlhWlvr4bl7GjRun+NSiRQvvrcJ33nnnd7/73fnnn19aWvr9739fGWzE iBHPP/+8G0576KGHfvzjH2v07LPP1rIq4RBoy3v37v3tb3+rlfzrv/6rMuf27dttVJJswmglmnnW WWdpmq3WDeSSCpQR3Iy0E088UZXp06e7fgY9OC1bttQcPVyuBAAAABSMnOlpxDkzp6hMGMg5Iblf /zq1nv/4D9etOiWorl27KkHFfM8qysvL9RDpgarqB3cBAACAGORMDzkzWs4YmXNCQqtXu/W88IKr 5GXjxo2tWrU65ZRTXB8ZTjvtND1EMb+9CQAAAOSBnOkhZ0bLGSNzTkgiWMmll+b9oVkAAAAAdYic 6SFnRisrcy1KzglJ2Bp++cuKDRtcBQAAAECDQs70kDMBAAAAoCDkTA85EwAAAAAKQs70kDMBAAAA oCDkTE9RUdHWE/pvWkjOBAAAAIC8kDM96fczl2wqKyNnAgAAAEA+yJme1PuZRUWbiorWn0fOBAAA AICqI2d6+P1MAAAAACgIOdPTeHNm0aDJ1lwfAAAAAPJCzvSkPzd7wqbjy9YPJGfWYyekuQ4AAACA +oSc6eH9THImAAAAgIKQMz3kTHImAAAAgIKQMz3kzMnrt+3scev8JkOmdr3p0afWbXbDFRUn3lau 0Y6/nuP6FRXdb56vSrex81w/gTfffHPs2LFnnHHGiSee2LNnzxEjRmzYsMGNRaTHcNGWs7IJ8umn n2oTvXr10iZ0q2VV3BgAAACAmkfO9JAzJ7cbNStYLh48Zc3Wz2zC5KVvWfHV9z5Rd/+BgxpV94Y/ v2YTknChMERpcOXKleFRWw6Ei7aclU3YuXOnQqwrVVJFdZsAAAAAoKaRMz3kzMkDZ75w8NChQbOW WnfA/c/ahN1fftVkyFRVrpv/iroL1my2CRY7ExoyZMiSJUu++uorLe/Zs+e2225TDrz88stt1GKh LQeSF+V3v/ud6v3793/vvffU1e3Pf/5zVcaPH28TAAAAANQ0cqaHnDn57Y8+V3fj9r9bt/11s22C XDzjOVXso7PXl7+q5Q6jH7Sh/Hz99dcKgf/3//5f66ayY2E5s2/fvqqvW7fO9SsqtKzKueee6/oA AAAAahg500PO/OdeWbfp0GmuX1Hx/MZtVnz1vU963/2kFoY/8pIbS2bhwoVXXnllz549v//976ej YoqWbdS6thxIXpQTTzxR9YMHD7p+RYWWVSktLXV9AAAAADWMnOkhZ7q9OnjokHXDOVM6Xf+QiiPn rbDP0D674UM3kMD06dPT8TALmxBeNpYSvaJkLQo5EwAAAKhz5EwPOdP/3Gy7UbNsghn75Osqthz+ J922umqGqybTq1cvRb758+fb72fKvn37UnmxMjH+67/+q5b1NFhX7FOvwYRA1qLwuVkAAACgzjWs nPlEp07xTXNcgkzGsmUYOdN9D9CQB1+0bvA9QGbLzt32NbNqF894zlWTKS0tVeR7/vnn7f1GPc56 kFN5sTIxXn755Vq+4YYbdu3apa4iYr9+/cITAr1791axvLw8/Nal2PcA/exnP7PvAdImzj//fFX4 HiAAAACg1pAzPTlyZpir5qU+58yov2sSOGPCUzZavjqV5ZKzb5cNs1goNmHBggXWDUydOtUWbELg zjvvtHrA6lF/1+Szz/yjAAAAAFBDyJke3s+cvHrLjh63zm8yZGrn3zzy1LrNbjhkwpJ1mtZ06LQD h7+XmNPXX3/9hz/8Qanv+9///plnnjl9+nQVLQraBHnooYd+/OMfa8LZZ5+tZVW8CWbv3r3KqGed dVbwfUJuoKJCkXLs2LGnnHLKiSeeqNubbrrp448/dmMAAAAAah4509N4c2ZyPe98XDmz/9RnXB8A AAAAQsiZHnJmDovWb7W3PWev+KsrAQAAAEAIOdNDzoxjCVOt3ahZVf3QLAAAAIBGgpzpIWfGaTp0 mlqn6x9avmm7KwEAAADA4ciZHnImAAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABA QciZnjrJme/Tjpi2Z88GGo1GozX0VlRUEd/8fmbL+AFBo9Fojaqlc6ZfrLfNS5WZTQfjEmQyLlyG kDNpBTXvSoVGo9FoDbEpJ3qVcEulyCBPRrWMHxA0Go3WqBo500POpBXUvGsRGo1GozXEppzoVcIt lSKDPBnVMn5A0Gg0WqNq5ExPYTlzzRsbp0zcMHLY25f+LNVGDts49Y8qutGQBpcziwZN9po3oXZa 3W49SfOuRRpPu+GG4b179/KK4Vb4hLzb6af/8MYbr/KKDagddThvNGi1cJj16pGsuROmGlvMTn74 4WuDBg0oKfmO97RaNxDU63Orw+ci5zmZ9wTlRK8SbqkUGeTJqJbxA4JGo9EaVSNnevLPme8sKN8w eMDmf7/y4wm3fDbtbjUtqLth8M815CZVImfm1+p260lacBUSvkYMLx+Rbe3ap1u1avXYY1O8etAK nxDVdMc77vj1qaeeHPMga7VauWZ69YbS7NAC3mjQkhzmc8890rr1f1PTQrj+yitPXHPNoJNOOqFt 229rtEuXY6+44pI331wcnqNWLY9k1D5UqeV9wiRs8Q91wha/k3qEbSsmqLt+paBeb1vWw+zXb4f2 ffToj8LFUaM+UvHcc3eEi0Fbvrxcxxvk1eo6J/OeoJxoC+EnIlhOpcggT0a1jB8QNBqN1qgaOdOT Z85Uktw46Pztd9+8Y8rvvKaihryo2eByZtDqNunV7daTNLsWCV+OeMtHZLvkkvOOPrr9F1+85dWD VviEqGaPbcAbtabVduzY4cIL+3n1BtdijlEt52Fu2PB8p07/vVu3/929e1ctvPPOC8GQrdlTUvKd RYseDOaoFf5IxuxDlVreJ0zCZo+AV6xqi99JDWkTS5fO9+pBq5Z9qIWW9TDXrt3UqtWe1q13r1// rlW0oIraG29sCqaFW1nZj3W8CxfOtK4dviePczLvCcqJtmCb9pZTKTLIk1Et4wcEjUajNapGzvTk lTPXvPH2Ly/46K7ffPrH262l02NF0NXQhl9e8Nc3Vrv55Mx8W91uPUmza5Hw5Yi3fOS1TZuWtWrV 6rLLzvfqQSt8QkwrLe1x663XrV37dPyDfPnlF2gT2pBXb1gt/hjVYg7z449X/eAHx3fpcqxG1Tp3 PlZdFW301FNPnjDhppUrn7K0oIWzzjpN2zrppBNsQtAKeSTj9yF5033zPmEStpwPdc6WcydzbiLn hPrQYg7zqqu2a/d//vNPrasFdYcP3x5MCDd7CevlHFSq8ZzMb4Jyoi2knwf3RATLqRQZ5MmolvED gkaj0RpVI2d68smZG6f+8b1rB318901Bqzh4UC1c0YSNUya6O9TXnLn0ndVlkx9vceW0JkOm6Lb3 3fMWrHnNmxOf9CYseeHE2x5uNiy1hpJrZwy4f8HyTW+EJ+zc+9er5/6l7Yg/aYJuRzy6SJXwhPgW bH39tjd73TW36dCp2s9hcxbu++pvwZz4o+jy29m6+zl/LA8qfSY+porqQWXXvne1Y9p/raHNNX8a NOs/t+96JxiNb3YtEr4c8ZaPvDZ+/I06utmz/+DVg1b4hCQt9RBHP8hauUZ12erVq6sFW1foPfro 9u3bt5s4cWww+ve/v6l69+5dW7f+byUl37nwwn4bNjwfjKotW/bY4MEXHnvs/9CEdu1KzjvvJ6+8 8kR4grVgK1Et5jDPPfdHxxzzveD9Q3tfUcVggte2bn1Fq9LFt3Y+XC/kkazqPkS1qBNGRdGCJhx3 XGc9mF27dgk/EWrxD7WtIatgTsIWv5OZvGlqUXU1JSIdhU4zHYVutexlpJwT1IL1Zz1pE7aYF+/W re+0a/eFtrBs2aalS/+mhZKS3Sp606wNHfoLrWfmzN979XDL+5zMb4Jyoi1oSLzlVIoM8mRUy/gB QaPRaI2qkTM9fs5UtoxiiVHeHjnsg99evX3c9UH7eueOrz//LFzRhA0jh7k71NecGaS4cFv81utZ 54SL1pTNgtFwCybs3b+p601zvNFuY+eEU2J8C+7V/roHgmU1bTpzTrgFRzFy3tPqKgkfPPSeurpV WFXluvmLbYJ2UrsU3NFau1EzduxJFDXtWiR8OeIt15Nmu5SVNzNnO//8c3WvmI//FT4hSUvtevTO K11oVBvy6kGLv7ta/AQbnTTpdlswNvTFF2/Z+zBhylfvvrvUu3uY4sHixXOCCeFpXjHcog7z2mt/ qS2uWrUwXFRXxWuuGRQuBu3jj1fZ5j766PVwPecjGdXy2IeoFnXCpPf3KKUmWwiE04srhYQfalfK JlhDwha/k5m8aWpR9c2bVygn22hAFdUTTrBm9awnbfIWdZjWbr99m1Z56qk71bSgrjfBml4LSo9d u3bx6l7L+5zMb4Jyoi2kNln5yATLqRQZ5MmolvEDgkaj0RpVI2d6suRMS4aew3LmpT/bdtM128aO CNqX77795aaN4YomvH1pmbtDfc2Zp/zHo/NXvbL/QCqAPf7Gqxax+k36c3hOEL3CRWsW2NSWvrNa 3QMH/6Z0d/Y9/3zncMyCZ2zCoFn/qYA35MH/tK7qwZz4ZvPVhj/yF61h9oqXrdt2xJ+COfFH8fzG 1VaxN1qXveu6qtuEYCeVSNW9a9Hz1g1H2Zhm1yL1v9nVUlbezJytY8cOutfnnx/2DkO4FT4hSUvt evTOa+Ua1Ya8etDi764WP8FGe/Y8ad68yQqWug4eNWqIDd1xx681dOqpJ69c+ZS6uta/5JLzVBk+ /DKboNanT++5c++zR0D3tW+I+dGPTg0mWEttI3Yncx5m8qZYqFUpnHj1atxE3i3qhFFRevT4P4oN 6uqR/MUvylQ5/fQfBnOq66HO2XKe1Tk3ETVBp5bqpaU93njjL+rqVieeKnrKEk6wpopkPWmTt/jD /PzzjV26/F0HoaYFdb0J1kaPHqaV5Hw3Ne9zMr8JyonhrtdSKTLIk1Et4wcEjUajNapGzvTkmTM/ +PdffXDDFUHbs2LpnldeDFe2/vuv3r68v7tDA/n9TMtXLa6clllUCxettRs1w4b63lf+8Gsrtv19 ozcheDNz4/a31NWtdcOfWY1vNl/NPm2rqGnd4sFTwtPCzSYER6G7aFkVBUh1x/3lWS23HH6/jaoF O7n7y3dtvnU7XT8rmBPTvGuRxtBatWqlSzSvGG6FT0jStIb4lWi0dev/5hWDluTuMRNs9N57b/Pq arrc11D4g7K6oFelc+djg4rX/v731FVvScl3vHpqG7keKE2IOcyE7fbbR9u25syZ6A2pVcsmCmlR J0x6l4964YVHg4p90rJt228HFa8V8lDHt5xndc5NRE3o3r2r6uG3ELWsSrdu/zvhBGuqSNaTNnnL eZgzZ27RuJoWvCFrejno8e/U6b/HZHK1As/JPCYoJ4a7XkulyCBPRrWMHxA0Go3WqBo505NXzhw5 7P2rL90y6pdBU6pUC1c0YcOoev25WQUqRS/77UrFNgtXak2GHBbhgnq4aE3ZMnxHNQXIyUtfDCZo VVYPKtZtOnRqUIlvNj9zDUElyVH0n/q4KvYrmrrV8gXTnghGg530mvc4RDXvWqQxNF2c6RLNK4Zb gRM0FOaNBi1+VE2j8ReahTTbuq6YvbqaHV2m8M7Mnv2Hn/70rHbtSuyq3Wg5mGDN6l7Ra5pQyGEq dw0efKFt6O67x3ij1grcROHNHlKvqJbea7/uFavxoY5vUTsZtJybiJpga7Zvx7GmZVXatGmdcII1 VSTrSZu85TxMNY2npmTUrdnnnG++eaRXD1q1nJN5TFBODHe9lkqRQZ6Mahk/IGg0Gq1RNXKmJ3vO 1G1YUDcbp/7xr788X0kyaPs2rlcLVzShnn8P0PBH/uIlq6CFp2UtBu39HRvGPrmk733lLYffH8y8 8Qn3sVgvZwZvFVZjzkxyFMrD6iqIHjj4N91qWZVgNCpnqgVzYpp3LVJvW+qSLYI3M2fL+fnAAiek 9inEGw1a/Kh9Lu6YY77n1aurxWzdLsSzsgnBGzWZgpVYy1oMtwIPc/PmFaef/kOtQc9Iefk0b9Ra TT+SSVrUCaOixBSr8aHO2XKe9jk3ETXBzqjqypnhSh4t52GqaSOp7WTU1XTHTp3+e0nJd6LibrWc k/lNUE4Md72WSpFBnoxqGT8gaDQarVE1cqYnn/cz//rG6rcHnf+3YQPeu/Iia+n0WBF0NaQJ9fzv mgS/Xbn4rdeVAJXBsuarIIZpTrie2Ra+udJmBp9ZrcbPzUZVkhzF7i/ftbc6Jyx5Qbdato/IWgt2 cte+fxaTN+9apN42XVRF8WbmbPZFIOEPK3qt8AlJWmrXo3fePjcY80UgBbaYrZ988g90ff/ZZ2u9 etDat2+n+06adHtwsf7pp29kXWFmfvBaIYe5fHl5587H6u6XXXa+94Ux4VbTj2SSFnXCqCgxxeQP ddZilVrOszrnJqKe7ur93Gy4kkfLeZhq2khqOxl1tXvuuUV3j/q90Oo6J/OboJwY7notlSKDPBnV Mn5A0Gg0WqNqDStnuiwYTQfjEmQy7m4heeXMv/71nQXlGy75/zYNuUCR0msqakgT3NS0+pwz12x9 UwntuvmLrasWntb95oesOPbJJV7U7Hnn3OkvvbRl5wYta+ipda/ZzODtyvD3AKkbfA+QVmUTcjab rxZVSXgUp/zHo6ocN+ZB3Wo5PBTsZL9Jf7Zj2X/gvfLVr572u8OmRTXvWiS+6cpGvGK4FT6hFtrE iWO1D7Oj/ypJ4ROStNQDEf1QzJz5e43G/GGD+LurxU+IGbU//PCjH52qa3HLDO+9t3z69PG9e/ey CUqhmvDYY1NsdNWqhf369Umvz1/hSSedoKJiklcPWs7DjGozZvxOu9Gz50m6sveGvJb3JqqxRZ0w KkpMMflD3anTf1dx6tQ7Y1J9fMt5Vqc3m/2csRb1dNvX/GjUvuZHR3HyyT9QxfseoJgJ1lSRcCWP luTFq42ktpNR12Nrf34m/N3LQavGczK/CcqJ4a7XUikyyJNRLeMHBI1GozWqRs705Jkz5Z0nHnv7 8vPfuazs3V/2V7ZU04K6qeLhIVPqYc689IEnLV9ZazviT8FyeNrEZ5cG9aDZkFcM2rA5C23Cvq/+ FsTUoKmSx981iaokPIrxi923yKrd/cwL4SHtTOm4h4PRcAtPi2retUh805WNeMVwK3xCLbRNuf4e feETYpo9Apm8aRde2E+byPwTgkHLeq9wi58QP3ruuT+yCR4bta88DbOcIMEarOk62OrGG1XLeZhR za0xm+CtP2t5b6IaW9QJYzscU0z+UF911eVWD3gTcracZ3XO1UY93Zsj/mzJe+8tTzjBmtXDlTxa zsNU00ZS28moW7obOvQXXt2a7V5WVT0n85ugnBjuei2VIoM8GdUyfkDQaDRao2rkTE+WnBnFEuNh 1ryxccrEDSOHvn3J//f2wPM2XPerDVPvUdGNhtTDnLn7y3eveOgvra6aXjx4ysl3PLJm65tR+UrB rMtvZ4e/ZcfqusuIRxcppNmbis2GTet119wJSw5LcTv3/lVzSq6d0WTIFN1q2b45NmHztphZSXgU b3+0PqhrOTykpqh5y1PPKgDblwl1GP3ARdOftL+DkrN51yLxza6ZvGK4FT6hdtoll5x39NHtY975 KXxCVLNHIFN4jlarletSMlz0Wua9vBY/IX5U7d57bzv99B+2bfttXc4ed1xnXVvb395Q+/vf3/z1 r69QDNBQ587H3n77aBWjVnjzzSPtrbbM0SSHGdVshVmFr+kL2UT1tqwnjO1wuOIVkz/UH3+8ShG0 S5djNTPrhCQt/qxOstqop1uJcfDgC7Xy1q3/m24HDRrgvSWYc4Ja5mrzazlfvNpIajsZdfsqZnvT NbPZ7mVVpXMy7wnKiV4l3FIpMsiTUS3jBwSNRqM1qkbO9Pg5Myx7tsxLPcyZtGpp3rVII2nr1y/R 5fjcufd59aAVPqGQNm/eZK187dqnvfoR1mrhMOvPI1mjJ0x1tQaxk4W3/A5zwYI/KTHG/M5kwpbz nMx7gnKiVwm3VIoM8mRUy/gBQaPRaI2qkTM95ExaQc27Fmk87aabRmT+sftwK3xC3u2ss04bM+Ya r3jktVo4zHr1SNbcCVONrUHsZOEtj8PUudSmTeucv3uZs+U8J/OeoJzoVcItlSKDPBnVMn5A0Gg0 WqNq5EwPOZNWUPOuRWg0Go3WEJtyolcJt1SKDPJkVMv4AUGj0WiNqpEzPeRMWkHNuxah0Wg0WkNs yoleJdxSKTLIk1Et4wcEjUajNapGzvQ00pz5fFrdLidplX8mtS6X45t3LUKj0Wi0htiUE71KuKVS ZJAno1rGDwgajUZrVI2c6SkqKtp6Qv9NCxvl+5nh1FdXy1EtKvXV5nKS5l2L0Gg0Gq0hNuVErxJu qRQZ5MmolvEDgkaj0RpVI2d60u9nLtlUVsbnZmn5NO9ahEaj0WgNsSknepVwS6XIIE9GtYwfEDQa jdaoGjnTk3o/s6hoU1HR+vPImbSqN+9ahEaj0WgNsXmZMbNVfPlOjpbxA4JGo9EaVSNneurk9zMB AAAA4MiRzpkNhsuC0TTHJchk3N1CyJkAAAAAUBBypif9udkTNh1ftn4gORMAAAAAqo6c6eH9TAAA AAAoCDnTQ84EAAAAgIKQMz3kTAAAAAAoCDnTQ84EAAAAgIKQMz2NOmfu3Pvl1XOXtx0xs8mQqbod 8ejLqrixtPgJRYMmW1u9ZUePW+drTpffPvLUus1uOG3CknUn3lbebNj9Gi25dtaA+59dvmm7GwMA AABwRCBnehpvzty7/0DXmx4NsqK1bmPn7fvq64QTgmK7UbOC5eLBU9Zs/cwmKJcG9XCzUQAAAABH BnKmp/HmzDELVlrqGzRr6cFDh4Y8+KJ1VU84wbpqA2e+oAmaZt2Lpj9nE5oOnWaVpe98pO6BgwcX v/XB2ff8xUYBAAAAHBnImZ7GmzOD9yo3bk89jrq1bpffPpJwgnXV3v7o8/CE9tfNtgnB+5x971v0 8Gvvbvv7XqsDAAAAOJKQMz2NN2c2GTLVQqDrV+bGpkOnWTfnBOvGTFC2LB48JZimpow6eelbNgoA AADgyEDO9JAz3V4dPHTIulE5M3OCdWMmyPs7do998vW+9y1qOfxPwfwbn3jNDQMAAABo+MiZHj43 W4Ofm/UsfHOLTWhx5XRXAgAAANDwkTM9fA9Q6mt+1A2+5mfsk68nnGBdNfseoGDCgPuftQk973x8 +ksbtuzcrWVNeGrdZpsQfsMTAAAAQENHzvTkyJlhrpqXepgz9331dfeb51vwC5oqwZ8tyTkhKEb9 XZOg6LVhc5bZBAAAAABHAHKmJy5nVqN6mDNl594vRzz6csm1s5oMmapbLavixtLiJwS5cf22nT1u na85x42Z+9S6zW64okKBU3cpHVfeNP0HTpoNu7/XXU9MWLLODQMAAAA4IpAzPY06ZxYoyJmuDwAA AKBRImd6yJn5I2cCAAAAEHKmh5yZP3ImAAAAACFnesiZ+Ws6dJo11wcAAADQKJEzPeRMAAAAACjI kZcz3VK+yJkAAAAAUBBypoecCQAAAAAFIWd6yJkAAAAAUBBypoecCQAAAAAFIWd6yJkAAAAAUBBy poecCQAAAAAFIWd6jpycWTR5kDXXBwAAAIBaQc70kDMBAAAAoCDkTA85EwAAAAAKQs70kDMBAAAA oCDkTE+d5cxd+/eNePnRklnXNpk6pM0D1wxaOmv7P3a5sVBoXPPZ1l5P3NV02tAW068ctmzOvq+/ cjMqKp7avK7rozfp7j3m37p+57bgLm4YAAAAAGoFOdPj58ybo1lizI+XM/ce2N9t3tggGVprN2vU jn17bEK4GCyrKZrahNU7thRPGRzUw9NsAgAAAADUDnKmJ0vOtGToqd6cOWblAsuEI1fMU/euNYus G8RI66oNf+mRg4cOzf7rCuuWzLrWJlz03HSrDFo668DBg7q1rppNAAAAAIDaQc701E3O7ProTZYJ d3/1pbpKktbt9ND1NsG6aju/3BueUDxlsE1Q4LTKxr9vV1e31lWzCQAAAABQO8iZnrrJmU2mDgli YbipbhOCinXFqwQfmrWueBMAAAAAoHaQMz3Zc6Zuw4J63hLmTDWb4HXFq3g5M3jDM6gAAAAAQO0g Z3rq+HOzu/bvc6XDZYZGr9J+9nXW5XOzAAAAAOoWOdNTx98D1O/pSVt271Rl/8ED5e+tPm3B72xC Zmj0KuHvAVJ34AszvQkAAAAAUDvImZ66yZn7vv6qtHxckAzDzSZ4XfEqaz7bGv67JsHbm2o2AQAA AABqBznTkyVnRrHEmB8vZ4qi5i2rnuo+/+Zm9w9TYuzw4OiLnpu+fPsmG80MjZmVpzav6/LIb5tM HdJj/q3rPvswcwIAAAAA1AJypsfPmWEFZsuwzJwJAAAAAEcGcqaHnAkAAAAABSFnesiZAAAAAFAQ cqanqKho6wn9Ny0kZwIAAABAXsiZnvT7mUs2lZWRMwEAAAAgH+RMT+r9zKKiTUVF688jZwIAAABA 1ZEzPfx+JgAAAAAUhJzpIWcCAAAAQEHImZ7052ZP2HR82fqB5EwAAAAAqLojO2defPHFbqlSZsXD +5kAAAAAUJAjPmeGg6XXzYqcCQAAAAAFaQw5U7zlGORMAAAAACjIEf/7mS5cVnLVaORMAAAAAChI Y/geIBcxE4RMIWcCAAAAQEEaQ86UhCFTyJkAAAAAUJBGkjOTI2cCAAAAQEHImR5yJgAAAAAUhJzp IWcCAAAAQEHImR5yJgAAAAAUhJzpKSoq2npC/00L0zlzRa2wYwMAAAAA1D4XzKqVy5eV0u9nLtlU VlZ7OdNtGQAAAABQ61wwq1Zu1ZVS72cWFW0qKlp/HjkTAAAAAI50LphVK7fqSof9fqabUsPclgEA AAAAtc4Fs2rlVl2JnAkAAAAAjYgLZtXKrbpS+nOzJ2w6vmz9wLrOmRdXcn0AAAAAQBW5WBUdrFww q1Zu1ZXqy/uZ7pEgZAIAAABAYVy4iohXLphVK7fqSvUiZ7rHgJAJAAAAANXBRaxsIcsFs2rlVl2p 7nOmO3pCJgAAAABUHxe0MqKWC2bVyq26Eu9nAgAAAMCRxkWsRvt+pnGPAVETAAAAAArjwlVEvHLB rFq5VVeqLzlT3CNB1AQAAACAfLlYFR2sXDCrVm7VlepRzgQAAAAA1DQXzKqVW3UlciYAAAAANCIu mFUrt+pK5EwAAAAAaERcMKtWbtWVyJkAAAAA0Ii4YFat3KorFRUVbT2h/6aF5EwAAAAAaARcMKtW btWV0u9nLtlUVpbKma4GAAAAAEC+Uu9nFhVtKipafx45EwAAAABQsMN+P9PVAAAAAADIFzkTAAAA AFCd0p+bPWHT8WXrB5IzAQAAAAAF4/1MAAAAAEB1ImcCAAAAAKoTORMAAAAAUJ3ImQAAAACA6kTO BAAAAABUJ3ImAAAAAKA6kTMBAAAAANWJnAkAAAAAqE7kTAAAAABAdSJnAgAAAACqEzkTAAAAAFCd yJkAAACoS/MbPnck9caj8xfQGkRzT1glb7SeN7fTEciZAAAAqEvKaZsbsvqZMytQ72VGtQb0xJEz AQAAUK+RM6sdObNBIGcCAAAANYWcWe3ImQ0CORMAAKAG9UjGzT6yuGPLxc0+QpEzqx05s0EgZwIA ANQg5Sh35RKt2rPWvHnzvv3tb3/rW99y/TpSJ8deiKKiIrdUfWo6Z2qf3VLNqJ2cWaVHnpzZIJAz AQAAalAeWUvX3NK0adOTTz555cqVrloV/+t//a+nn37adSLEX9nHjyaUX87csWPHv/zLvxx11FFa cKUM1bJ7maJWW8jmqpQztSG3lOZ1s4qak+S+SWTNmStWrDjppJN0in7rW9/63//7f7tqAar0CJMz G4T4nLlr166SkhLXqajYtm1baWlpkyZNevbsuX379qwVnYrt2rXTvbSQvlNF7969ly9fbsvVi5wJ AADqu5istWXLlh/96Ed/+ctfMnOmbnfu3Pn73//+//yf/2PFKtHFmVuKFn9lX6Xr/ih5HLs89NBD P/7xj3/yk588+OCDrpShWnYvU9RqC9ncEZkzO3fuHPPs5KFKjzA5s67oaYrhJlWKz5neXS699NKx Y8dqQbdDhgzJWmnVqtUHaS1btlR3xYoVp512mhZqAjkTAADUd1FZy4LWsGHD/vGPf2TNmcYSoyrv v/9++/bttawLG81XXbdazlpJX8KlaDkwZcqU73znO02bNu3Xr5+6bkblnHbt2mkN3/72tydOnOiN vvvuu2eccYbu2LFjRyXD9PREtD/uaA8Xc+xywQUX3HnnnePGjRswYIBVbDeMLad3LUXLmYcfsAnG lnX7q1/9SsfSoUOHF198URUd3f/7f/9Pdz/++OOD+dX4aBSeM3V7+eWXf/Ob39QJsHDhQlVWrVr1 wx/+8Bvf+EbXrl2Du3z3u99VpXXr1nr01FXdaFnzdUWuNeioq7Q/kjVn6vB1QrpOWtaHJfNhzDyN e/bsaUPXXXfdv/zLv2jyjBkzUneufMoykTPrUOqUysYNh8TnTAnfq23btnv37tXC7t27dYZkrbRo 0UIhU/96aEFdndKKmlqoCeRMAABQ32XNWuGgpa6XtXT5pdudO3def/31ikBWmTdvXnrw7//2b/92 ++23a0G3NppZsTV4/st/+S+6KNJqFeHUzTrnjTfe0DQthEfLysrmzp2rhWeffbZz585WTCKPY9fu /df/+l91+agQqAV1VQzvjC2HK5mHH8h6x4ceekgLv//970tLS7Wgo9OFojakpBSeL9XyaFRLzpw2 bZoWdIA/+MEPtHDOOecMGTLkvffeU4D07qLHTfushXBd8xXetPDEE08cc8wxVkwoa87UKaQ8eeWV Vyq0b9++XZWYhyX8MAansc4Bnd62LBq677779Cw8/fTT3/nOd4KiLXjImXVLz4vHDRyuSjmzuLjY LVVUNGnSRLeZFb0KlDBbtmyphbzfzHzllVfcUkhmkZwJAADqO+Wov/zlL7qqVr6yKxgvaElmzpSm TZuee+65Cj9WsSFR3dKXbrWctRKeHzj++ON/8pOfTJ8+/cMPP1Q3PEdbufzyy//H//gf3/rWt6zu bVFdo4s/V00gj2N/6qmnWrdubctHHXXUggWpqz1t1ypiy+FK5uEHYu4YfvSCXwS10ep9NKolZ1pX wfKb3/ymFnSrS1wr2qgC50UXXfS9733P9jmoG81X12ifXTWZrDlTFGjHjBlz4403XnDBBepmPiw5 H0Z71kx4KLycFTmzzuk5CrhShirlTEuSxpYzK2H2ZqZOTu83NuPt2rVrwIAB3mR1VdSQ66eRMwEA QH2nHKVMpWRlcSszaElmznRLlcKV4AI9nJS8SuYaRPFSIbNfv372xS3hObrMuvPOO//2t79pDVbP usWqyuPYBw8erE0H1FVRCzYqthyuZB5+IOaOypb2Jlv46Gy0eh8NXcW6xJaAAqHCpC1rQQlNC9q6 VXRZa+9VhqfZ6M9+9rOxY8e+8cYbqlsluJeE51eV9t8dSTZ6KLSTWsh8WKr0MIaHwstZkTPrAz1N 4jrZVClnKi7u3r1bC8p7Ws5aCShhnnHGGVrwfmMzCS9qZg2ZQs4EAAD1nXKUrlqCuJUZtKRKOfPf /u3fbr31Vi3cfPPNwedmvUrmGmT06NGKmhs2bAjyla6RbOgnP/nJypUrdd0/Y8YMu2949Nxzz1Vg 0Kgyw8UXX2zFJPI49vbt29vv8sl9992n60stfOc733n66ae1A3/84x8zdy/z8AOZd9StHgFVrrzy yrKyMlV69er1u9/9TgsPP/ywzaneR6NKOfO0004bM2aMLd94440//OEPtaB9eO211xQUf/nLX55z zjmqnHzyyTpkLUyfPl2jWjjzzDOfe+45zbn33nutomz58ssva0H69OmjFKpRBdELLrjAignF58xZ s2bZV1VlPiyZD6PdGj3sOlLXOXwoWA4Xw8iZDUKVcuall156yy23aEFnxaBBg7JWAnqZ6NTSgvcb mwkFUVOyhkwhZwIAgPrOspZY3MoMWlKlnKkLmx/84AdNmjTRrYWfzErWC/T+/fsrL33729+eMmWK uk899ZQSgmXOZ599VgFPoyNGjLD7hkffffddpQiNirKEKglV9dhffPFFbT34Uy4KRepq35SmtNv/ 8i//csMNN2TuXubhBzLvqNvjjz9ek5Vz7DPJK1as6Ny5syr2Vqoq1fto6FrWJbYElCd79+7dMk0L 6qqofejates3vvENxctVq1ap8swzzxxzzDGq6Fpco6o88cQTyuTKlr/61a+s8sgjjxx33HHaZy3r XoqaGhUFTlWS0/67IwnRnnzrW98qLi7Wg6kHUJXMhyXzYbRboydXD6kedq1K3fBQsBwuhpEzG4T4 nKkn11h3+/btOhPsfLC/YpJZMcuXL7c3MyX8G5tWSciiZlTIFHImAACo74KsFcPLmUeMenjsuq51 S7WlSjkzK+2zW6oLWXNm3SJnNgjxObPOKWFGhUwhZwIAgPqOnBmvlo+96eG/wFkLCs+Z30x/909d IWciP/U8Z8YjZwIAgPpOOSoJN/vI4o4tFzf7CFV4zqxb5Ezkh5wJAAAA1BRyZrUjZzYI5EwAAACg ppAzqx05s0EgZwIAAAA1hZxZ7ciZDULWnNmAmtvpCORMAAAA1CXltIbOHUm94eUBWr1t7gk7EpEz AQAAAADViZwJAAAAAKhO5EwAAAAAQHUiZwIAAAAAqhM5EwAAAABQnciZAAAAAIDqdFjO/Gs1cX8R BgAAAADQALm8mC9yJgAAAADgMC4v5oucCQAAAAA4jMuL+WoUOXPnzp2XXnpp8+bNi9Jctequv/76 nj17uk5D06tXrxtuuMF1AAAAACCay4v5UuzaekL/TQuP6Jw5ZMgQS5jGVato48aNxcXFjz/+uOtX USGbNgWuQXuu/ddRuD4AAAAARHB5MV/p9zOXbCorO5JzZqtWrZTQVqxY4fp5GTBggNZz8OBB16+i AlOiFLgG7XmbNm369+/v+gAAAAAQweXFfCm5bC0q2lRUtP68IzdnFpjQZNu2bcXFxRdddJHrV13h +1D4Gi6++GIdhY7F9QEAAAAgG5cXD6dA4ZZyqanfz7RQtHv3bu1K06ZNmzVrVlZWtmXLFtvpgE3T wi233NKqVauWLVtOnDjRhkSJaODAgSo2adJEt1r2MlL8BFt5JjdcFePHj9cd58yZ4/ohDz/8cL9+ /WwfdKTHHnusduPVV1+1UdtiVjZBNFl3adeundbQokWLvn37rl692o0lW8OBAwf0AHbu3FlraN68 ef/+/d9//303FqL9170mTJjg+gAAAACQjcuLIUp2xvVj1WzOvOCCC2zBlJSUfPLJJ7bfxuqTJ0+2 BWNDmqno5UqVVAnWkHOCK2Ww0SpRktQdMz95e/3119s6M9kE18nGJojrhyguPv/881GjAZtw8ODB 0047zZUqtW3b9oMPPrAJAQVaDelYXB8AAAAAsnF5sZKLmJVcNZpyx9aiEzYdX7Z+YA3kzG7dur39 9tvqbty4sUePHqqMHDkyvduOTdNQeXm58tKuXbtGjBhhQ1rQULAG3doarr766oQTAiqK6+SlTZs2 WsP+/ftdv1LTpk1Vv+uuu3bs2GEVpbuZM2f26tXLuoH0LmTfh969e8+fP99WrkfAvrXolFNOsdFA 1BrGjRunemlp6bp169RVzB4wYIAqw4YNswkBbUJ1HYvrAwAAAEA2Li+muXCZjpduKVfUrNn3M8Nv AGpZlWOPPdb102zafffd5/ohnTt31lDMGnJOCKgorpOX4uLirGvo1KmT6uecc46inXKdEmbwPqQn vQuJ9uHAgQOa2bx5c9evFLUGJW3Vwx+UVVhVpX379q4fonqTJk1cBwAAAACycXkxzQuWXjerms2Z 4W9n1bIqTZs2df00m6Zc5PohikMaillDzgkBFcV18mLbcp2Q5cuXW9wN69KlS+Z37diQ6xxuzpw5 ffr0adGihaVZo2U3XMnqrhNi+5Ypa56MqgMAAABAwOXFtMxUWe9yphdybJrrHM7iU0yMzDkhoKK4 Tl6iPjdrVq9e/fDDD992221lZWXNmzfXzHPOOceNVUrvQpZ90L1sKJObUSlrUexxyMrNqGSfmy0p KXF9AAAAAMjG5cV81fbnZjt16uT6aTbNdQ5Xrz43a98DtHz5cteP9sknn2hm8qzbsmVL1SdPnhyE 2L1792adnLUo3bt31+b27dvn+tHs8eF7gAAAAADEc3kxXzWbM7t27ao1q7tx40bFIVWCr/kxNs11 Dmdf86M12Nf8aD22Bu97gGImBFQU18nLxIkTtYbMv2tSWlr6xz/+cd26dfa26vbt28eMGaOZzZo1 swmBtm3bqj5t2rTwG7CiiKj6448/bnUdxdlnn62K2IRA1Brsb66ccsopisHBbsyYMaNnz542ITB7 9mzN5O+aAAAAAIjn8mK+ajZnlpWV2YIpKSlRBLL9NlZ3ncNF/dmSYA05JwRsyHXysm3btuLi4osu usj1K9maM91yyy1uRqUrrrjCjVWyun27bJjlZ7EJgag1yJlnnulKh3PDlfr376+jyPzdUQAAAAAI c3kxXzWbM3fv3n3xxRc3bdq0WbNmF1xwwZYtW2ynAzbNdTIoMQ4cOLBVq1ZNmjTR7aWXXur9Tcic E0z8VhIaMGCANuG9l7hmzRrFQvvkqiJcixYt+vbt+/jjj7vhED0UmtmhQ4fgy36sfuDAgeuuu07x WPX27dvfdtttKoYnBKLWYO67775evXrpcdZox44dBw0a9Oqrr7qxNO259l9R0/UBAAAAIILLi/mq 2Zxpu3hk0KOkCDd//nzXb2jKy8u1/xs3bnR9AAAAAIjwelW4cBlCzqyCMWPGnHLKKa7T0Jx22mk3 3nij6wAAAABANJcgk3HhMoScCQAAAAA4jEuQybhwGVJTObNpmu0iAAAAAKABcQkyGRcuQ2oqZwIA AAAAGiiXIJNx4TKEnAkAAAAAOIxLkMm4cBlCzgQAAAAAHMYlyGRcuAwhZwIAAAAADuMSZDIuXIaQ MwEAAAAAh3EJMhkXLkPImQAAAACAw7gEmYwLlyHkTAAAAADAYVyCTMaFy5A6y5lFaa6TS5UmAwAA AAAK4RJkMi5chtR4zoyKiFH1rKo0GQAAAABQCJcgk3HhMqRh5EwAAAAAQK1xCTIZFy5DyJkAAAAA gMO4BJmMC5chNZUzLUZmZfsdLI8fP75jx45NmjTp1KnTxIkTbdTYnICrhjz88MP9+vVr2bKl7t60 adNjjz124MCBr776qhsGAAAAAFSdS5DJuHAZ4ufMm6NZhkxCu+WiYTa237Z8yy232EJg9uzZNkFc qZKrVrr++uvdQAY3o1LWIgAAAAAgK5cgk3HhMiRLzrSs6KlqzgxEZTyrd+nSxd5+3LVr1wUXXKBK r169bEKYTXadSk2bNlXxrrvu2rFjh1U++OCDmTNnZq4h690BAAAAAFm5BJmMC5chdZwzly9f7voV FYqLqjRr1sz1Q2yy61Tq1KmTiuecc86AAQOGDRumhPn888+7scNlvTsAAAAAICuXIJNx4TKkjnOm 61TKWpSsdWXUzp0721CgS5cu27ZtczMAAAAAAFXnEmQyLlyGZM+Zug0L6gm5XUuz+Oc6IVnrWYsS VZfVq1c//PDDt912W1lZWfPmzTXtnHPOcWMAAAAAgKpzCTIZFy5DGvD7mZk++eQTTWvatKnrAwAA AACqziXIZFy4DKnxnNm2bVtlv2nTph08eNCV0tLJsaCcWVpa+sc//nHdunW25u3bt48ZM0bTMn/D M+vdAQAAAABZuQSZjAuXITWeM6+44gqLeQGrh5cDXtG6meJHb7nlFpsQsLrrAAAAAABiuQSZjAuX IVlyZhTLkEm4XUvbvXv3iBEjOnToUFxcHM574eWAV7RuJhtds2aN1ty9e/emTZtq5S1atOjbt+/j jz9uo2HhewEAAAAA4rkEmYwLlyF+zgyrUrYMc7sGAAAAAGiAXIJMxoXLEHImAAAAAOAwLkEm48Jl CDkTAAAAAHAYlyCTceEyhJwJAAAAADiMS5DJuHAZQs4EAAAAABzGJchkXLgMIWcCAAAAAA7jEmQy LlyGkDMBAAAAAIdxCTIZFy5DyJkAAAAAgMO4BJmMC5ch5EwAAAAAwGFcgkzGhcsQciYAAAAA4DAu QSbjwmVIUVHR1hP6b1pIzkQuM2fO3Llzp+sgXwsWLOA1gpyOgJdbIz/VC3wG+YcCAFDnXIJMxoXL kPT7mUs2lZXV95x5/fXX9+zZ03VqV69evW644QbXacQuuuiipUuXug7yNWzYsKeeesp16givJlOH j0NOR8DLrT6c6nWowGcw6tHj5xEAoNa4BJmMC5chqfczi4o2FRWtP68e58yNGzcWFxc//vjjrl99 tOZx48aVlpbqgRBXPZy2q61rpuvnZdmyZU3StOBKtS7mGJPIetl09tlabcXIka5rRoxIFc8803Wr auXKldrP5AFg9erVw4cP79q1a7NmzfQId+jQYciQIXmfh/k9RMn3oc4vvnk1mZp7HEzMg5DEEfBy K/BUL+TRqxbpJ7Can8HCH71qeQUBAJCES5DJuHAZ0jB+P3PAgAGtWrU6ePCg61cfu5IIuOrhtN02 bdr079/f9avu/fffb9u27bHHHtu5c2ctbNmyxQ3UrphjTCLrZZOudoqLK5o0qdi0yVW0oIra22+7 SlWdc8452s/Fixe7fi52XJ7mzZs/++yzbkYCOsf0KtCC7qtbLet40yOJ2EY9WfehznMmryZTc4+D iXkQkjgCXm75neoFvhKrkR2a61Rd1mfQ1ump0qNX+CsIAICEXIJMxoXLkAaQM7dt21ZcXFxDlxrd unW75ZZbNm7caD/vXTXDxRdfrH3Qnrh+Vezevfu4447r0KGD7i7t27dXV0U3XIvijzGnrJdNcsUV WnNFWZnrakHdYcNct6rsudDz4voJlJaWTpgwYd26dZYZtHDaaadpJV27drUJScyZM6ddu3YLFizQ HXWrZVXcWALJ96Fuc6bOQF5NovvW3ONg4h+EnI6Al1t+p3qBr8RqlHr+qvsZrJZHr5BXEAAAybkE mYwLlyH6Abe16IRNx5etH1hfc+b48eO1lzV9qZG6oIi+pNDWNarrA9evijPPPLOkpCR418XejVHR ujkFO6bHoWPHjk2aNOnUqdPEiRNt1Lz66qsDBw7UBZlGW7Ro0bdv39WrV7uxyjVk5WYkE3Xhu2NH RYsWqYvdV1+tWLEitdC8eaqYn0GDBmnHZs+e7fp52bFjh1aiS7EDBw64UgKbNm3q0aOH7qhrwcJP 46h9qNuc2chfTYGoxyG947zcqqbaT/VCXompB7p+P4OePB69Ql5BAAAk5xJkMi5chjSA9zP79eun n6krdElVk1IXEdGXEbou0aj2xPUTu/rqq3UdbB8DC6ir4vDhw10/lu3YLbfcYguB8KWhK4Xo+un5 55+PGg3YhIRiLptuu01bqSgtTTUtqJufDz74QNdbui50/Xzt3r3bDnDXrl2ulIBCi13d6lbLrpqv qH3I4+Lb1pOVm5FYI381BaIeh/SO83Krmmo81U0hr0Tbk3r+DIbl8ejl/QoCAKBKXIJMxoXLkAaQ M9u0aaOfqfv373f9mpH+QR95GaGta1R74vq1yHasS5cuurZQV9ciF1xwgSq9evWyCdK7d+/58+fb Q6QJQ4YM0YRTTjnFRgPpNVU5mQRiLpu05Q4dtP5U00Lez9XIkSO1h96bD3lQINF62rVr5/oJzJkz p3379o8//rjuqNvCP60XtQ91mzMb+aspEPU4pHecl1vVVOOpLgW+ElMPer1/BsPyePTqwysIANAY uASZjAuXIQ0gZxYXFxfywz6h1AVF7FY02qRJE9epRbZjy5cvd/3Kz1k1a9bM9TMcOHBAE5o3b+76 ldJrqqnLptmztf5Uy/sjeLrg0z63bds28+q/Sm677TY70ocfftiVEhgwYMDb6a9SsYdIy6qkR/IR sw95v8lTLRr5qykQ9Tikd5yXWxVU+6le4CvRdqb+P4Mm70dPd6nbVxAAoDFwCTIZFy5DGkDO1E9T /Ux1nQzpn9H/5KpVl/PuGq3DnOk6lbzinDlz+vTp06JFC7t6Nlp2w5Ws7jpVl/OySesuYPUV9lG3 sWPHun7V6Xpx4MCBdph33323q1aR7uuW8pJzH+o2ZzbyV1Mg6nFI77hf94q83ExNn+parVuqCtsf 16nkFevDM1jgo6d71e0rCADQGPz/7b0PkFVVmuD5AshIICMjIwn+bUZG6jASNGyzmUKHooFUhhK4 KASNVQiyGahEWg7FKINgYSkFtLBoLa0jgf+oFhoxCx0cVAZbcBSosqsdy64putpl3dzarHGFdh2a ptqhXctmLPfL9x1OnTz3vntPvn/5Hvn7xS+Ie79z7rnnnnvfzfPx3rvPZJBhmOTSoeo/N5v9M/17 TLT/JG+un1MaP368WS8jsR1zg/Z/xKNoBUtsMJySTnxlhMeOHVtXV/dZf75R6XLmzJlZs2bJAcoF c+jQIRMtLyF9yGPynT1v8ZgawQzyV5Ml1zhkO+733A3yclNKdKkXTuywu8FKOIMFjl4lvIIAAGAw YDLIMExy6VA1zwFyPwdVCnonFLmnFO+9956UDshzF2I75gYbGhpkeefOnXbS/Pnnn7sVLLHBcEo6 8X3qqaekb2vWrDHr/eTnP/95c3OztCCdlDmciZaXwD4MbJ45yF9NllzjkO140guHl5tQuku9cLKj XtFnsPDRq4RXEAAADAZMBhmGSS4dqiDP3LFjh/xN7dejIPKgd0KRe0rR1dUlpQPyHPnYjrnB2tpa WT548KD+IJucyvnz57sVLGPHjpXgc889pzX7S+kmvtIf/QWC06dPm1B/2Lt3rwzC9OnTZQJnQmUn vA8DMvm2DPJXkyXXOGQ7zsstiQq/1GPPhRsc2DNYlNGrhFcQAAAMBkwGGYZJLh1S8kwXEw3AdK1I lPQX1bOzixhM8UWWLFkifRiQ38WO7Y8b1IcluqxZs0YXtILlnnvu0bjFFIRRuomvTpu+/e1vm/V+ oscSi33LotSY/cXh9WFg88xB/mqy5BqH2A67QV5ueiyxVMKlrj0xKxdxgwN7Bk1DcYSPXiW8ggAA YDBgMsgwTHLpkJRn5o3pWvHo6OhobGzM7z+VkzF/4SOY4iyyX9m7/Gk36+Ul2h/BDV64cGHdunVN TU0y82hubt6a/TU9t4Ll/PnzMqNqaWmRmrEVkindxLe1tVU6ow+ZzAM9lljIM6MM5leTS+w4RDss uEFebnossVRFnjmwZ1DbiSVw9CrnFQQAAJc8JoMMwySXDtWRZ0oP5S/9gQMHzHp5efXVV2Xv3d3d Zn2wkjrxzY/Dhw/LHGvwfNdowPNMXk3KwI5DKpfAy23AL/WBpcAzmGv0+HsEAABlw2SQYZjk0kGm HKemLek5XNl5prBp06bo72iXh+uvv37Dhg1mZRBToomvDG9tbe0AfrWyzFTC5JtXkzKA45DKJfBy I88sRZ7J3yMAACgbJoMMwySXDtn3M4/2LFpU6XkmDDglmvgONgb55BsCuQRebuSZpcgzAQAAyobJ IMMwyaVD7/uZmUxPJnNyMXkmJEKeWRSYPkII5JnVDnkmAABUOyaDDMMklw7V8f1MqAQ2bdrU3Nx8 eZYJEyZ8/PHHpgDS2LFjh46b0NTUdOLECVMAkIMqfblxqVvyOIOMHgAAVBQmgwzDJJcO5JkAAAAA AADQB5NBhmGSS4fs52an9bQtOtlJngkAAAAAAAC8nwkAAAAAAADFxWSQYZjk0oE8EwAAAAAAAPpg MsgwTHLpQJ4JAAAAAAAAfTAZZBgmuXQgzwQAAAAAAIA+mAwyDJNcOpBnAgAAAAAAQB9MBhmGSS4d yDMBAAAAAACgDyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaUDeSYAAAAA AAD0wWSQYZjk0oE8EwAAAAAAAPpgMsgwTHLpkMlkTmWm9Tx7mDwTAAAAAAAAejEZZBgmuXTIvp95 tGdR28nF5JkAAAAAAABQrM/NHn7g5MzF5JkAAAAAAABAngkAAAAAAABFxWSQYZjk0qE3zzy6q6eN z80CAAAAAABAFpNBhmGSSweeAwQAAAAAAAB9MBlkGCa5dOB3TQAAAAAAAKAPJoMMwySXDuSZAAAA AAAA0AeTQYZhkksH8kwAAAAAAADog8kgwzDJpQN5JgAAAAAAAPTBZJBhmOTSgTwTAAAAAAAA+mAy yDBMculAngkAAAAAAAB9MBlkGCa5dCDPBAAAAAAAgD6YDDIMk1w6kGcCAAAAAABAH0wGGYZJLh3I MwEAAAAAAKAPJoMMwySXDuSZAAAAAAAA0AeTQYZhkkuHTCZzKjOt59nD5JkAAAAAAADQi8kgwzDJ pUP2/cyjPYvaTi4mzwQAAAAAAIBifW728AMnZy4mzwQAAAAAAIBBnGdmvr3T1UQL4MEHH5w5c6ZZ qRgyWczKAKF9sJhohFmzZq1fv96sAAAAAABA1WIyyDBMcunQm2ce3dXTVoWfmy1untnd3T106NCD Bw+a9YtI/NFHH50xY0ZyilU6Bmq/LtoHi4lGkNGTMZQRM+sAAAAAAFCdmAwyDJNcOkjWUPXPASpK ntnR0dHY2PjVV1+Z9YtoZmUx0TIyUPuNJbkzMnqjR49esmSJWQcAAAAAgOrEZJBhmOTS4VL4XZPC 88xPPvlk6NChy5YtM+sOra2tW7Zs6e7uTk6xSsdA7TeW1M7ccccdMpIynmYdAAAAAACqEJNBhmGS S4cS5pmnf/NPS587OmLlrtrvPLds9/Hzv/1nLyH85B8/79z7k4ZVf16z4s/kX1mWiCnL8v5/OSPB pu++IBXq79298Jk3T3x81pQ5FJ5nPvbYY5I+7du3z6zHkZpi5eKll1765je/2dDQUFNTU1tbO3Hi xM7Ozvfff19LY5t1g7p8/vx5SeFk8xEjRixatOijjz7SUuX06dNLly6VIqkg2bJU1q1McTaRlp1q H+RfWfZSQemPBJuamqRCfX39woULT5w4YcocvGajyBhKhe3bt5t1AAAAAACoQkwGGYZJLh1KlWee +/y3LQ/8SDNAVXJOXdB+n/lvX0gCaUtViUhcKwheqSgJ54+7/ffKtMis5IXkgZIdvffee2Y9jmyG 1e8888EHH9QNo2gFd9niBnV5yZIluqCMHTv2008/1Qrnzp1raWkxBVkk59QFrXDmzBlJIDVikYjE tYJgog6ScP74xz82xRfRIrMSh+SrUkHG06xHSG0BAAAAAAAGHJNBhmGSS4dS5ZnrDvxMcr+pf/Ly yU/OyeqH/+9vpv+vB9yEcM3L/0mWWx/+91LkVli9/12tIMz+t68f+MWvv7zQ+53Jz774csWP/lIq tP/pIS21uM3mx+jRoyX5+fLLL816HPklSLW1tbLVtm3bzp4178SePn167969s2bN0tXYZt2gLre2 tn744Yey2t3dPX36dImsXr1aK6xbt05Wp06dKidRVqWaVhC0wpo1a2TZtmAr2BaE2bNnHzhwQEfg s88+W7FihVRob2/XUktvo4mDIC1IBRlPsx4htQUAAAAAABhwTAYZhkkuHUqVZ07e+O8k93u3x7zn Jrz36//qJoSTvt9bQYK6KmiFietfMusRLnz1lVSou2eXWb+I22x+DB06NDX5yS9BmjBhgmy1YMGC jo6OlStXSobpvUkY26wb1GX3vVZZlsjEiRN1dfLkybL67ru/z8+1gqCrkyZNkuWEFqJcuHBBKtTV 1Zn1i/Q2GjBQNTU1ZiVCSAsAAAAAADCwmAwyDJNcOpQqz6xZ8WeS+331u99pLwVZdhPCXBVqv/Oc Wf/6633v/+rmHYfr79099F/9ULcVZdkUX0TjZiUvJC9KTX7yS5Ak/dM0z0UyQ/v1SI3ossUN6rL7 IFxZlojN5bTz0QqCruaqUFtba9az36u8+eab6+vrNeVWZNkUX0TjZiUHUiEhzwQAAAAAgMrHZJBh mOTSoXLzzK1vnND6UbWCJTbYL0r3uVnlxIkTL7300tatWxctWlRXVyftLFiwQIuizXpZoi4nZImF 55nSsWz1GLSCJTboop+bHT9+vFkHAAAAAIAqxGSQYZjk0qFUeaZ+LLaQz802rPpzWd35zv+h388U Pv/ygtuCJZqy9hd9DpD70dMo2QwrKcUK5MyZM9KOzfFGjBghq/bbm4L3qVddTvjUq75fWsjnZhsa GmR1586dNtP+/PPPe7ePHG80ZfXQlhOeAwQAAAAAAJWPySDDMMmlQ2mfAzR547/T5wD1/P1nsc8B mvonL+tzgKTalZv7PAeo9jvPyerBv/lIE0ipMP/JI24LFmlEgpKRmvX+s2PHDsmOSvG7JjNmzHjq qac++OADzc0+/fTTTZs2STuSXmqF9vZ2We3o6Dh3rnegJE/T71sKWkGX7WN+uru7r7zySoncf//9 WkGfAyRbaQU5m7HPAZIW9DlAUk1bsM8B0ocVHTx4UDspFebPn9+7feR4pREJSkZq1iN0dXVJhYTf Ncm22u9hBAAAAACAcmIyyDBMculQqjzz3Oe/bV7XpWmhuvz5H+uC9jvX75p8+tn/pxX06bKumpqK WsGy/egHtk60NIRPPvlk6NChy5YtM+sOmhdFMcVpmNoRtmzZohX27NljQhd5+OGHdUEr6LL9qRLF /VUSSVCbm5tNQZbly5frglbI9bsm9pdR9OmyLpqaClrBIgmkxhUTdViyZImMpPfjnC65NgQAAAAA gMrBZJBhmOTSQeb8pzLTep49XOQ8Uzj9m39a+tzRESt31X7nuTv2HD//23+WJNB9zI+klJ17f9L4 b/bUrPgz+VcSUdnElGWfLrvuwM8k8xz6r34oKevWN05IMFcm+fDr/3nsmr1555lCR0dHY2Nj9BOh mhdFMcVp/PKXv5Sc7corr6ytrZUErL6+fuHChQcPHjTFWSR5u/zyy6V0woQJ+k6guwtdPn/+/B13 3CGNjBgxQnLOjz/+WEuV06dPS1CKpIJUk8qyif1oriApZWdnpxxgTU2N/CuJqGxiyrJPl123bp1k ntIHSVm3bt0qQd2vVnCRNHjs2LGxpTJ60rikmmY9jtgNAQAAAACgojAZZBgmuXTIvp95tGdR28nF xc4zPbo//UdJAhN+tmRg6enpkSzrwIEDZr2a6e7ullwu4WdLSsSrr74qYyh7N+sAAAAAAFCdmAwy DJNcOpjPzR5+4OTMxUXOM2dt+w8HfvFrfYrPB3/3DzP/t4OSZ6478DMtrUA2bdrU3t5uVqqKWbNm SYasT/H54IMPZs6cKXnmunXrtLRsXH/99Rs2bDArAAAAAABQtZgMMgyTXDqUMM/UT7G6Xv69fWf/ 6QsthSKS/SxqHy6//HL3GbYAAAAAAADhmAwyDJNcOvTmmUd39bSV4HOz7/Z82rHrWMOqP6/9znMt D/xo9f53z/w3ksyS8O6773Z0dDQ0NNTW1ra0tKxevdo+JQgAAAAAAKC/mAwyDJNcOmRK9xwgAAAA AAAAqEZMBhmGSS4dSvW7JgAAAAAAAFClmAwyDJNcOpBnAgAAAAAAQB9MBhmGSS4dyDMBAAAAAACg DyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaUDeSYAAAAAAAD0wWSQYZjk 0oE8EwAAAAAAAPpgMsgwTHLpMJB5Znd396OPPjpjxoxMFhMtHvPnfy2t3n+/WVXWrOkNzp1rVktN JfQBAAAAAACgX5gMMgyTXDoMZJ6p6aXFRItHd/fXQ4d+XVPzdU+PiciCRMQPPzSRUlMJfQAAAAAA AOgXJoMMwySXDgOZZ7a2tm7ZsqW7u7tEeaZwzz297xwuWmRWZUFWV640q+WhEvoAAAAAAAAQjskg wzDJpYPkd6cy03qePTyQ388sXZ559uzX9fW9ed3773/93nu9C3V1vcFyUgl9AAAAAAAACMdkkGGY 5NIh+37m0Z5FbScXX4p5prB1a29qN2NGr7Igq+Fox2IxNcIopA8AAAAAAABlxmSQYZjk0sF8bvbw AydnLr4088wvv/y6paU3uxNlQVbD0Y7FYmqEUUgfAAAAAAAAyozJIMMwyaXDpZ9nCl1dJseThYGi EvoAAAAAAAAQgskgwzDJpUNvnnl0V0/bpfu5WUVzvIGlEvoAAAAAAACQiskgwzDJpYPkd5fyc4As +eV42rFYTI3+kF8fAAAAAAAAyozJIMMwyaXDQP6uiSXvzC2c/HI87VgspkZ/yK8PAAAAAAAAZcZk kGGY5NKhCvLM5NJAKiHHq4Q+AAAAAAAApGIyyDBMcukwkHmmJpBRTPFFYoP9pRJyvEroAwAAAAAA QComgwzDJJcO5JnloxL6AAAAAAAAkIrJIMMwyaVDRXxuFgAAAAAAACoHk0GGYZJLB/JMAAAAAAAA 6IPJIMMwyaUDeSYAAAAAAAD0wWSQYZjk0oE8EwAAAAAAAPpgMsgwTHLpkPmjTeSZAAAAAAAA8HtM BhmGSS4dyDMBAAAAAACgDyaDDMMklw7kmQAAAAAAANAHk0GGYZJLB/JMAAAAAAAA6IPJIMMwyaVD afLMn/wEERERERERq1LyTERERERERCym5JmIiIiIiIhYTAvPMzOZU5lMT6aNPLNQZSgFL2g99/rr y2+6qW748IRqCUVlc8D7EDJQqcZuq0GLV5q3xW0tVd2dxSstiqVrOWpRTjcWoo68xSutZKuuw4iI iNVk4XnmqVMleT9TZwC56HMMl4rJh7ZiwQKtoHilakJRUQxpP6ROSQ0ZqFRjt9WgxSvN2+K2pn60 f//KhQtbxo2rGTZsRG3tzddc89bjj2uR7s5iNymipWs5auGnO+8NK0f3ENzl8qh7tHilVrfUXR5A 8+iGu4m7fMnoHpS7jIiI2G/JM6vFxvp6OfD3nnnGi5fTqhj8MgxUccehuK2Jx554on7kSG3WxasW GyyKpWs5auGnu5y9LZHuIbjLZTZ5126puzyA5tENdxN3+ZLRPSh3GRERsd9WbJ7pyl87sRIGoRL6 kGoZOlncXRS3tbOHDmnqtfymm7q7uiRy4dixtx5/fP6117rVxOLu17V0LUctfF+FtzDguofgLpfZ 5F27pe7yAJpHN9xN3OUyePL5571IKXQPyl1GRETst9WbZ177h38owa71623k8LZtEpk+aZKuZjfK nD9y5I65c2trakbU1i5qb//45ZdtfVGm4Fs6Oye1tNQMG1Y3fPiSG274aP9+t0KyuouEoF1+bOXK y8ePl71MaGrasWqVlrp1LG5RtNSSUMctUr86fnzbihUyMjIIMhSzWlsPPfKIW+H9nTs7581rGj1a elg/cuTC6647sWuXLTXtxpGrjo1bP3nlFdlFQ12d7EL+lWWJ2FK7VcJAJastRHHrJB+maLa5iFvk mlCaekXJFShBKZITIVemXJ8JreXhw8uXS2vf/MY3vHjUhP2mDtRLGzfKLvRsyoFMbG6W+rKVltqW 8z6bYsgFE8VWSNVsEIdWKM8dJnkkA9WeRJetNiidaayvl925pyO1k6nXg2r3Eqtb6i4HmtwH22DC JVeUl567ibtcBuXQ3KuxRLoH5S4jIiL22+rNM3c/8IAEZ06daiMyyZPI9nvv1dXsRpmls2frgjJ+ 1KgzBw9qBcm+rp82zRRcZGxj4+kDB7RCqrpJQlCXZQ6nCxZ3umBCF7Hx2FJLQh23SIw9TMGtY0IO MlH78fbtuUotuVqwcVXGXCaIpuwiErHnQiPJA5Ws2SBCch33MKMVbNwzV2nqFSXHK1egKcgiOYYu 2EbU2GCIs1pbZcNjTzzhxaMm7EKLXNyBerCjw0QjuJsXcjYDL5gotoVUzQZxaIUy3GFSRzJQdxN3 2arBnWvX6oKiRSG3QRN18F44bjUvaHVL3eVAdROX6D0q4ZILf+kl627iLpdBOVNzr77609de8+LF 1T0odxkREbHfVm+eeeHYsdENDRLXTxOde/11mXaIZw8d0gq6VesVV3z4wguy2t3VNX3SJIncf9tt WuHRu++W1RlTpnywZ4+sykSkY84ciaxcuFArpNq7g0jH3KAuT77sMn2D4rM33tBZqSQDWsFVK3tB a3KpGltHD1Mmji9t3CiDJhEZkGU33ujWmT19+oHNm798+21Zlk7qs1Xa29rcOmK2+Xz6sGbxYgna cyH/6rlYfeutWiG7UehAJatNeUE18DDFhEbEXKWpV5SOgxz7r/btk1UZBxmT3rYircUGQxxRWysb ypTUi0dN2EXyQNXW1MjqthUr7GtNcpK9Dz1kT1a24YLOZuoFY+3dU14DZc3VQhnuMKkjWSxlL4J0 79UtW+TakDMiI6xFIbfBIt4f8ja5D7rrhEsu/KU3gH7+5ptyJST4y9275YjkHHkbIiIiVqJV/f1M mc9JXCYcsrxj1SpZXjBzpi3NbtTnASGyLJGJzc26qvMM9xNiMjuRSPOYMTaSbO8OIh1zg7r87tNP 21KZK0hEkgEbsWplL2hNLlVj6+hhyvzSiycoM2zZpG74cC+ebT6fPkxqaZFgwrnIbhQ6UMlqU14w 1lyHKSY3kqs09YqS45XV6DgINqLGBkMM3zC8pjdQE5qaZFVea5KQSDYieZH31la24YLOZuoFY+3d U14DZU1oodR3mNSRLJayF+GZ++7z4mIet8FC7g/F0uuD7jrhkgt/6Q2gq2+9ddmNN6YqKfc7O3Z4 2yIiIlacVZ1nytxI4jKTOH/kyFWTJ8vywa1bbWl2oz5v7MiyRGpranS1ZtgwreMhcbtJslo/Iegu W2ODYq64mlyqxtbRw0x+g2vfhg03X3NN/ciRQ4cM0UYEWfaqadwLesbWifbBOxfZjfytYoOpJmwV eJiiFnlBa67S1Csq1zgINlKg8nKQ1mQW7sWjJuw3eaBkNq95oMvkyy6z35/UiC5bY4O5TL1grNlW Cxq9hBZKfYdJHcliqS1LAunFxdROikW8P+Rtch901VaOBnNdUbZCFfnFW29tuP32+ddeq+9Oe6WI iIiVYlXnmeKNV10lRSsXLpR/Rzc0uH90sxvFTCzs/CnXBEuwmyQbrezNXdxla2xQzBVXk0vV2DrR CZbn1rvu0g2jeDVjg56xdXJN8sqZZ4YfppgrruYqTb2idIocHQdboXBnTJkirRXy/czAgTqxa9dL GzdK5UXt7XXDh0upfa8vWjlXMJepF4w122pBo5fcQhnuMAkjWSyjO7WmdrK494f8TO2Du2x1g2V4 6ZXTw9u2tbe1PdjR4X6NFhERsbKs9jzz0COPaKlwzy23uEUajH5QakJTk65eOXGiTFu/eOstW6G/ 6ntHZy9+t0r0PovlLltjg2KuuJpcqsbW0c/FHdi82YtbG+rqpMLOtWv1u0/i52++mW0ptOeusXUC PzdrSxOCqebaKvwwxVxxNZoFqalXVK5xEGykQDfcfru0tvC667x41FxH0a+BUs8cPCilRfxfgwr5 3KxY5juMN5LFMtvT+GNM7WT49ZDriirc1D64y1Y3WIaXXuH+xQ9+8NLGjaneMXfuls7OkM8sICIi DqSF55mZzKlpS3oOD1CeKbaMG6cVfvrkk25cg1MnTNDHeHR3dcmMSiL2ARiPrVwpq+1tbe8+/bTO jT597bU93/ue+4TJZGVbaaFjzpxzr78uqzJxmXzZZb17DZ79uOaKq8mlamydbStWSHBsY2PX+vU6 NfnwhRdkpmIryCxTKhzculUHQYZr/rXXZlvym5JGJPjcd7+bMJWM3VAfwiHnQp+YIrvQc+E9B0iX rbHBVHNtFX6YYq64KgcipTLr9eKpV5R9GIn+sqX0QZsStII1NhjiWef3M3W0pSdvPf549C2yXEeR OlAzpkx5avXqD/bssce46c47pdR+F86tbI0N5jL1grFmW81noKypV3Xp7jCpI1ksezuaY5RSOxn+ wsl1RRVuah/cZasbDH/pDaBygHsfeihBGdvLx4/3rkNERMQKtTjvZx7tWbRowPJMfZZ90+jRXly3 0p8isIwfNUpmUbbO3KuvNgV9sRWSldmY2eAi+uuFglZwl61eUFej2ApuNS+oalEULZWZWfLvmuiT G110TibYOuo9t9yicYstMusRtPRMjp+psOdCI7psjQ2mmmurkMPU1Si2grr93ntNQRa3KPmKkiTQ G4clN9ygC7YFNTYY6Jt/+qf1I0dqCy5etVxHkTpQuhxFXoluBV22xgZzmXrBWLXIC/bLhKtaLd0d xqxEsCNZLLVZL2hN7mT4/SHhdVGggdekrR8Nhr/0Ktmls2fzBCBERKwai/J+ZibTk8mcXDxAeeb6 ZcukdNW3vuXFdSv3V9Tlj7T3K+riM/fdN6u1VUqHDhly+fjx354/X5+MH6hMrWQr2XZCU5P+sJ7u V0vdZasX1NUotoJbzQuqWhTFVpBU87GVK6+aPFnGQWxvazv0yCO29MKxY+uWLpVJmBxF85gxW++6 S4JeC6oMpkzvWsaN0y87uRV0NYqtIJPvznnzGuvra4YNk3+X33RT9Af67GpCMNVcW4Ucpq5GsRWs Dy9fru+DRUuTryi5AjvmzJFSOREJPxYfGwy358UXVy5cqGdKdiSJhCSfXh0x9ihSB+qXu3fLZaCf t5Q6ktMuvO66g5EH5NjVhGCCyReMtb/NRk24qtXS3WFSR7JYale9oGtCJ8PvD2LC66IQU/vgLlu9 YOBLr2J9dcuWDbff7gUREREr16r4fmay+tsA0f/lra45BCJWptxhsBI89sQThTxNABERsdxWe565 c+1ameo1x/3UG7NARCxQ7jCIiIiI+Vicz81O62lbdLKz7HmmzvOEh5cv94pELfKCiIiB6j1E4A6D yerFEItXc0A0XYnDq4mIiFg0q/r9TP1OVOe8efoQQk8pFb0gImKg3GEwUL0YYvVqDohel1y9moiI iEXzEvh+JiIiIiIiIlaQ5JmIiIiIiIhYTMkzERERERERsZiSZyIiIiIiImIxJc9ERERERETEYkqe iYiIiIiIiMWUPBMRERERERGLKXkmIiIiIiIiFlPyTERERERERCymheeZmcypaUt6DpNnIiIiIiIi olic9zOP9ixaRJ6JiIiIiIiIRXo/M5PpyWROLibPRERERERERL6fiYiIiIiIiMWUPBMRERERERGL aXE+Nzutp23RyU7yTEREREREROT9TERERERERCym5JmIiIiIiIhYTMkzERERERERsZgWM8/sJM9E REREREQc9PJ+JiIiIiIiIhZT8kxEREREREQspuSZiIiIiIiIWEzJMxEREREREbGYkmciIiIiIiJi MSXPRERERERExGJaeJ6ZyZzKZHoWPUueiYiIiIiIiLyfiYiIiIiIiMWVPBMRERERERGLKXkmIiIi IiIiFtOi5JlHv9/TljnZSZ6JiIiIiIiIxXkO0LSeZw/zfiYiIiIiIiLyuVlEREREREQsruSZ6JrJ 4gWrQu25xSv1DKlTaiuhD6lWRSfLYOw4xAZdtYLFK8VkGTRERMTqtmLzTJ1k5KLPMWDxrN7h1Z5b vFLPkDqFGNJ+SJ0Btyo6WaAhxxhbJzboqhUsXikmm9+g5bcVIiIiFl/yTLzErIQrpBL6gIHmfbLC Nwyvidb8Bi2/rRAREbH4VsXnZpk6YLiVcLVUQh8w0LxPVviG4TXRmt+g5bcVIiIiFt/qzTOv/cM/ lGDX+vU2cnjbNolMnzRJV7MbZc4fOXLH3Lm1NTUjamsXtbd//PLLtr544dixLZ2dk1paaoYNqxs+ fMkNN3y0f79bIdWQFrQnsiA1G+vrG+rqdqxaFV7hk1de6Zw3T4KyC/lXliViS9XkFlLVzS2xpbLw 2MqVl48fL92Y0NTUr/bF93fulJ43jR4tm9ePHLnwuutO7NplS3UXCScrtYJVa3pBVYssXqn41fHj 21askEtI2pe9zGptPfTII26FkKOIJVcdG7cmn267VSHnIlXdiyW2VBYS+pA6kiGHeWDzZhnkKydO /PS11x5evlyamnzZZT0vvmgrJF8PpT5ZGvT6EHsD0ZpeUC38FhQykoXfBrUdWYi9w4QMtSwkXDDS Jdmv7F06KV2VDtutQtTKsWiFCvl7gYiIOIis3jxz9wMPSHDm1Kk2ItMCiWy/915dzW6UWTp7ti4o 40eNOnPwoFaQqfD106aZgouMbWw8feCAVkg1sAWN71y7VheUwArSW5m9mdBFJGKPQtV4wi6SNRtc JLZUJli6YHEnbamabRxkrvbj7dvd0oSTpZGEClYt8oKqFlm80tizKbh1TMghehSx5GrBxtXU062R kHOhcS8YqG5riS1N6EPqSAYepuQzuuC21jFnjq2QfD2YqENxT5YGJdnQBUVe/pIVx9b0gmLht6DA kSz8NqjxXHcYs+4QHeqEC0Y6I10y0Szf/MY3dEErpKqVY9EKlfD3AhERcXBZvXnmhWPHRjc0SPzk 88/L6rnXX5eZjXj20CGtoFu1XnHFhy+8IKvdXV3TJ02SyP233aYVHr37blmdMWXKB3v2yKrMJ2QK K5GVCxdqhVQDW5CIIHt/dcsWmax89sYbaxYvDqwgC1Jkj0L+1aNYfeutWkHNNpC0i0C1ndjg5Msu e3/nTlmVxnU2Nqu11a2W7Ozp0w9s3vzl22/LsrSwYsECaaG9rU1Ls3tIOlmpFaxa0wt6xtbRsykT x5c2bpSrSyKyr2U33ujWST4Ka7b5fPqQerqzGwWdC63pBftrbCMaTOhD6kgGHuaxJ5746ZNP6vJb jz/+3jPPyELLuHG2QvL1UOqTpcFoH7zXpqg1vaBY+C0ocCQTBqooN7GQV3fCBaNHIY3/at8+WZWu SoezG/X7As61VSX8vUBERBxcVvX3M2UGIHGZ08jyjlWrZHnBzJm2NLtRRuamNqLz1InNzbqqUxn3 g08yAZJI85gxNpJsYAsSEZ657z436JpQYVJLixQlHIWabSBpF4FqO7HBd59+2kZkciaREbW1NtJf ZdonLdQNH66r2T0kHWZqBavW9IKesXX0bMo02osn6B2FNdt8Pn1IPd3ZjYLOhdb0gv01thENJvQh dSQDD1PyGdFb1r1oMKGFqEU/WRoM6YPW9IJi4begwJFMqFCsm5hr7Ks74YKRzshqtJOCjQSasNWA /71AREQcXFZ1nil/8iUuk5XzR45cNXmyLB/cutWWZjfqnZ7aiM5Ta2tqdLVm2DCt4yFxu0mygS1o UCYlbtA1oYLuIuEo1GwDSbsIVNvJO5jgvg0bbr7mmvqRI4cOGaLbCrKspbqacJipFaxa0wt6xtaJ DnXU5KOwatwLesbWST3d2Y38rWKDRTG25dRg6kj26zC9ZR1tDSa0IJb6ZGkw2gc5OhtRtaYXFHUc okRbyGXgSCZUCOyDBnPdYUJe3bZyNJjrKGyFcBO2GvC/F4iIiIPLr782+WK+yN/ZU5lpPQ8cHoA8 U7zxqqukaOXChfLv6IYGd5aQ3ShpFphr3iDYTZINbCEa8UyooLtImP2o2QZCu51gbDvhwVxuvesu rR9FK+hywslKrWDVml7QM7ZOdKg9U4/CGhv0jK2TerqzG+Wzu/yMbTk1mDqS/TrM2GVdiLZgr4cy nCwNJhyFVWt6QVHHIRavZi4DRzJawQ5UYB+iEWvgq9vWjwY1O4120lYIN3mrgf17gYiIOLgsPM/U 9zMfaDu5eCDyzEOPPKKlwj233OIWaTD6OagJTU26euXEiTIb++Ktt2yF/hrYgvbEC7omVOjX52bd SH7GthMezGVDXZ1U3rl2rX6DS/z8zTfdFnQ54WSlVrBGZ95Rs435ndfPxR3YvNmLW1OPwhob9Iyt E/gxSFuaECyKsS2nBlNHsl+HGbusC9EW7PVQhpOlwYSjsOa6Jgu/BeX9udn+3ga1HS+oBr66ddnq BnMdha0QbvJWA/v3AhERcXBZrDzz8AMnZy4egDxTbBk3Tiv89Mkn3bgGp06YoA9+6O7qkomCROzj Kx5buVJW29va3n36aZ0Cfvraa3u+9z33mYTJBrbQ24/ECVNCBX1ChhyFPp1CjkWPIvY5QG4kP2Pb CQ/mUuZnUvng1q06SnIU86+91m1BlxNOVmoFq9SRuMx6vbhrtjG/89tWrJDg2MbGrvXrL1x8es0d c+faCqlHYZVGJPjcd78bTS2ssRumnu7sRv5W4cH+GttIajB1JPt1mLHLupBwPZThZGkw2gf3WURq rmuy8FtQ4EgmDFThN7HAV7cuW92gHsX0SZOke7IqLeiI2Qrhpp7NAfx7gYiIOLi8BPJMfVx+0+jR Xly30ofXW8aPGiWTA1tn7tVXm4K+2AqphrQQjXgmVDiT43cL3KMQNe5G+qVuHsUttZUTgrnU50+6 6MxS0Aq6nHCyNJJ8NtXt995rirO4RSYUQUtl7pj8axypR2G955ZbNG6xRWY9gpamnm6N6LI1PBio bhvFLbWVo8HUkezXYcYu60LC9VCGk6XL3i9hyFHI0dkW1IRrssBbUOBIFn4bjEasga9uWz8aPHvo kHcU9tdibP1AE86mOrB/LxAREQeR1f65WXH9smVSuupb3/LiupX7u9syI4z+sv8z9903q7VVSocO GXL5+PHfnj9fH74fbmoL2hM34plcQSY6nfPmNdbX1wwbJv8uv+mm6C+2JbeQqm4exS21lROCubxw 7Ni6pUtlbidD1DxmzNa77pKg24IuJ5ys1AquDy9frm9rCG5cI1FsBUmQHlu58qrJk2UXYntb26FH HrGlqUdhlX7KVLtl3Dj94plbQVej2ArJp9ur3N9goLptFLfUVo4NJo+kGH6Yscu6kHA9lOFk6XKB 16RY4C0oZCRTO1nITSzw1a3LVi8oXeqYM0c6IJ2UrkqHvQqBJpxNdcD/XiAiIg4Wi/UcoGdL+Ryg ZCc0NUkn3tmxw4tnpw39nqbggJh6slIr4KCS6yFQBsqTvxeIiIhlsljvZ5b0d00S3Ll2rUwOYn/B jHlDFZl6slIr4KCS6yFQBsqVvxeIiIjls6rzTJ0ZCA8vX+4ViVrkBbEyTT1ZqRVwUMn1ECgDZdWh EPh7gYiIWA6rOs/Ub9F0zpunT//zlFLRC2JlmnqyOJvoyvUQKANllXHg7wUiImL5rPbPzSIiIiIi ImJlSZ6JiIiIiIiIxZQ8ExEREREREYspeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiIiFhMyTMR ERERERGxmBYlz9y1pCeTOfk/TCXPREREREREHPQW6/3MZxedvKmTPBMREREREXHQW3iemfmjU0d7 eha1nezkc7OIiIiIiIhYeJ6593859f3v97Qt4vuZiIiIiIiIWJTPze49NW1az6JnyTMRERERERGx SN/PXJLpeeAweSYiIiIiIiIW7zlA/K4JIiIiIiIi9kqeiYiIiIiIiMWUPBMRERERERGLaTHzTH4/ ExEREREREXk/ExEREREREYspeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiIiFhMyTMRERERERGx mJJnIiIiIiIiYjEtPM/MZE5lMj2LniXPRERERERERN7PRERERERExOJKnomIiIiIiIjFlDwTERER ERERi2lR8syj3+9py5zsJM9ERERERETE4jwHaFrPs4d5PxMRERERERH53CwiIiIiIiIWV/JMRERE RERELKbkmYiIiIiIiFhMyTPR88GOjplTp3rBEGe1tq5ftswLDk7zHsPKMZPFC5ZB3a/FK3U99/rr y2+6qW748NSal5h6vBav1Fqxr8fkbhdF3YXFK0VERMRyWMl55vkjR9YsXjx+1KiaYcPkX1mWyO+7 XkleMrOZ7q6uoUOGHNy61YuHKFvJttKCFx9s5hrD//pnP//Jko9+9Afn9v7L3/z7Pzrzt2s/7G8F 657L/1H0gsU1+ZJOLi1EbdnilbquWLDAVMrilV7CmgO+iFdqrdjXY3K3i6LuwuKVIiIiYjms5Dxz 5tSpZppwkVmtrb/veiWp3fOC1WjHnDmN9fVfHT/uxUOUrUY3NCy54QYvPtjMNYaaHIovXHFOF/7m vv+zXxWsWuoFy2kZLvjUXcggS4X3nnnGiw8ek4eoYl+Pyd0uruXcFyIiIvaxYvPMlzZulPlB0+jR v9y9W1Y/2LOnecwYiUj8972vGLOTmaqfzXzyyitDhwxZduONXjzcO+bOlRakHS8+eEwYw7f/+OO/ e+oXvzveu/wPL7wvieJL/9PZflWwkmeKqRXy8+Tzz3uRijV1BEr0eixwiFK7XUTLuS9ERETsY8Xm md/8xjdkfrD7gQdsX2VZIva/57Pzh8z5I0dkLlVbUzOitnZRe/vHL79s64sXjh3b0tk5qaWlZtiw uuHDZduP9u93K4jajixIzcb6+oa6uh2rVtnS93fu7Jw3T9JdaaF+5MiF1113YtcuW6rbxmLryCRP WpBmpQX5V5aj0z67SWwfyuZjK1dKN/Zt2ODFw5VtpYXt997rxQePgWP4+WvvSqL4whXnvLg1uUKu PPPv9/z1X93+6/1Xnt37L3/zoz84d+yb/4/kq16dZHsvRIfkUhdb56WNG+XFqxe8vDAnNjfLNS+v I1sh5FUpes1aNR7Fq5a3cga71q/3gv3Vdin2FZ06Asm3HavdSy5L9HoscIi0296t2xuB1NtmyH1V 1H15QURERCyHFZtntowbJ/MDd+ogyxJpHjNGV7Pzh8zS2bN1QRk/atSZgwe1wlfHj18/bZopuMjY xsbTBw5oBVXjO9eu1QXFK3WRac2Pt2/PVWrRCtIZmSya0EUkYjupajxXH9w6XrC4am4f/SCi7joW r6bMjyUo7XjxCjG2z66pFVLNNYauX7z+V/9h1qeSKL5z23/xitTUCrnyTI27SsL56c6fe9US1BGw JJe6aIUHOzrMegStEPiqFLXIC4oaj+JVy1vp4dyrr/70tde8eL/ULsW+okNGwEQd3NuOV80Lupbo 9VjgEGm3JbvWBUVGwDaYetsMvK+KWuQFERERsRxWbJ4p8ypvfiCTG4mMqK3V1ez8IdN6xRUfvvCC rHZ3dU2fNEki9992m1Z49O67ZXXGlCkf7NkjqzIF6ZgzRyIrFy7UCmpvK5mMbPvqli2yi8/eeGPN 4sW2dPb06Qc2b/7y7bdlWYr00SPtbW22gqqNeEFRmpK47aT8q51cfeutbrXs1jn74NbxgsV1dEOD 7EIP1lV3HYtXU7aVoLTjxSvE2D67plZINdcYWi/8x7/UHFL+/e1f/JVXKqZWSPDNm0599NjffHX0 HVn+5yN/+Z+W/9/SzpH/+bRbJ9DkochVWltTI/FtK1acPXRII5I+7X3oIfvN6sBXpdi7g9KcrM/f fFO6l+Avd++WDkeTlnC1b7Gv6JARKPC2Y8379VjSIdJuR2/d9q6YetsMvK+KEhS8ICIiIpbDis0z Y+cHEpH80y4L7htHsiyRic3NuiqzEFl1P44lMzaJ2HdE1d5WMpln7rvPDebywrFjUrlu+HAvro14 QXFSS4vEEzqpZrdO6YPW8YLFdeiQIYXvQlqw56jSzA5h0gGmVkg1dQz/esWvJPd79dqcOWRqhXB/ d/wdaaprUs5P5yaYPBS5Sic0NUl8wcyZkjtJ4iQZpvcuXOCrUuzdQWlOlmQjy268MVVJ9t7ZscPb NlDtW+wrOnwErP297bhKhTxejyUdIu12wl0x9bYZeF8VJSh4QURERCyH1f5+pgS9CrU1NbqqLUTx Zl0alKmeG7Tu27Dh5muuqR85UvMHRZa9ahr3gqL2IaGTanbrnH0om9Exz0NpwRvhQWXqGO6/8qzk fue6fubFrakVEvz1D/727T/++Ed/cO75Cb+RRlRZ9qqF2HtF5j6QXKXvPv205gAuky+7zH4AXscn SvSa0bgXdE2tUKBfvPXWhttvn3/ttfqepFearPYt9hUdMgIF3nZcpUJ0bItlfkOk3Y7eFW0/dYii Fbx7e0IFqwQFL4iIiIjlsMK/n+l+Zyn2+5nRqYY3WYnFbiJGI9atd92lpVG8mrFBMXA+lN164CdD xfrc7PhRo7z44DH1c7OaAXpB19QKufzbtR/a3NLTqxli9vTmvCaTS0/s2vXSxo3y8lnU3l43fLjU XDBzphYFvirF2KBraoXCPbxtW3tb24MdHdGvjyab0LfUESj8tmMtw+sxjyHSbifcFVNvm4H3VVGC ghdERETEclixeaY+TyX1ebPRj05NaGrS1SsnTpRpxxdvvWUrxKrteEG1oa5OinauXWvThs/ffDO2 fmxQ7NfnZt3IgKhj/u7TT3tx7V4sXk09uop9DlAZzDWG1tTEL+/McN/kf5ANu//kf9fvZ4oX/mPv 52bzay17enNek8mlrmcOHpSaNgEIfFWK0VzCM9uFfF41f/GDH0ganOodc+du6ey8cOyYt3mICX1L HYHw207qEOX9eizpEGUPpUyfm00dIkRERCyVFZtnyiRG5gfNY8bo72fKv7IsEfuLEbIsTJ0wQX/M rburSyZwErHP29BfmGhva5NJv84zPn3ttT3f+97MqVO1gpptJn5GKNNBKTq4datuLjuaf+21sfXH NjZK8Lnvfteb0OjzKqST+rwKaUE76T2vorfFtBlzSJ0C3bFqlewi9Tc5Euxav15aqNjfNckOYdIY plZItfAxzNsXrjgnKeXHT5zQX+D8zb6fHf3jj0uUZ+a64GdMmfLU6tUf7NljX3Gb7rxTatqPuwe+ KkV51UhNSbe8uFVKBS8Yoryi9z70UIKy08vHj//pk096G4ab0LfUEQi/7aQOUd6vx5IOUfZQYm7d 9hFuqbfNwPuqmDpEiIiIWCorNs8UZeIlUwQX+9RKUSOL2tt1QRk/apR9OL449+qrTUFfbAUxGrHq Yx5ddH4jeDXvueUWjVs0fibH8/fdTooadyNRQ+oU6CevvDJ0yJBlN97oxcNdcsMN0oL7azThSkLS Mm5cz4sv2shH+/fLXHbD7bfbiCirEnSrhZs6hqkVUk0dw9TEL+/MUJ8u66qPFBK9mgnqCETxquW6 4M1KhC2dnXbbkFelKNmRKcjilYq54oW7dPbsvJ8ApCb3LXkEwm87qUNUyOsx2UKGSHvr/SRVyM+W 2Ntm4H1VTB0iRERELJWVnGeeP3JEJliSOtYMGyZziNW33ioR23WdN7g/9i0Tl49fftlWUJ+57z7J TqVU5luSn3x7/nz3J+NFbceNWC8cO7Zu6VLZtWzbPGbM1rvukmBsfe2qpElS06sgU5/OefMa6+vl KOTf5TfdFP0ik7dJrCF1CrdjzhzppPcmVaCylWxrP9jcXxded50coPuJU/0s3I1XXWUjYrRauL0j mDiGqRVCTB7D1MSvv5mh9XfH3/n5yv9r/5Vnn5/wm/1X/v3frv1Qgv1tTUcgilct1wX/y927JX5l 9qOhUlQ/cqScr4Nbt9oN1dRXpfrw8uX6xqlt3zVXvEBf3bLF+6+NPEztW8IIhN92xIQhKvD1mGCB Q6S9Tb51p942Q+6ravJVhIiIiKWykvPMZJk3lMKeF1+U2e2BzZu9eIgy+5Rtu7u6vHigMu/UXxR0 Pfn885+/+aYbia1WURYyhjjgHnviiZCvj1a+Bb4eE7xkhggRERFLKHkmem668872yC/Ch3j9tGmF vxF0aZj3GCIWS16PiIiIOJCSZyIiIiIiImIxrd48s7amRvSCiIiIiIiIOMBWb56JiIiIiIiIlSh5 JiIiIiIiIhZT8kxEREREREQspoXnmX+0iTwTERERERERL8r7mYiIiIiIiFhMeT8Tq8VDjzwyc+rU mmHD6keO7Jw378zBg14FRERERESsCMkzsVq8+Zpr3nr88a+OH79w7Nj6ZcuunzbNq3DJu/ehh869 /roXrC4PPfLIr/bt84KIiIiIeKlJnll+M1m8YOX4YEfHzKlTvWB5nNXaKgmkF8zl0CFDvMgl77Ib b3xnxw4vWF2uXLjwL37wAy84GNRXvcUrRURERLzUrOQ88/yRI2sWLx4/alTNsGHyryxL5Pddr1or eaLZ3dUl+dvBrVu9eOFKy4/effeMKVMSDl/2K3uXml486rEnnph82WVeMNmfPvmkXEiiLHhFZTPh 2EOMzTPnX3tWmrz/tlNucM3iUxKce/U/uMFwf/7DH0o/w/+74cSuXau+9a2pEyaMqK2VEW4ZN27F ggWx71uSZypeKSIiIuKlZiXnmTLNNZOyi8xqbf1916tWPRYvWCF2zJnTWF//1fHjXrxw9agtXqkq +x3d0LDkhhu8uKckMONHjXrr8ce9eIIf7d8/trFxYnPzpJYWWfj45Ze9CuUx4dhDjM0zu7veHzrk dzXDftfz4s80IgsSET984a9ttX65YOZM6Wf4COtxedQNH37siSe8moM2z7Tq4HhBRERExEvNwvPM TOZUJtOTyZxcXNQ886WNG6XpptGjf7l7t6x+sGdP85gxEpH473tfnfZOMytyovnJK68MHTJEkhkv XhRbr7hiS2dnd1dX8uHfMXeu9EF64sWtP//hDyXJ3PvQQ148wfNHjvyP/+JftIwbJ82KciHJ6oC8 N5587Knm+tzsPbecllYXtZ/RVVmQ1ZUL/85W6Jd6juR8efEEZ0yZsv3ee+VFqv9DIQvXT5smjUyd MMGtJpJnZi8B8kxERES81C08zyzR75p88xvfkNnY7gcesH2VZYnYN7uys7WMZAuSmdTW1IyorV3U 3u69T3Xh2DHJbSa1tNQMG1Y3fLhs+9H+/W4FUduRBanZWF/fUFe3Y9UqW/r+zp2d8+ZJuist1I8c ufC6607s2mVL7baPrVx5+fjxUmdCU5O7uShdkv3K3qWT0lXpsN2q0pSjkI7t27DBixfX5MOXvUup JC1eXD28bVt/38kU5159tWxlrw19b1OCtkKytsMJZznkOonF1gkxV5559tC79SP/uzT2/s5fvPfM L2Shbvh/l6BXLdBvz58vHetav96L98uzhw5JI0OHDJHXoBuv5Dwze0J6z0jsrSD1ZpJ8DVjtXhAR EREvZSs2z2wZN05mY+77WrIskeYxY3Q1O1vLLJ09WxcUSSfsz118dfy4vqniIgnG6QMHtIKq8Z1r 1+qC4pW6yCTyx9u3u6Uy+9QFi52jS2ekSyaaRfNnQStYY4NlVvv23jPPePHimnykMlmXUumJFxfl HMlg6vvb4a6+9VY56Seff94NyqoEV33rW24wl9rhhLNs67hEr5NYbAsh5sozxa13/VoamzHlM1EW ZNWrEKi8OiQ5lETai/dX+/8pn73xhhsvJM/UBr2ga2qFZHXz2FtByM3ERB3ca8Cr5gURERERLzUr Ns+UKZo3G5OpnkRG1Nbqana21vvpvg9feEFWu7u6pk+aJJH7b7tNKzx6992yOmPKlA/27JFVSfk6 5syRiMx0tYLa20omI9u+umWL7EKmxWsWL7als6dPP7B585dvvy3LUrRiwQKp3N7WpqW67eTLLpPs SCto3mu/RypNyao0rs9Eka5Kh7Mb+RPN2GCZHd3QIH3Qgy2dyUcqe5dS6YkXF3VDl1J3VdV9JZxl Mfk6sWZbyv8sJ+SZX779Tsu430rboizIqlchUHn5SA+9d2vzUNJ7aadp9GgvXvl5ZuytIORmUp5r ABEREbE6rNg8M3Y2JhHJP+2y4L75JssSmdjcrKua0bmfbZPJn0TsO6JqbyuZzDP33ecGc3nh2DGp XDd8uK7qtu8+/bStoB8XtMmwdEZWo50UbESNDZbZoUOGlKEPqUcqpfYsV4La4YSzHNW7TqzZlvIf 4YQ8U+xa/6G0LcqCVxSovECkz2MbGwtM4LfedZceafTb1JWfZ8beCgJvJq4lugYQERERq8Nqfz9T gl6F2poaXdUWong5jAZl1ugGrfs2bLj5mmvqR47UHEyRZS3VVVs5GtQ+RDtpK1SU0TF31W5bvNJw UzeXUu8cDayxHfaCydeJVeNeMNzkPFOUtkUvGK5+Nvjh5cu9eLiSXHXOm6eH+W//9b/2SsVC8sxS q92OvRWE3EzKcw0gIiIiVocV/v1M9+tPsd/PjKZwduaXa2oo2E3EaMRq35aJohXcZasb1BlnteSZ yZ+b1W5bvNJwkzeXvUvp+FGjvPgAGtthN5h6nVhjg+GWNM+UkR/b2Fg3fHiu/3NJ9czBg7NaW+UA 5UI69MgjXqla+XmmF1RTbyZluwYQERERq8OKzTMDnzcb/UiqfYTJlRMn1tbUfPHWW7ZCrNqOF1Qb 6uqkaOfatTb1+vzNN9367rLVDU5qaZHlkM/NVoI65u4HREth8uHr+MQ+B2igjO2wG0y9TqyxwXBL mmc+tXq19M39cnK//PkPf9ic/eUh6aR9FlfUKs0zU28m4deApqzu/z0hIiIiXoJWbJ6pv58pM1d9 vqj8q7NY+6sbvTO47A/06aNEu7u6ZC4oETtR1l/paG9rk8RJZ3Wfvvbanu99b+bUqVpBzTYTP7mU maUUHdy6VTeXHc2/9lq3vrtsdYP2OUDSPVmVFqTDbgVrbLDM7li1SvpgR7hEJh9p1/r1Uprrd00G xNgOu8HU68Q6trFRgs9997v5pRmlyzOlP/qTLd7TmAPd+9BDMghynUu26RV5Vv73M72gmnozCb8G 9A4gGakXR0RERLykrNg8U5Q5nE7ULO4TPjWyqL1dF5Txo0bJ/M/WmXv11aagL7aCGI1Y9YmRLpo3 ClrBXba6wbOHDjWNHq0RZckNN+iCra/GBsvsJ6+8MnTIEElmvHhR1AOM4lWT8ZE+uL9nM+DG9tMN pl4n1ntuuUXjFq9CsqXLMzW9//b8+V48UD2WWOz7e2qV5pli8s0k/BrYfu+9Gle8UkRERMRLxErO M88fOSJzNUkda4YNk2xt9a23SsR2XWdpErlj7tzampoRtbVLZ8+2v8Vvfea++yQ7lVLJXi4fP15m 0vrrFFZtx41YLxw7tm7pUtm1bNs8ZszWu+6SoFvfXbZ6QelSx5w50gHppHTV/q6graDGBsuvdLWx vj6/d9uS1QOM4taR/cre7UejK8RoP71g6nVi1Uu6Zdw4qRlbIdnS5Zn6PFX9iaA81GOJ5ZLJM8WE m0n4NSA+vHy5vrMdW4qIiIh4KVjJeWayzNJKYc+LL8pE+cDmzV68PL66ZYvsXT9jjFFT88z8PLxt m7yUyvOd2Er+fiYiIiIiFk3yTPTcdOed0R+XL4/XT5u24fbbvSBaS5RnyrDX1tSkfrWyKJJnIiIi Ig4KyTMRq8US5ZnllDwTERERcVBYvXlmbU2N6AURL2HJMxERERGxOqzePBNxsLnpzjubx4y5fPx4 cUJTU/SpV5XpjlWrtM9i0+jRJ3bt8iogIiIi4qUmeSYiIiIiIiIWU/JMRERERERELKbkmYiIiIiI iFhM++aZd9xxh1m6SDTiQZ6JiIiIiIiIjpE8000svdVYyDMRERERERHRMS7PFLzlBMgzERERERER 0THy/UyTXF7ERHNDnomIiIiIiIiOcc8BMilmQJIpkGciIiIiIiKiY1yeKQQmmQJ5JiIiIiIiIjrm yDPDIc9ERERERERER/JMRERERERELKaF55mZzKkl3yfPRERERERExKxFeT9z15KeRc+SZyIiIiIi ImLBeeY//uP/Dw+CSmQLzZQLAAAAAElFTkSuQmCC --=-IwNDuukp2aQD4pakG3ym-- From wolfgang-it at jeltsch.info Sun Feb 17 12:01:09 2019 Received: from ppsw-31.csi.cam.ac.uk ([131.111.8.131]:36652) by lists-4.csi.cam.ac.uk (lists.cam.ac.uk [131.111.8.15]:25) with esmtp id 1gvL89-0006LJ-IK (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 17 Feb 2019 12:01:09 +0000 X-Cam-SpamDetails: score 0.5 from SpamAssassin-3.4.2-1853687 * -0.1 BAYES_00 BODY: Bayes spam probability is 0 to 1% * [score: 0.0000] * 0.6 HTML_IMAGE_RATIO_04 BODY: HTML has a low ratio of text to image * area * 0.0 HTML_IMAGE_ONLY_32 BODY: HTML: images with 2800-3200 bytes of words * 0.0 HTML_MESSAGE BODY: HTML included in message X-Cam-ScannerInfo: http://help.uis.cam.ac.uk/email-scanner-virus Received: from schaeffer.softbase.org ([88.198.48.142]:51506) by ppsw-31.csi.cam.ac.uk (mx.cam.ac.uk [131.111.8.147]:25) with esmtps (TLSv1:ECDHE-RSA-AES256-SHA:256) id 1gvL88-00104J-K5 (Exim 4.91) for cl-isabelle-users at lists.cam.ac.uk (return-path ); Sun, 17 Feb 2019 12:01:09 +0000 Received: from asterix (64-60-191-90.dyn.estpak.ee [::ffff:90.191.60.64]) (AUTH: PLAIN jeltsch, SSL: TLSv1/SSLv3,128bits,AES128-SHA) by schaeffer.softbase.org with ESMTPSA; Sun, 17 Feb 2019 13:01:06 +0100 id 0000000020110A60.000000005C694D02.0000371F Message-ID: <1550404866.14010.117.camel at jeltsch.info> From: Wolfgang Jeltsch To: cl-isabelle-users at lists.cam.ac.uk Date: Sun, 17 Feb 2019 14:01:06 +0200 In-Reply-To: References: Content-Type: multipart/related; type="multipart/alternative"; boundary="=-EHFBo/s1N37XzgS2rKao" X-Mailer: Evolution 3.18.5.2-0ubuntu3.2 Mime-Version: 1.0 X-Content-Filtered-By: Mailman/MimeDel 2.1.8 Subject: Re: [isabelle] some proof problems X-BeenThere: cl-isabelle-users at lists.cam.ac.uk X-Mailman-Version: 2.1.8 Precedence: list List-Id: Isabelle Users List List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Sun, 17 Feb 2019 12:01:09 -0000 --=-EHFBo/s1N37XzgS2rKao Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: 8bit Hi! I think you shouldn’t send screenshots and add the text files with the source code “just in case”. Instead you should only send the source code (perhaps as part of the e-mail text). It’s the source code that counts, not its appearance on your screen. Having the source code allows others to easily put it into the Isabelle IDE and experiment with them to diagnose the source of your problems. All the best, Wolfgang Am Samstag, den 16.02.2019, 05:04 +0200 schrieb noam neer: > hi everybody. > > I have two problems I encountered while proving something. > I'm bringing them here in a very simplified form. > I'm working with Isabelle/jEdit 2018 on win10. > > > 1) here there is external lemma which is not really important,  > so I simplified it to "Y=Y". > inside the proof there is a lemma L7 whose proof is again not > important, > so I used "sorry". > the problem comes in the "apply" statement where the cursor stands. > for some reason the simplifier can't apply L7, and I don't know why. > maybe you know? > > > > > 2. it seems I can solve the first problem by applying 'subst' and > 'auto' instead of 'simp'. > but when I'm trying to continue the equality, before even applying > anything, > I get some typing problem I don't understand. maybe you do. > > > > > I'm attaching the text files just in case. > thanx in advance. > > > Virus-free. www.avast.com --=-EHFBo/s1N37XzgS2rKao Content-ID: <1550404866.14010.118.camel at jeltsch.info> Content-Disposition: inline; filename="query_19_02_16a.png" Content-Type: image/png; name="query_19_02_16a.png" Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAABM8AAANSCAIAAAD9Kn6KAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7N0JQFT3vS/wvGes11iTZzWWeo3X 0uR6fV6ftbaJ11prUmsWm8VYE5smaUyMUYmi4hZjjPu+7ysq4IYgKm6IoiLihrggCiqKiIobLoC4 RH3fmd+f42GWM2eGAUG/n55O/tv5n3NmDjPn6wzDMw+JiIiIiIiIvI1pk4iIiIiIiLyPaZOIiIiI iIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvM+NtBkXF6dKRERERERE RIbMps3Ro0ePGDFCVYiIiIiIiIgMuZE24+LiVkd8sG9Xq9RjfJOTiIiIiIiIjJhKmzt27MDtti0L bt2q+fDB/9od8m9LFr0bEz1eep1Y3/GZjutV2RhGNpl0QlWc04YZjUefeDSioKnQOpZG3e45HANo t4zCf2x6CrcUrA6FW23nK10su23iTtDYDdCO2+g4bbZiYjuOYKXSfWcSEREREVFhrtPm36DV31CY O6bt1YON7x2qd2R4hbTUCvl55aKCW8sYRxAPSjxtnpg0SW1SP1h2Q2s5MakJ4k9H3e45mxkjHbaD rgXFR72WyXUdNmuVHnZ3gqXB5o6ygfbCAxzc2zbs72q37hT9WHfWIyIiIiKiUsBF2ty5c+eYMWNQ WL5s7ZIZXy8e8b+ygp49OvSFwK/qZq0tH9qpsgxzBPHgUcYwZDJIaMPMjC8Iirq9KGgSjjt0rdZ2 VbHfotZiCVSFjvNRg/1apc2jw9XfOfryI7q7xm6A4zUK6NZE2Y27RH8Hlv47k4iIiIiICnGRNnfs 2BEXF7c4JHTf3tNbo7dP/fGl3Vsqj//i5W0NG8Z/+b9X+VU9tT9RDbWlZQxL/BJaCFNUBrEGifVq 1KNI4WA96dQFD9sxGrX1QjFItQl9RRtVaARaCyq6LSoFLZYdeLSKlX42m7VMsExo0WTSJAfHqy8X jNTfPx07oq1JE/0+Ge0F+tRAbadtyppCjY/WE7b1wnS9lmJHmw/Sok2xnbOApR1Vm5PEcvyP1rD2 qzIREREREZUCRmmz1Tut5Dc2+wT8MGrIkoljglKS6z988L9yT1Sc++tfrGtbLqz1/0T913/JYDuW YGHJAgX/tWPNB5bAgUJB9rAkCK3xURyxlvTjnY1RtA7nGalQxbpdC12TfgDK9qwTF9qA0FKQthfm WTYkW7Xukayun0cr6xof3T8FTSgW7LuuaK/wON2Wte1pCh1o4UlRsx+vY7OVR/tYeC37afQtljVV zVK0ToiCbmLdHhERERER0ePn+vc2lyxeNX1q0OQxa3t06n8hrvbDzL/8FFJ+dO0XRv3uvxNbfxj1 s5+pcbYKrv91sUmxBgcrLT086lerWdd6xNKkDSsoOBgDhcKS84ykq+gGPWotFF+1TWv0+/BoUitt Ovu1CljWKrTTiu3u2s+j366OZRqbYTKz8SdXtWEWBVNa3iC1X8l219R6lpWMtmCh24p+g7p9tG4X bGZCh9bisKybwtVOEBERERFRCXOdNqPWJe5PSOvSuXfIgsVHVv7vW1ueyZv5vwc1/X8jf/e7Da+8 vKric2qcLS0JWEiSsdQtJWnX8os+SBR0Pxqm0WcMa8HBGG3OArq9KNz3qKNQu2q2mUfbtEZrsduJ Rw32a7liuytS0c9TULbbrM3mZKZC8zmAVWwmsXDZWjCtq+kV3Zr6qaX86EDsZ8MIrcVxWdYxuR9E RERERFSSXKfNSaNXjRu+dOniqIMHzkz8vvmpFeVWfv4fe998c/CLv1zY8HcZ1o/aOqIPFhYqEmhJ wRIzpIQmXXpQa+kaFW1NfaHwGDQU2qbNhPqxuqG6HlXEWoXmsVkXCq/zaKuWis1k7ng0l2XH1eqP jkE3vX5DovDmsJLjNyn1sEqh47QoPM0j9veko7Ud0Y/TZi+YrlCDlLQmreC8bOowiYiIiIjoMXCd Nvv1nDqw3/xB/edPHr/8xRdf+7J2je0ftt77y+pHBg1WIxxDJLBmDPxXkchhSRUWj0KCJTxYv97G 4lF+KRhoUSiXFA4baoRljL4GalDBDjya2QKtjjZlbUPVbrBNnincUrAJ0K2oa7VNhs4VrKT7liDd TJav2ClodHr/KJaVCh+GHQzRRjzahtN1CobICMf3tgP6rehWU20F9cLng0ymNmgZ+aixcNk6xvku ExERERHR4+I6bSYmHho+eLpfx0EjBy37xS/+3KnB74KbNt3688rxo0apEU+aUvJLgIUylQew/tOQ wp6SwyQiIiIiKnNcp02BzDllwuLp0xaivDlwwfy/fyTtVGyKljZP6H+X0fL+n46ZdFYyqxRZocMk IiIiIqJSxGzapBLncdqUz6Y+8SHsKTlMIiIiIqKyimmTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiI iIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOI iIiIiIi8j2mTiIiIiIiIvI9pk4iIiIiIiLyPaZOIiIiIiIi8j2mTiIiIiIiIvM82bT6jIy1169bd sGGDdM2bN08azZOphGrSQaPMqW3FpMzMzHbt2lWqVKlixYoBAQGqtWi0nTEDgxs2bKgqBcaOHWty Ere25RbMrFFNjqDXfge0RncfDgPVqlX78ssvVeXhQ39//ypVqty/f9+LmwCbw3F4dPZnssN9KPqO Yf6inBvehY1CuXLlXnnllZCQEK3R3T3xyuNlv12DPfFgJ4mIiIioVHGQNr178We8ln3vG2+8sXDh QlVxrkGDBs2aNbty5cq9e/eGDRumWovGrQPEYATd2NhYVbeqXbt2+fLlzUzi2Z1phsmZHQ4rjr3q 2LEj7hZVefiwTp06fn5+quI9NnuuVR2eTvaHafKsMwnzF+Xc8C7tYCXuJiUl6RtLmP12Dfbkce0k EREREXlLqUubJrdSrly5gQMHqoqXuHWAGNyuXbsWLVqo+sOHERERjRo1QswwM4lb23KLyZkdDiuO vYqJicG0x44dQ/nEiRMo28Qwr7DZc63q8IjsGx0O8xhmK8q54V3aod2/fx/lwMBAfWMJs9+uwZ48 rp0kIiIiIm9xnTa1Fq1w6dKlN954o3z58k2aNEHZOsop+wnPnz//6quv4sp7xIgRNpPjViODnenQ oUPlypWXLFmi6o72qmnTpthKhQoVWrdunZ+fjxZM27t372rVqqGMlq5du1aqVAkDsCfSO378+Dff fBOTvP3223fu3EGjMxiMHX7llVcOHTokLc2aNVu4cKG0o2q8dW3Y559/Lp8Ett9//fjp06djV6tX r46yMW1mDWZr06YN9gSrz5w5Uxq1YQYPhxTGjh2L4IQde//995FY0JiZmSmrmPl0KFbRtovbGjVq SLu2os2B169fH48L2rOzs9G4bds2lD/99NMGDRpYVnPCZjekiluN1mhfsHQX0PfaPyImHwWZwa1z w+HZqD36Dh9Bt3YGBUmb8mFarVEr6MsOH199wf6UcHdnNFqL/b1ts0Xch9glf39/y2pEREREVBY4 SJsarcXmcvOTTz7BVSbCWN26dXFBbB3llHUmRVratm1br149ZInw8HA02kyuFVwaNmwYAmejRo3k w4HO9urYsWOYMzQ0FGUUECPl+hgX93Xq1ElLS7OOskCvfDp33bp12irOyH5Onjy5Xbt2qB44cAA5 Si7o9fvvbOsybNSoUbI62O+/fjySxoABA6wDXcBaGmnBzIhwOTk5QUFBaJQIhILsp8uHw/4+wT7b r2Kgc+fOODQUcNujRw9p1Fa0OfBBgwbJLz1OnToVYzp27IgyoqbxW9k2u6FV9e32jcbD7B8Rk4+C zODWueHwbNQefYePoFs7gwJukdaQJPWNWkFfdvj46gv2p4T5nbEn0zo8/7UtItzi8BGVUY6Li7PM RURERESlnoO0KVd4Gv01nxRwZYmyaNOmjXWUUxhjMyFW15KD1mtfMAOXvK1bt0bmTE9Pt9+r+Ph4 FKpUqYIWbXKEGeuqDytVqmQTYNCL+KeVjXdDBuTl5WHrCAkdOnSQmbUVjbeOMva8cePG8tYW2O8/ Ctr4pk2b+vr67t27V6oGsJbNnmPmIUOGoCCBR35BURvm8uGwv08QWrRooTUa2LZtG1ZBkChfvrx2 CNqKNgeODFauXDlECyTML774AncgVkSL/JuCM1h39uzZqmKt2n9kVCsbFPRl+0fE5KOA8ZjBrXPD 4dmoPfoOH0HzOyOQZrWv+UFVtqsV9GWHj6++YH9KuHXPqIqV1mJ/b6OgbXHs2LEo6A+fiIiIiEo/ D9OmmfcxhP2EiBzyWUH9uz32BZMQRbAKooX9XtWqVev9999HInU4OcbbX99rvS53QxsQEBCAOIEL 9KysLH278dZRxlq1a9fGAGmx33/9eKSvzp07o8XlGzv6tQRm1meVoKAglLVh5h8O41WM+fj49OjR 45VXXlF13Wz2B45chKCFdjy4NWvW7N27N5KM6nMC8+P+lDICPCbX3k+233+Dgr5sv2MmHwVtBvPn BrZlcDY6fATd3Rk9rRExfvz48SjoH0oPTgmPd0Zrsb+3tS4Upk6dioL8sMvhExEREVHp50nafPPN N3H1f/78eWu/C/YTNmvWrGHDhrg8lY8F2kyOi075tT1jGCM7gFCBdaOjo+33ClP17dt39+7d9luB du3a4aLf5rOLWq++7JA2ID09HeUvvvjCpt1461LGhf4bb7whLfb7rx8PuMfQ4vKNHZu1oE2bNtrn MJEuUlNT0agNM3449LNp5aZNm9qvYgyPV5UqVfRxQlvR/sAxrFq1anKX9u/f/4UXXsA9KV3OINdh kuzsbJTHjh2LbWH3UNafTvYHpRUcDnN4npt5FLQZzJ8bxmejw0cQ3NoZPa0RB9ikSROkOPmQqjQ6 fHztCzZlz3ZGazE4/1HAj0l+fr78Hql2+ERERERUynmSNjMyMho3boyrXkQCm8H2sJZGWpKTk3FZ WblyZf0FrlYYMWIErsXRax3r1JAhQ+RPStSpU2fy5Mlosd8rBBUMQKKz3wpcunQJl/jYVsWKFadP n27Tqy87pB/QqlWrhIQEKWvtxlvXyu+//778RRD7/dePr1GjBrpatGihvRfqjH4tgSN9++23sTry THh4uDRqw4wfDv1sWvnAgQP2qxiLi4vDSGxL1XWz2R847kz0RkdHo4xVUEYws6zjnPYtO3g0MZv2 kU796aRt0b7gcJj9jpl8FLQZwOS5YXw2OnwEPdgZjdYYGRmJeZDn5V9tpNHh42tf0Jc93hmtxeD8 R2HgwIH4SccuyZ1DRERERGWCbdokMk/eu1u2bJmq05OllDy+WuwkIiIiorKlUNrEVZ0N1eEpNYuO 6igaNZeO6igpaqvOqXGlgNqhwlRf0WRnZ7///vuVKlWSX0p0Rm2yMNXnJWpSO6q71FO7q6M6ikxN V5jqc8Xk42ue2rwjaoQTGMC0SURERFQWlZkrcio9GjVqVNGqadOmsbGxqpWeFKXt8a1QoYJ8wzAR ERERlS1Mm0REREREROR9TJtERERERETkfZa/WEBERERERETkXXxvk4iIiIiIiLzvmetERERERERE 3sa0SURERGXeXStVISKi0oFpk4iIiMo8RM0zZ85s3LhR1YmIqBRg2iQiIqInAaIm0yYRUanCtElE RERERETex7RJREREZR5/b5OIqBTyStq8dv3aFcutp44eTQ5avGDBonmBi+Y6XKQrftdOtYI5gSsX /2PwrMbfjNWWt3pM6Dt5+qGj+9QI8raTRxbELSy5f8J4b87Psq5kqkoxW7wkaPzEMSkpx1S9sB1x 20eNGT5n3ixVNyfxwP6YrZvNLBip1vGGwYMHf6qDqup4smzcs+yjkXWa9q7QJODZPwY8++e+z3Wd 0fLMhTTV/Zjk3IjLu7E878YC3KKsWukJsmHDhh+tNm/efPjwYdX6mFy5khW2csa8RQEz53dZvHzU xUsZqqPEXb5yddfBE0kpZ655frHgAn9vk4ioFHIaDKI3b8LVs8tlzNih8+d+v36Vf9Sabnt2Lrxx /ZJa3x0rVi5Vf5DFuZs3byKRqhVMOH0mpWXAtE5ztgyPONx7edLE9Sd6L0/+amFip9GzPvl+/LZd m9Q4T5m8f/RL9OYotbK3xe3cEbFqpcGCAWpocUo/sQlRs4TTJpZzl9JVvdggTE6eOiE2bvuChfNU U2FTpk08nHRoyrRJy0KXqCYTNm+Jzjdn2/atah2PXLuWfflSFpbE/QldunRGwpw4ceikScOwoIAq Gvcn7JMxGKxW856QJUHjJoxGXC9Yxk6YNFZXfbSsCFum1nGH/fytB9T9Y0D5f055ZeLOz5akdw05 6Tdk4/stB1b5U++Kx04dUKuVuNwbq/NvDr6b8+W9nI9xi3LujTWqj4pfyTxvI2deuph1587tlJRj KO/bt++ak4CF9uxs7/+46SFnxiV12Jf26b5T/4g/2mH6vPaqo6TsSEj9dmT4n76c8fJ7o//vh+Pq th5b5/0xb3eZN2DquhPp59Ug7+HvbRIRlTZOgwFeZVXOc+7Bg7sP7hz86dqE/OwJt7JnZab452Wv v37tsprCiaSkpM5+nbp826WzX+fOfl16BPRYujwEs/30072fHJHPxmRnX122YrGawhVEzY6jZ3UO PvDX7+Y3D5jxx28nv/lDMKJmr2VH/BYnvTNo2V+7jdt7sEjvKpi5f2xgFbWytyFPYv77TqALA9TQ YiNR817WmyWcNsdk/L4EAueioMBjKUczMjIWLJi3M972zIlcuxoZ6ezZswcPHXQrLG2JsaRN6+cC jBaM2V6EtLlt9eze77/Q9a/PYunQ9o/9+wfMnDnGZvn++94dPmqKAd/+9dle772wddVstbKXjB47 AufhA1cwBllRreMOm/l7zm31l+9fmLr/05Xn+gWd+brfkf8IOFx98NH6QekdP5pY650ff6VW86qT aSc2bVlvsMTvmnYypcO1C81uX//LnRttcZuf3RKB8+Z1U29/YX4cplsLVlErm1DW5zejZJ63MzMz ETJv59/KuXlDAica7QNnWkbWkJlr+s4s0j8kuTR3Uffdx/+xJfnl6KTfxB57ffq8z1RH8bt85eoP 09YjXv6t24KR82Mitx9NP5+NZW3ssZGBMR/0WFivzfgl60rjR4227F/ZccqfrmZfUXVvWLJkyWN/ o5uI6LFwkTZPnTp15syZ9PR03OJSG3BJjZdSq7MXz+3JuTD81pUJeTfP3MrLuXllbf6VUTevJasp nPD37xqzNUZbli5fvH3HNmxr3769q9esjoxcE7l2jeXWssAaNMbu2I60uWR5sJrClRHz5kxcurTX 5Nm79lteyBOT4lv1nvDWwKDP5+zC8s8Z21sNXvp2wLjLVy7KeA+YuH8yzxVA2bOrFpMkbWIf9lmN GTNq7NjR+/fvT0xMzMrKQhcGOPvHda9QUTPzlXvn6pV82iyBwDll2qTLly/j8T2ZdnLe/EJJDD8I 4yaMPns2A6dBSmrKzNnTVYcJztLm1atXtAVycnK2botR67jp2rXs7z6sum3oy8sHNunVvcOXX7Yf P37Upk2rrMvq6GgsazZvXjNp0pivvvoSAzBs48Df9PuwqlrfS8aMG4nzUH+MDhcERc/Spn7+rfsj mvWu+Pextf7ct2LTXhW+nPN/g8983euwDwJn36Sawemdmn/33LKtU9Wa3oM8iX0wci/yYf43D2+9 8/DOyIf3luEWgfNuzpe5N1apKQwhfal5TMMqamUTyvr8ZhTr8zaeY0+cUPEY6yJkXrlkeYdT0qbN e5j7j2b8/mvLP7N+N33j16OL8b241ZGLpi94d+vRRlGHfrMr5fO5CwNURzFLTD79x39Nb9hu4sI1 Cecv3whZl9hv6ob3eiz6oGfwDzOil286fPFqzqLI/b9rN+nz75dkXfJOrpN/m1YVT4VsHv/JuPp/ 6vNvl65kqSZvmDBhwvTp03fudO8XgoiIngAu0ubp06fxSoyXZIGS5YVZvTSnXz6/JTdrYN7VoLzc nFt5eTevROdfHnQz28U/VXbv4b8mcs2gQT9iGTN2NDLkvXv3rl27isvinJwbeXm5eXm4ur558+aN mzcxHJeP2bm5N4+fOG7+k7RfDZ08K3Txhayzqo4LwR3r/vjt5Dbj1rWbsgVp84v5+/zHTp2+dL7q dp/N/bPeaoMjFy5cOH/+vFtXLe7S0iZMmTJp6tTJWKZNm4KoeenSJXRhwNWrV9Vob9Oi5q2zLe5l vYcylvjQ/9638ZO05BWXL3vzs1IXr54P3TcO2VJbEDUHpNUq7sA5d/7swAVzcX/iHl4TuXpD1HrV cf36kmUhO+N3yJkwa870HXHbVYcJWtpM0/Huh04vX8ryb/nszlH/2btHhytXr2B+P78un9tBIy6U MaCn/1dxI//z27/8L7W+l4wdPwrnoaRBZwueATxOm/r5242u2yTg2Rbf/yJ023Qsf+7znP+K349O bdrjwIv+CdVGHPljp5D6fx/xslrTe5A2Hzx4WPudkc6WbsP/uXVH48sXWuflBGNvETjv3Gh7L+fj vBum3g9H9ML8YxduNbnk5eW5mwbL9PxmFN/zNk7fdevWIVhiQmmJjo6+evmSljZtSNRMSEiIiIj4 eliYai0G2dlXJs9ut/1Y8w0HfxOb2DksYtY168+aLGqQt126fLXJv6a16hp4+lz28qhDf/h0WoOP Jzf657RXP5/R+ItZ/9N+dpMvZ7f0W7AuLjX9fPaHPYN7jDX1Dy4uIWriYfX4k7TZ17JHLOv4zfQ/ bjq64PXvnvd62ly0aNHMmTNxnhTrP/4SEZU2LtJmeno6kqUKnBnWqGkNmufOYTl78cLem1lTb10c lHdtw62cU1cyh+dfmXbz2lE1hRP9+vWNit4+1QpRMz39NBoPHkycN39uyJIQLIuttwuDFmJZumxJ fHzcjRvX4+JjV65eITO4NGr+rLUbwrp199OW3t992/ibsYia2tJp9NS/9/xeP2btuki1vgk29w/g 0kSgBVcqNsxftXhAS5tjx47WlnHjxmC5fPkyujAABTXaq7SoeTf9Z7cvfHw36707mb+7k/n768cb nTvw7r4NrQ9vei/zrONv1nHX9mPhiJRLV/51xrE/y1uaWIan/fa7Y7V67q1ZrIEzM/MsHj6cq3jE AalS2lNSjk2ZNhH3/KlTp/Yl7HPrjU2wf2/z6tUruMLGQ2b9QKgRjDETzCRtxo+s07lLB6xivSrO vnz5ks1ive68hgGdOnfYWQxpU3vvcdeueIdLfPzO7GzP06Z+fkTNP/X+t7i47TJz8Jrpr39XaXbq p112/qLzjirddtQcG9/mz32fU2t6jyVt3r+PFOFs6Tmp18bYNy9feP3mtSG3ckMeFLy3mXPd1Gcp LWnt/v3p4ftNLp6kwbI8vxnF97x96dIlpMqsC5l4pkUhPDwcW7hyKevu3TtTp0zU3vMU8sbmyZMn ETVRSMvwZqqBDRtXTp7z8cSZrSbNfHfCrL/NW/zPzUmN1iX+Zs+RAWOntxwzrcXoaX8ZPeWNkZP/ NHN+F7WOV30/Zd1v201Ckvx21Kr6H036cnD4uriUs1nXb9+5l5N3+3jGlSnLd7XwW/B658Ah87am n7/WsN2k6HgXn4oyyePf27x4+bzfjL/0XtRq3ZFZW48vLo60GRSEy5qFs2fPXrJkyZUr3vyYLhFR aeYibeIyGtkS8KqM1075tJHlM0bnz1/AciHjUlbC9ayQvItD7maP37u9883shBvXL6gpnOjZq8fa tWvnzp07fMTQRSGBFy9mHTiQsHff7j37du3duxvLvoQ91tvdCfsthfQz6Xv27pm3YE5C4l41hSsx Ozf07O13qzCbtPnFvL1oUX1WCJxqfRP0988Of/+QZ55xuIT94x+4ZLl48aL5qxYPSNrEYySPzrRp U7Bgo7juwUsaujBADfWqjLStEjVvnn4TUbNg+ez2hU9vX2h/O6Pp7cy/nt1Te//q3x1PjVXreGpH yiqEyTkn/zzxXNNByfX6H/EdcPQ3Pxx/uW/SS0ibnbZW7by9qgTOS1ddnIGeWbV65aQp43GXnj59 es+e3evWW/5tYvbcGUeSk9LS0nDnj5swGqFUBptk/97m8RPHvfuhU/u06WxB4MQAS9ocUYzvbco7 KvolO/sqFuvHhq96nDb18//lu+fnrhukn/+PAT8LPNr5q+gXvox6vv2G5+ce/OaPvX6m1vQepM2f fvoJD6gzt2/tuZs3/H7uuw9uvf3g1icPbr1z7UKz/JtDblw39f4/opfx/DY8SINlen4zbF7X5L1N hzx43l62bFnWhfM3b1y7evkicublixdkkbc3sTkZJlHz7t278m8QqEq7Fy1aPGRPSufNR/5r0+Hf bDz0mw0HfrNu/2/WJfwmcq/vmj2+q3b5RsT7hsf5rtpZf+Tk169Zfvy9aUdC6n99MDZ47f5lUQcR NX//6fTlmw7jnrSxfPORVj0Wv+UfvGn3iSUbDzb6ZNKFrGL5J1EzTmWmfDyyzuCwdhGHJgyL+nBz 6sI3f6zaJOBZ/fLOjz7mf5Nz5syZiJd6U6ZMQdqcM2cOAieuf+bNm3f+vPe/JImIqBRykTbln34R YCxvaRZETes/BF+4kGVx0fJqevrqxcQHd5KmTfvR+p20Ll66ps2YankbMyRk0pSJmDY5OSl8ZdjC oAULFy1YsChwwYJ5gQvm4XbBovnBixeGhS9PTz+FqLlvv9moCfsT9w8dPghBCxkS8UBI2vxg9BpJ m18tOogW6Uo5noJbrOLs71vY098/SJWn36hlv6T98d/RdckKg01etQwbNgyXWapiQmpqqqRNPDry u5qzZ89cvDgER4R7ANfa6MIADFMrmGBmH04dXSxR88bpFjnpb+vS5sc5Z/6WfeLPR7c9e/7wf187 0ejC4dcOxXS4csXzEHj83CHEyMnn/jwu8w+Il5blyEu9D9ZEoU9Kdf99L0ra1AKnmWsCd+9nmDBp XOyObenp6YiF8wPnbNu+NWRx0Emr1WtWRa5drcaZZv/eJh4y737oVEubnQrS5tKlS+wXQN7DALfS pvn70Nl7m3gS6Bng371H127d/Xr28o9YvbIo720uWBiI2d4K+A+/bh2+7fnV+OlD10aviNy0Amlz +r4vP1/z/KcRP/8kvNLMvV//sVf51PRDsqgpnDB/jEib93766bZEJVu3pf1O3oa7t4b/lNfhp9x2 9291PHHs65vXk9T6riB62c+PRv2iWi1uY7fRolY2AYNd7r+ON+dHV1HmN/8Y2byuCXmKdgiDzadN PAMjVBzYvxd3FhLmnTuWWxU4b+dL4JSoiR9e3MbsO6nWNMGt56sFwQN3HfsqClHz4G/WW6PmWmvU XL3bEjVX7rREzbBY3/DYOiMnNVfrmGByH/xGhH/QY+G5Szde+3z67z+b/sev5izbdHjjrhPfz9zS cVTkkk1HcK/Clet5f+8f1rrv8nYDVqDcrt/i5RsS1BTOGe+D9dc23f69zcTUuFaDa4zb8HXIvh/7 rXmj35rXo47N35y6KOZ48NbjIdtOLJHl9X6Vzb/biTMB2VKzqMBsq8DAQATO6dOn46VErUBE9ORy kTbDI8Ks2fK8JWhmSs5E0ARr0rxofUG+fEneQBs1Zpha2dCy5UtHjR6BbLlsRcjGzVs+7z1R/onX fmnaaREWm8bvx7v+rqDozZvmzp+NvcK+IXAiVcqiT5tfLkhES9Ouk3F7JuMMstm0GZPN/6UQ/f0j aRPV26mHE555BgsKqKb+vxfRhWRQcP94P23Gx+/8YeD3kjZx2SQPDC7id+/edfXqVfleCnRhAIZh MHZGVjRmch+0j9Eibeakt0DIvJj8O4RM/XI87tkb6e/sjmy6f7Pn37z/Q+Q7Ew82mnKueZ+kmgiZ 2tLrSPV+J37pF1dN/96myQ/TunU/i4T9+5BqLl26iHh59OjR5SuWbt+x/cSJE6dOpbn7GVpR+L3N k1iOH091Fsy0xa0PndqnTZtF3v27ehU/AZZr62JKm/YR+tDhg917+u9L2Hv8xMkjR1MPJaceSzm+ d++erv5+yclH1GqmjRg1tEfP7jLbgaTDmC1w7Tj9+xKz9nb6eOlzbRdX/Hvwv03f2UnfpaZwwvwx Im3iSjfvVh6WW7JgTdQsZbC2593Kzz2an7v2du6Ke7d3bd7qxocOEL1s57cuaJfF2vNoiyiYTGvC wfwFs1kmL9zi3fnl/rFpQcHk/OYfI5vXNfU+plXrAsgGqLr7vC3wbLBy5UoES4F5EDjlfU4c0IIF gXgJu337Nm5t3tJ0+czs1vOVJW0e/XoDomaiNWruU1EzQqLmDkvUXLHNd3nMr4dPbKLWMcHkPjT9 Yvq4oO0L1yQ0+ue0Jl/OfqPzglY9F3/QZ1nb78M++XGV3/iNuFfhek7+50PXfPJjBNrXx5+YtHTn 91PWqSmcM94HnGBn3Py9zai9y/826FfTNn87Y4df17CG/uG/7xnxP31WN0Ps7B/Z4od1bw5c9/aP 69+JTlngbtrUsqWYpTNz5sz58+fPmzdv6tSpSUlm/72JiKiMcpE2ETFxiwxz7jyiJsLMo/c0JWvK G2hXr1zFMJOvyps3R3/Xv9/iZUGpqSkjxoyPTjy7+UCmZTl4bvPB81sOXYg5nIVbKdgvH/V2/bcZ pk2fkpCw7+zZs9g9QJ78Yt5eLN8EH0babD1WfVfQpzN3fD47Hr0y7MCB/SsjzH5bg/7+kbQpCVOD qpY2cS2PFpP3j/mrComamBlh8ubNm/Lv9PbQhQHBwQslcEoENWZ+H7TAmZn4H8iWKNy78CcsOad/ n5VUM33Xc2f2Vbpw5L/SD3ywM7SuWsd9yJBjM3/fP7XWd0drjcv8w7jM1yafazbJukw898cusdW6 7a3m7u9tunX1plkUvAAnyenTp3FZuWpNRMzWLUieiJrm3xXX09JmgWych9790OmjtNnZwXubS5Ys Xrw4JCQkOCQk6OJFy2+pFfd7m7t370Jg3rhxvX+Pb4+fODFz+fYes3f2DTrQc0Gi/6y4+St3nDp1 Cl0nTrrxpy9SUlNktlmhsZitz6JEzNZ1euw3Ez5DmPwu9J2psZ3n7PL/YP7P3ptr+WapWXHdpsR8 82P435v0Kj9hZU81ixPmjxFp886dO7mQY10K/m9drP/Lkf8qGIxV1MomIHrZza8WdFnarQpac7Db 7qZBh/uPdlm0FuvitfmxWCYv3OLW/OYfI5vXNeuLmZKYmPjNN990tsLPF3783Hretoet7N27F5kT gfPC+czo7bv/2mM5DtCDqAlmjjEsYvaC4B9wOycwYGdyB0vUTLBEzTV7rFEz3hI1w3b4rtjuuyym Vkj0LxdtrDJ0QuPNWzauCJ+OgLopeq2ayAkz+3Dx0pXfvDt6067jfSavb/zFzObfzH/LPxhR8+MB 4Z8NWdNh1PrEVMvXpEPsobPfjI36cuQ6tM8I37dlX9o73zr+a8Z6LvfBrd/bXBA18v1htebs6DVy U9uvlvym47L/6hJav2vY77qHvxoQ0aT3qj/1Wf3nfmtex7Lx6Jzm/X7ubtpU4VIHORNmWM2ZMweZ E4EzLq5If4+NiKiUc5E2kVXkJdkSM1FAsSBnWoKmJWpiwYuyG6/KuNbs07dP0OIFiK/vdZ0eufvM 6JVHTS7BW0+9132Omsi5bt39zlu/9cG6j5cPH01o2nUy0uZ7I1d9MGq15Xb0GtwibaI94dBOGYbY bP5XN/X3j6TNhGeesbyEFkBVS5uAFpP3j8krJy1q3riejTDZrdu3337b2eEycsTQsBXLMjPP7tu3 RwKnmsI581dvgMAZG/Rz5MzjOyxpE+FTlvULfp64sW7a7spn9te4nPq3rYv/Q63gPiSESef+9MNx 33GXfjs5qR6q2jIhs4kHURPcOkYN7kakwdPpp44fP56SkhK5dvWmzZuWhy5V3W6StInTw/ppXDiR mur0vU08cAXiPHlvsyBtymLNrjjlceLjx9nykfgTJ1IwoLjf27RuN7tHgD/uwLFLd/ZccGBP6uWz l3NPX7y5fn9mwILE8Ut3IMljgFrTBJlt3NJ4mS1DZkvIROb8fPSHf+r9byPXff5Z0L9r58xnwf+O lmZ9nhux9Gs1hXPmjxHR8fbt/JtWN+Q/9nQdt2/fdjdtYn7cqvUNWQffNpnWhMwvq2u7iUb9olqt vDW/KhUug/n5zT9GNq9rsVYfffRRWFgYCrhFGVC2PGu787ztDE5mBM75q/YiZJ4+ffofP6xYunQJ GqUXm5CCS2aOceLs9/cd77bjQOcpc97fnfK17hc1fx2+s9aK2BrLtlVfvOUXQZueX7jx54Hrnwtc 93zQmlcHjvnvBavqL1jzX2OntFYTOWFmH3YkpP7fD8dduHLzvR5BTTvM+eu3i97ttbTt92GWqDl6 w75jln/SgjNZN/rO3tF96la/CdFo7zsj5vzlm//1gesnNPOPtUujQzt/Mq7u3LhevVc3+2TRLz8P rtl+8a87LH2l84p6fhH/3WXVf30T8RssfhF1e655dW3y9D/3reRW2ly4cKEEy+lWkjD1aRONyJ8I nCi79X4sEVHZ4iJtIrPhJRnx0vrafOHiRfXxWS2eWZJmdjYuIDHY5Kty+pn0jt98vWDR3ITEfX/v PnXN7nSbSGmwTA/f98mAJWoiJ1JSjvX9rjd27Zbulzb3HoyTdzgRMiVzImqiBe0yAIOxyo+DB5p8 k0p//xinzRs3bmA8WkzePyZfTSVqAuKKFIxZ/5XgYlJSElZUUzjn7iu69g6npE1pPHogZEdYnSNb Xjm155eXUt/cuNDnxrV0LNLrFiSESeeajb5Yr0/yL9stePFohvorO2iffM7y/bQouPtttB5ftURt 2jB34tiMjAykza3bYpZPn6I63FeQNi0BzOrqpcuX7D90qr2xaXVFCm6lzZ26tGn5Hc2CtzSDgxfh hzsr6/yFC5n7E/diAIbFFVvaxFEgKweHBC1dtiQwIq7ngv1HTl/JvJxz+fqtjEu5yRnXI3af7TF/ f8TmfUuWhpj8E6OboqOWhy6bvzIW2TLl7PXMSzkXr+VhtgMnLy7alNwjcH/7MW/+uU/FERs+/nvg CzhPcIty876V+s3/u5rCkPljRHS8lX/rxnXLz7sVigVl638LVa7fwEPvbtrE/Li1ZDDMLIsomF8W GYP5LSNNw2B397+I86NFZtBurQW35zf/GNm8rln+2fTSpU5WBw8exG0Xq6NHj7r7vG0vLSNL++M3 iJq5ubl/H7AyJHz9vXv3kD8zMzPxU6yGmmDmGCfOenPT4f8r3wkkv6gZEV8jdEeVpdt+vjimUsjm SkHRlRZFVVqwodL8dc/NW/vc3DWVFqz71eyIyjPCn5sR9ny/Yb5qIifM7AN+pOu2Hpt1NeeDXiHN v5n/tn/wh/1CPxm06quR69fsPIH7E9Kzbg4N2Tdgwe5+c3f2nL7Nb2L0gDmxF67k/PajiWoW54z3 4a6VqrjSJ/CDTyb815y4Ht3DX20zv3LbwP+DJ4ePQ174eGmlf6x47p8rK3266udYUPgktFJo0jB3 02ZgYKD1q/eVaVZa7AQtbaIQHh6u1iQieuK4TpuSUi7itTnr4qWLuBi+ZH0/0/qGpuUXAy1RE5ew GGz+Vblrt2/DVoZu275l5JyVq3eZTZuzNp4Yu3jnrl3xahYn4nbumDBxPPbw3Llzlt8GunULO6oP nDZRU8ZgMFbBiiZ/dVN//0jadPZJWvl3erSYvH9MXjlZQuO17FWrVl24cB6XLzt27MBh4hAsD0m2 5QOZ1n8ayMqyfLOipYBl7NhRMTGbiyNtIg+dOLraEjiz3sSt7AMcPxIeFfTiucN1zh/5w/r5/+f6 tTOWxX0ICVPPvbHoSrvW857bmbpGtVrbJWqevuD2B1ndPUbNwf79p/n7rY+0fCcQblFGi3S5S9Im 7qgTiuX9UpsPncq7mtobmxI1ceXqZtr8T0mb8kFcy280W9/StObMc+fPnz13LmPjxnUYUKxpE1vH s0dnv47Hj6d2nLQ1PD4jNfN6+sWcs5dzcHvw1NWpa4/3mrtrcPDe1NQUDFMrG3o0265Csx1IuzJp 9bGBiw9hti/HN3mjX+Uh69v8ff7zuP1L/+c7TTX75SjmjxHRMe9Wnpz5lqdFy78QWP+hQP1rgZRV J4p42nE3bWJ+iWRYrNPYzZ99TRuA+XGrVjYBg2V+7J3l9pplKpmwUFnXi0WtbAIG6+8fWR2Ltv+P WiwDLPcPymplQ+YfI5vXNTxP4odBEqaf1bcFUlNT3XretiFRs/eklSGbDk5aEiOBc+nqLdu3bz+b cQY/vAic+IFXo00wc4xT5ny889hHMUlvxBz4IObQX8PifrEsttKSrZUQNYMRNTdVWqhFzcjn5qx5 bvaqnwetrzs3otbMsP8zI+wXP4z6rZrICTP7gAfuP98fE7MvbcCM6Dc6L/hbz8Vtvw/7fGjkN2Oj zly8gfsTAqNSRi0/OHxp4qCgvQic3aduXbA+aXvi6Y/7uP5SBuN9cOv3Ni0nYWiXD0bUmr7t2/6R LfA68uHCCh8vrYh4+a+1lb/c+HyH6BcsX2S98fl/RVZedmRgUdKmTc4Uc+fOlU/SYofxU6DWJCJ6 4rhImysjwvGSfOnSJcutJWrixVlFTVw4Wi8JrE+RN9z7N+COHTuEhi/p1HvIwlXbF8WkjQo/OjI8 eWTY0ZFhuFUFXaMsyUFbT/WcuCb9jIu3sFZGhOG5+4I1ZeFWy5yQlJIggbNp18koSyMGQEbGmfT0 9NWrVy1dtlhNZEh//0jaRBUJM8HuW4JyrMzfPyavnBAak5KS8AKWk3Nz69at6emnrd+CeAfJE6+4 uIXb+fmy5N/Ku3H9ev/+fXHPeD1t4jTA+YDrttQjEYiaWKxvGFigMWZxraup/+/k3n9fP6eyxy+o uA4Yn/navCutUMg8l4J5BKoSNVFWQ01z6xjhwuHDez77bEOVKit/9rPjDX+7q8n/hJYrh1uU0YJ2 9GKMGm0O0ibOQAmQAj9qNh86lXxojYi4Oy+jFRfBuP3pp588SJv6j85mZSFnZu7fv2f79pgNG9au X78GA4o1bVqPwvJ59ZTjJ3oEJm5LunD49JXUzGtpF24cO3t9c+LZ6IMXvp8Whq6MjAz/Ht+qlQ1h mMy24+jlQ6eupJy9dvLctWMZ1zbuPR25+/SK2FMy2xsBL741oNrkLV+/OaDqP0b/t1rZBPPHaEmb uXnWQ7Q+ZJZby3+s/y14DC0F1YJp3U6buSptWiewsJlfajIG8+NWrWyCZRU397+I86MFC2q41aoe zG/+MbJ5XbN+kPbRB2g1//rXv4YOHXrq1CkMNv+6ptGiZtLpS0ErN89fn/jV99PRgoSJnCnfUutu 4DRzjKsjF02Z84+pc/45dkrrqH1vL9tuiZohWwqi5sZKgeufQ9Sci6i5GlHzuVkrfz4n9LfT5nSY t6Lx1JDacxf2VhM5YfJ+btlpzrRlO5dsPNTCb+F7vZZ+/MPK9sPXdpkQ3Xf2jsFBe0aHHpgQcWTy mqPjI46MWJr4w4LdATO3bz+YMSt8z6j5m9UUzrncB7zGgaq4gtMsZNPEt354cVxU+xHRbT5e/PNP wixREzmz0/YqfvG/6LLzF99sr/LVphdCj/3YrG+li5fNfrO6Pm1qUVM+Rmv9/U3LW5owZcqUnTt3 4pT34CWMiKiscJE2kdZwa7nI1X0h0FXJmdl4crQ8P96wcO/fgMePHzty1PDBkxeH7Tw9ZV3qoOVH LMsyLEk/Wm4thcG4VY2WZcra1MDNaf/oM1dN4dykKRMOHjyIgCcx0kZ8wjYEzj2JO1TdClEz4+wZ HEZiYuLc+a5/LxT09w8iZdof/x3Z0n5BF+JEbm6u+fvH5Cs6QuORI0fwMtand68ePbp16/Zt165+ uO3W1VLAon5v06+zX+dOMqBv395r1671YtqUPISzApdu562OHAhF2lR3q9X2JS9dP/nagS11oxa+ hJEYr1Y2DVvpsPiVsI3NEDiRLSV+4RZQPXkuWcruvlqbPEZxdNKk6Nq1j9SocfI//uPMr3+NJfTZ Z5E2cStVtKMXYzBSrWMC0ib2wXppDbh7LPek/kOnVnFWO2D//v3y+50InHfu3Bk3YbSayDmbtGn9 hyP10dnz589mZmZERIShXeDOLqa0OWbcyPv370tgRto8ffp0n4X7V+w4HX80C4HzcNrlLQcytx8+ uyP50oBpod3n7sVVuH+PrmplQ0ibltkWJETsOrsz+cKhU5cPnbwYvT9j28EzuI3Yecp/zh7Mho2+ P/g/mgQ8+5c+VXE/q5VNMH+MiI542rEcoQ3Lc6cDuTm57qZNzI9btb7G0fwYhvlNpjUh86v1C6BR v6hWK2/Nr+2/x/Obf4xsXtfkH8XkeQlPIHDs2LF+/foNHz4cIWHBggUYZv51TUjUHDZv/bGMq+Nn LUbOnL/x8Bd9J6MR56EETvmWWrcCp1vPVwuCB67b1VxFzWikzSrLY+qGrG8QtLZe0Ib/mLO60qyI 52aufG5G2M8HjKx37fq1DRsjVq1ZGBOzRa3vhMl96D9l3SffLz1/+ebfeoQgbbb7YeWXI9b5Tdyc dOryhat5F6/dWrD55NzotCmRx0aFHhy4aM+A+Tuzb+b/87ul67a7/tc6t+4HYzgB8AqFZ4/I7Uv+ OqDq4FV/nxb/VfvV1b5Y//zKtEFrzgxbd37E2nPDUYhIGxqeOqRZv0qnz6RhLbW+czidJG1qcC4t tELO1P7kJqImLjnwupmVlYVpsZZan4joyeIibeJJEC/GeB7EVaLlWrjgKh8vzRhjzZnWr3tw5707 WL582fcDvpsaGjsn6sR3wYfVEnIIt/0KCt+FFDRaq+NWp/iPW71ho+uLM1xWWt+z9JDJLwrS3z8b OnZEqnS4hDdvjgssvDp6cNViDKEREWTTpqiwFaHz5s0JnDdn/ry5WObNnTNz5vSxY0YNHvTj0KGD hg0bPHz4UCwjRw6fMH6MybRpEs4DnBS4E/CafebMGbxsn7Ky/DWPAjFhja+nt9wRVm3Lsia4yMPd hbXU+ibg+g/jR2z8eM6yqhPONka8xNlow3JmWt8OsZyXxfAvxKc2bFjn63uyVq1dvr5rq1dP/OUv 97344u4ePXZPn4pblNGCdvRiDEZivFrTFaRNnB4qaFpp720iU0s2K7gkvoheHB0G4xY/c/n5+R6k Tf1HZzMzz2RknA5fGYp23NMZGWeOHj3iVto0D2nz7t27ciyz587EqTtiyd6RyxJX7Di1ds/pbYfO btibvjs5c1fK5S5jVowJ3bd3797AhfPVyobmzp+NRD588Z7RKw4t33Ziza60LYnp6/ac3p18LuZA xvDgXaOXY7Y9gQvmZWZl9Jr//uDRP+CMVSt7lSVt3sxBmgdLqC9gTfiFSAOeNt1Om7r5ZRHoUiUr bX6TaU3YzK9Buyyq7u35cf/oJwfP5jfD5nVN3tu0sWrVqt69eyMPhIeHu/u8LVFzdviO0xeuD566 vF3XYYiavSet/GeP0WjPyMhITU21eYdzxIgR5t/hNAlpc83OPyFqBkVXCtr0wrLo363a9M3R1Ojk 1KiQVe8Erqk5I/y56SuemxZa6bvhddQ63nMi/XzdD8dFbE2O2HZUvbc5wvLe5sVrltdBWBB9HFFz QsSREcss723uPnphTWzKu90Ci/7kbfmtTXO/t4mnU8Q8vGalpKQcPnx447bVfxtYo+/St+Yn+neO qhl+YlDLwf9H+yNJsrw9oPrJtBNYy/glTF4WZ8yYgcCpN3nyZJxUs2fPxi0C58yZMw8dOoQdwFmB F1Cck/IMr2YhInqCmE6blot5XM1jKXg6tORMS9TEBUSOO+/d4TIiOjq6i1+nNXEpI1ce67HgYMFy AEt36y2WnrrGkSuPYmnbbZyawhDiIpJPoiP7HUnQwYoepE1rJCj0750SwnNzc5Ezb9++jRBr/v4x CaFx27ZtUZs2btywLjJy9YoVy1eELl+2bCmWJYtDlspft7B+DUxQ0MJFixYsWDA/MDAQ109Y0a28 54wkHxw+Xn1xvyFhyte0Jicn48Ubr6MHDx7cu23czlWvXD792YqZPvu2jcIYDDb/moph8sp98mwy cubY9Eafzvr3yP1zcLfbw55gZHEEzp2ff3bhlVf2VK26p2PHhL59j9WsubpCheTAQHQdXbAAZbSg Hb0Yg5EYLyu6tHlLtPyTjapbD1n/oVNr4MSRXcI9Ib1yauEWSRURTtYyYJM2z5/PPHfuLHLm0WNJ +/btWrdudVjYMrQjau7bt6djpw6rBzUsprSJeIwDwY9//K64CZPGH0o903NBYsjWk5G70xELI3am xSWd3ZBwFo2HU9MDevVYY/3NWJd279mlzbYwOmV1fFrMgTOrdp2OTz6HsszWM6D76jWrcG5YLu7H DDt16pTXTxJAdMTjYv3mbsvNBcuXeFvK1v9aWKrSYhmRhadPd9Omfn713wsX0C6L/fxupTWb+dUO W/+LLof776358X9VlRaP5jfD5PN2Zmbm6tWrt2zZ4tbz9v6jGYiUi9buzs65haj5RZ+J+qiZlHIK z37IFXhilMCZefbMv/71ubzDqabwEqTNiNjGQdbvBAqJ/tWKDW0vXzkvXUnH1s0K/Q9EzanLn5uy rFK/Ya9Iu3eFRO79w6dTLly5OWjutrbfh/1raGSncVEXs1XanLXu6OjQgyOWHRgUvDck+tjF7Nzf /2Ny8olCfxXGM4iaJn9vE09EZ8+eRc7HCxauDXbt2rUxeu3Hw/+7y5w/LjrYOyxlcLO+z0WsDo+K isLrLHoxBiMxHmvh5FGzOKK9LOIsSk9Pl1fGo0ePInAiZ+KVWD5Gi5dItKMXYzAS47EW1lWzEBE9 QVynTXlJtr6niSs0i+uWryq8YUmaCJqWv4uWm5frxnt3x44dW7x4cbt/tPObm1hombO/y5zELnP2 S0HfODQ0eVhgzMTZIdgJNYtzkjZ3796NF4bJkyfjmT04JGjVqlVr1qxByt28efPOnTvxRI+XELwA 2Nx6kDbl/lH/Kl4YoiZyJtImrrPN3z8mhYWvQG7EseDW5ILXuTFjR82ZMwshRs1SBDgT8NKI12xc P+H1Evc2ouaRI0cOHDiA3L5nz57du+N3rKp3LrlR8PTfbN0wAu146DMyMvCaauZxBNkE7l5sZfmu sQicI1Ibfrro39MzTuMlX09ereXhkDNVTeEN0U2aXKtbd2uVKsfCw9fXqJHh6xtVu7bl4tj6tZYo owXt6MUYjNz0P41N7kDigf2bt2zSL9Gbo/QfOpWoKY8XjgunkH6ZH+j6U99Im92saTPA/8tLly/h PLSHe1ofNb2eNnFv4KBwVa3p+12flREro/aeRBr8bu62zQfPBcWc/G7W5oAFiTsTDk+dPmXM2NH+ 3bu6/CVt0fe73ouXLHY5G84lbBpp8/Tp0949Q4RER2uisCyWP1Fs/TPFqqhjaTp/Hs+j7qZN3Mrq 2oJG/WKZVzc/WmRdM2SwrG6ZwTKJ5T+qqOP1+bU9F57NbwZ+anDCF9PzNiLl5CUx13PzZy5ebxM1 d+9Pit93CHElKSkJz43YigTOnJybWBFlk0+JJiFthm/9vXwn0KKNVZes/euFrFPStSdx4Yzl/26N mpa02WdobWn3unZ9gz/9ftmFKznrdp74cnjkV6PW+03cHDBj+3fzdv6wcPePi/YMDdm759iFS9fy /tl/2ZwVrv8ul0kmf2/TPm3iAmBj1IbO4/766YR6wYnfGaRN4xdQg7QZGBg4Y8aMJUuWHD58GC32 adO7pwERUSlhNm1afk3Ten0mSdPylmbOTflj3HnImu68d4cna7zWjhs39vdfh5hf3vObtGXLFqyr ZnFOS5vINtOmTZs5cybC7fLly8PCwjZt2rR9+/a4uDivp028wMjrhPWesXx0Vq5X7ty5U0zvbeLo ECA3bFiH/Ix7ZqvO5s2WUG0VvWnTRlnWrVu7YoUloO7btw97q2YpGhwyjh25C/fbqVOn8EqMvTp4 8OD+/ft3796+a2PLI3F/Wjr7t3t3BOGlGpdZqampeAQ9S5u4q6MPLkHg/GHD77st/0PMwXC8SGuw AyAv2FjFi1kCu7rupZfO/PrX+3/1q11Vqpz9zW821Ky5+dtvcYw4KNjStWvUSy+hHb0Yg5EYj73F FYlnu6H/0Kn2AVrADx6SEkI7bIqOwum0a4+L72cGLW1O6vqH7t2+RKR0tmwa+t8SNYvjvc0VYcuR HLBgt2X5tlvnSZMnnsi4OCPycL+FCQiKM9cmJZ/M9Pu288aNG4aPHNa7b0DPXt2PmfiLRKdOpeHH 1uFsXfw6yWy9+vTs1KXj4GE/4vzHGevZQ2MM0VEeKWE5feXGwlKwnNHXLf+z/Nd6erubNq1TKdap rTcWloL9/G6ltbI+vxk48YrveRupclX8ias3bw0eY/ldTS1qbtq6E69H8gdzd+zYgdcgvAKuX79+ 8uTJyJmIH158ThZIm8s3/9by9bNrn5u39ufzV70StnIm2q9czfpx9O+nh1axRk3L0nvwS7KK113I utxt1MpXP526Ni71Ynbuhl0nZ68+MHB+3NCgXcGbjm0/lJl9M3/dzuO//+cUL0ZN8/C8itcL7ZO0 CQkJeIDw0OBVc8jcLh8O9/1T7wpR0RvQgnb0YgxGYrzLZw+cUZgc59g5y1dCZGAVCZxIm7ggWbdu HS42MJVETZtP0qopiIieLC7SplvMvyrjiRVPskeOHMFr8C4TMAwX90gyWFFN4ZykzT179iAJ7NwZ J/ESSVLIhN5Km24xf/+YJG9vurUsWboE11hq/SLDiy4ukhAF8QKMGInUd/LkyaNH9x85tOHQvqVx m3+MWf897lg8cMiZ6MLLqlznmU+b8sqN1IUV4dipg/O29R+29qPl8RP2HI1JSUtKP2OJmphZ/2Ek rAhqliLAJNj6wV69dv7iFyk1ahz08Vn/3HNRH3ywadMmXJQg5KMAGz/4AO3oxRiM3Ovvj13C3WLy MG3oP3SanX0VIRNwKZybmzt6/EhEzbXr1uJcitocpVYwhEP47sMXowb6xo38z50jHi1asLRdRv7n 2u99+334olrfe3BP4mHC+YCfzZiYmLDwsB4B/iNGDJs6bSp+SPGEgEKPnv6rVq3q2s1vw4Z1o8eO wo/qt127qPUNIXD2699n3PgxM2fNxKU8ZpswcUJXf7+JEyfazIYLO+/+e4TmxMnjSI9uLSfT3PiF PcyP9OXW8lTNb0axPm8jWH47fBFy5rZDGZOXxEjUjNmxx/JLGgkJe61QQLYEvDwlJyfjRMWTpzxr qVmKDOf28rBpgyf8v4Hjag0YW/P70b/6bkSNcVM+O3HiRNKRvd36/6LHoJ93H/Sc/8AKWAaN/hN+ MD17pnIJP2tLVm//7UcT2g9aMW9Vwu6ks1dv3MKy50hm4JqEzwcsbdFh2tpN2/ECgZFqnaKx/tqm 2b+3iQPHdvEQIPjhsTh48CAeHbkmCVw58dNRv9u125Iz0Y5ejMFIvAaZeerA/YmXOQyWdzjxcoB1 g4KCcCmChCnQgnbtUzne/ecGIqJSxWna3BS9Ea+ybi0xW039NXY9PCnjSdYkkxeIiIt4LcfzuAfw SmMybXpw/2yJcf317u7CfYKLlZSUFLyMhYWFLViwYMaMGePGjZswYcL48eNxqT137tzVq1cjq+NC 33zMMwObhqtXr1y8mJmVddb6t2YyzmbgpTs25WBwavKW0ycPau86IouiG6+pWhpUsxgq2ITlVxgl fWEGHO+J9ORlu8bM2dZnafyYM2dPn808c87y9aqnz58/g1EY78XDxGzYbuLAgTHNm2/+859jBwzA SbJz507LP1rs2mX5otgdO1DY+t13m/70py1//vO+77/HBQT2E/ts8jBtIG1aPjxg/eVMVHGLnIn8 eevWrRFjhsu7mnv27pbBZsRHhXzX9lfd/voslq4tyhUs/9tuUV29P6i2btmUK1e89q8SGtwhuFvk OgyPI+6obdtigoIX+vf49ttunRcvCcblHcaEhoYiFu7btxfR1GTaFFgdk/QI6IbZgkIWbtu+Fad9 cHCwfjbLKVUMUZPKhGJ93k5IPiOBE4v8yZOtu4/sP2x5Qwzk69NACmjByan9A5m3nrJwbuP5KuPs mYOHt+3aExkbt3LL1uVR0YujN6+KiYnZvHlT5PoFGzYFb45Zti02LH535JFky7cVFEfawZP/gQMH tmzZsnRZWI8fp7/fcdQfPhrxm7+N/M93h//h74Pe/XJQ135j8PIUHh6OMRiJfVBrFgGiJg7HzCdp Be4u3P94IsLDIb8MgmcJZMsjR47gFmW0oB29eKTw3KVWMwd3qZY58fKHrQBeCqWAFsmZmNaLL1hE RKWQ07SpsV6bmaJWeNw2b45GYvR4QTBTE5mA1wm8tuFlCQkEL5mRkZGIditXroyIiFi7du3mzZsT EhJSU1Px0uJx9jADr1V4VZPL95MnT+IFEhuVl0m85MuVRPFtHTNjB7AJHKNkQsBG9dCCLnlZdXdP 9PPjMDGPthUNWtDl2fwuyQ7I0eFOxjWiJUBbyUUk7mTc8+jCAOwnYLxa2X1hK0PljR2bq96RY4aN HDt8YVAg9kQNdQfuPOx4auqxxMR9sbEx69evDg1dHBISGBoaEhm5csuWqD174pOSDqWlnUQS9Pp9 6IzcsfqHVQpRUVFdu/khHO6I26GGmuDd2ehJhZMEP7zF8bwtgVOW46fPyZOSQNn+zER7MT1lYWZs Bc+9iDQ4EHnWkn/+k3/7w/MVerFLxbEDAvuATR8/fjwxMTE2NnbdunXLly9ftmzZqlWroqOjcecn JSUheGM3vLgDJn9v0waetHFXyN2F+0e7i3Af4iiKsntYV56XQB50bAjlIr5MEBGVIa7TJhERERER EZG7mDaJiIiozHPr9zaJiKhkMG0SERFRmefu720SEVEJYNokIiKiJ4Fnv7dJRETFh2mTiIiIiIiI vI9pk4iIiIiIiLzvmRXhkVy4cOHChQsXLly4cOHChYtbi8qUTgwZOcmSNs8QERERERERmca0SURE RERERN7HtElERERERETex7RJRERERERE3se0+Xg888wzqmROnz592rZtqyqlUtWqVU+ePKkqnvLK JMXE431z9lh7fUI9GWNm0zivAgMDpUxERERE5EVup80tMZtHjRluv2yKjlIjSlZycvKLL76oKmfO 7Nq1q2HDhs8++2zjxo0TExNVa2H79u2TMX/4wx/279+PlpEjR9arV+9nP/tZ3bp1w8PDZZg9m23B wIEDceGOqVTdkP7S30xg0Bw+fLhmzZpHjx5Fefbs2b/85S+xGyhIb9OmTSMiIqQMNjNr1TFjxvz6 17/GruJ27Nix0ojeli1bShlat24t43GrhxaX233zzTcXLVokZVkL9+drr722detWaTQmW9FPYkMG mGF+pDA53mDfjDmb3/4eA6kaMzNMxjgbqd80zitfX185u4iIiIiIvMjttIlgedYRtKsRJctyha67 pEbIHD9+PApdu3b96KOPpNEG2gMCAlDA7WeffYZCq1atJBQhStWoUcMyyBGbbc2YMQOpVfKqGfp1 9WWXhgwZ8u2330r5hRde2GNVuXJlVFetWtWkSRPpEjYzSxW7ikSxefNmlHH78ssvo0V669evHxMT gzKCOsoy3n73XG73m2++QWiXsqx++vRpifHSaIZ+Ehv2u+SM+ZFuMdg3Y872x2ZC7x6gjDG5aZxd kydPVhUiIiIiIi/xPG2eO3fu/IXzkJl5zj5tJiYmIo08++yzCDDlypVDi/7CV8oY88Ybb/zsZz+r VauWvKOI9sOHDyPvJScnV6pUKSUlBY3Hjx9HwkGLZU1H9DPLtiAtLQ0zSNlG1apVZeajR4/+6le/ kkaBgPTcc8+piiP6beEAEbpUpQAmxFFjE2PGjFFNBbCukLK/vz/2ECMR/IyP9+23316xYoWUMQyR D8lQjs5+H2R+jVR/+9vf6t+zxWzIySigFwG7devWKCOBoKztnmWcjsvt4ijatGkjZf3q8sYvWuSR RRmTYH/QjluUpVdW0U+C/PPiiy/i9HjvvfdQlTEgZW02sLnPZRigbH+OoaV58+b2Z6b9SJsd0O+b dgiNGzfWV7Ujwmx//vOfZSvO5tdPCDIMbLYL9gfYuXNnmWrDhg1osZ9cZjO5aZwPcg4QEREREXmR J2kzMzPzYlbW5SuXr169cuXqlUuXL1+4cN4mbeLitWvXrghvuPjWX/gKKb///vsLFy5EYc2aNS+/ /LK0ax/wa9eunbz9givsL7/8Uhod0s/861//es6cOSjExMTgAl0abWiJFGzGDBkyRPukqEP6bf3b v/2bXMTXrFlTLuI1O3bssE+tNvfA+PHjcf9EREQgWqDF4Hh/+ctfYqSU0Yu8hziKgv0bjICZbaAR h6nNAChj51GQXl9f302bNsmbkNJiXU9BFVxuF3e4JFiQtbCVgIAAhC5p0R5ZhL2BAweigFvpBVlF PwnuQJw8mGTQoEGoansC+tk02n2uH2l/jiFlIaph2v3798tIubUfabMD+n1r0aKFvD0u7I8Is8lW kPScza+fELTdttmuRn+AOMkxAKfQH/7wB7Q4/FHSbl1uOi0trW7duqpCRERERORKZKSDb/axb/Qk bWZlZV29evXGzRs5Vhh05fIVm7SJDIarYSnrL3yFlDEGBWH//icizW9/+1sUcD1t/Lt/+rWQ+mrV qoVwhQAgl+b29AlTX543b15wcLCqOKHfFsq4akcBK2KjKCBafP7550i8yHL6kcJmXVUqKBscr00k 1sgbjIjH+t+otNmuVI3T5tChQzEDbrUWm0lsONwu5tTucKwOeHxbtWqF+0RapAu0cwO3KEujDNBP Ur9+/bfffnvatGnyK4X6GfRl+/vcZluoCjnH0KJ9QQ4atVv7kTY7oN837RCEVtWOCLeIcNZOp/Pr JwS0S8FmuwYHqN+cZV4r/Y+S3LrcNMj5QERERETkUnJy8kcffTR37lxVt0IVjTafSPUkbV66ePHa tWu5ubm38vNv3crPuXkT4dMmberjDa5xtVshZVwEa2OEfgzUrVt3zpw52ttfztisJdauXdu0aVNV KQwZSa7jcV+gLI2ITAiNUjag31blypW13CKBEPfvkCFDDh48iOOy3yt9i8Oys+PFTtrcUYC8JyNt fqPSZrtSRY7VPosLKEuylV7kIsQb2YS02Eyi52y7gDnlV0PtV9e3aI87biUsgTZAmwSPERLXe++9 J2+76WfQl+3vc4fb0jg7M+1H2uwAaPtmM9j+iPQDnM0P2oSg7bbNdg0OEA+cpET7yfUjXW6a720S ERERkVtsAqfDqAmepM3Lly/fvHHz9u3b9+//9NO9e7fybl27fs0mbTZu3Hj4cEvLokWL5JL3xRdf jIiIwFXv2LFjpaVVq1a4jEYLrqQ/+eQTtGiX0WLo0KGINMuXL1d1J2zWgsTEROzADOsX4djDHdGr Vy8UevToIdtdvHixvAXnkn5bmEe+vGfKlCnygUZktq1bt+KIsGltpFbARb/8Uh/o59HKzo4X09p8 UheaNGmCRI2CzW9U6mcGqSK9/PrXv960aRPKuEUZ+6z16kmLfbvG2XahTZs2cp87m1Y0b958wIAB KHz//fdatNYGaJPg0UHu2rdvn7wL5+zes7/P9SPtzzE8UmOsv/2Is1HGy639SJsdAG3fcCf069dP GsH+iDBAzv/AwEBn84M2IWgHZbNd+wPErYTPrl27vv/++2hx9qNkctP8vU0iIiIicpcWOJ1FTfAo bV66dOPGjfxbt+7dvXfn7p3cvLxr12zTZkxMjK+vL67733vvPbnkReCpWrUqkgmSnrQg4OE6GGMA V8NokXbN4cOH//M//1NVnMAqQtWtYaNGjRry8U6H9u/f36hRo2effRa38o2yaooCMsye6i4YgP1H qMA8DRs2lHizZs0abBo7gBSqDdMKiJH16tWTCKE1glZ2dryDBg3SvpNWIClpOU3/G5Wo6mcGrYqQ X6tWLVQRNfV/AUUKGmnBrZ50gcF2Afnqm2++QUG/itC34L7CPaa/30AboE2COIR7EueMfF2qs3vP /j7Xj7Q/xzZv3owzs1y5cphf3pGWtexH2uwAaPu2Y8cObAKrv/baa6jaHxG28vLLL6Plyy+/dDY/ 6O8xgbLNdu0PEDsvJzBOP0yLFvvJZaTcGm8aMLN2jEREREREJkngdBY1we206ezvbaJdjbAjl7we GDp0KK6JVeUp4Ox4te/pVfXSatGiRW+++aaquAOZHwcoZY8ncdeKFSvc/fio1/etxA7Wnrbpo0eP IhjjVtqJiIiIiMxDSDHIKW6nTQ/8rOB389z12muvab8YCfLmjJ7qMKSG6qgOQ2qojuooTjbHq9en T5+PnPz50NIDOy/fr+su3L3a260eT2Ler371K2wRESsiIkI1meP1fSuBg3VG23S7du3kG2uJiIiI iLyrJNImERERERERPW2YNomIiIiIiMj7mDaJiIiIiIjI+8ymTS5cuHDhwoULFy5cuHDhwsWtRcVK Jyxp80Sxmf3MbCwPiYiIiIiInjiDBqlCmaAioHNmxriFaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRp rHSlzWc6zpZF1YmIiIiIiEorpk1jjyFtGkRKgy4qeampqaNGjWrcuPEzVqpVZ+/eva1atapUqVKF ChVq1arVt2/fnJwc1WdOfn5+//79fXx8ypcvX6NGDZTv3Lmj+h4+PHDggL+/f/369StWrIgB2ETn zp1xXqluc1weBURFRb355pvYCg6kSZMmq1evVh1ERERERM4xbRpj2iSnJJ5pVGuBuLg4JEDVV6Bp 06aq2xyEVbVmAbSoPrsdEAi3MTExaoQJarUCqlVn/Pjxqk9H9REREREROce0aYxpk5xq0KDBsGHD UlNTHQawZs2aofHTTz/NyspCNT09vXXr1mgJCQmRAS5t2LAB46tXr757925UcYsyWtAuAxo3bjx5 8uSkpKT79++jisIbb7yBAfXr15cBZhgfxbFjx6T9k08+wSGgBeftF198Ib1ERERERAaekrSJy2NV clPJpU0tSdovMgC0luTz2c3GrqnQZV7lboF+S+Ly7/6kRjx8eCP/TsCKXT69gst3nlut56KOwbFZ N26pPqvsvNs9QuOrBwRhAG4xGC2qr4C2ofPX89rM2lTRbz4mnLk9GV2vjohAe+3vlshIaDg0HC0N hoSpugkZGRnt2rWTj5jiscnJyZFII736ssam8d69e8hIderUKV++PObBbJKF9LRVMLJKlSovvPDC 1KlTpatJkybo0gc/iXaNGjVSdXdYt2O7wzg0NObn56s6HpobN9DStm1bVXcFB4XxyJOq/vAh9h8t CH6qbufKlSsYUK5cOdw/qsk0rAiqUqBr165ofPXVV1Xdkb1793bo0KFGjRp4LCpXroxQfeDAAdVH RERERE+xpyFtIs4IVXeHSptDnZPc6BmP02bNviFaGQsSowzIu3MPqU/fhaVGn+AruSrzYED9wSts BmAVfV4FraveoFCtjAVds2OPSnnv6Uuo3rl3v1ynOagOWLXPuqprly5d8vHxkWwjJFaBDNCXNfrG +/fvy5t4etWrV8/MzJQBQtpn4z7Wka7AwECU9Z9rRQhEiz7amWed2HaH5WO09mmzZs2aqu5K7dq1 MR7niapb31dEi6+vr6rb0XI7tqWaTJMVVaVAgwYN0Lhs2TJVd0RW1MOxb9u2TXUTERER0dPqiU+b KmgWUK2mPUqblnRox4tpUyNZDouq62hd/st33n/wIGT3CalWDwiSAYMiE6Sld5jls5djow5JVYuj 2oCOwbGYofPiHVJFuwwQ0ojFt//S3acuoiU777bMmXP7bvnOc9HVN3wPqpGHzshICZ9mBAQEIJA0 atQI9wCqx44dQ1lSigzQlzX6xlGjRqHcuHHjpKQkVBFfP/30U7T4+fnJAGFdw7KhiIgIBFQEMGxa uu7du1etWjX0Jidb3rDNzs5GQIIrV67IALfIhlSlAKIsGrVP0qalpUmgrVixogxwCSMxXj4l28QK ZeMZevTogQE1atRQdXdgRVCVArIPiPGYuVKlSqjiuKKjo1W3VYsWLcLDw+Xri3And+7cGas0b95c eomIiIjoqfVkp00VMa0hU5XcDJylNG3KZ18RF6VartMcGaC9b4lMqB+A0GgzIDXLcmfhVqp1f1wu A4Q0YolPsyQlG18s3Iou+TBt/4i9KNfqt1i6zKhTpw7SiPwuokDZEnRMp015w03/0VmHbxta13hm 5syZql5Y79690YtohLJ8QvX999+XLndZt2O7w1FRUdKukU+lItOqEa7IWlJGtEbalEZnM4wYMUJW MX4r0hlZV1UKSKO/v78UNNrvjtpDkscARFNVJyIiIqKn1dOQNlXFrmpGKU2bqm7XIu862i9otxkg VZBqhS7zVN1KGrEgr6omnW2p56V37+lLLSauRcF/+U7VZ0K5cuWQRuQtOyFv2YFU9WWNvhFxS6o2 bGKYNDr7TCnCKnorVqyYk5Pz6quvouzxH/awbsd2hyE6OrpZs2YVKlTAVhDYMjIyMMzgnUkb8r6i /R1lPwMCXocOHSw78cwzEydOVK1uktVVpYD89mnr1q0l22dlZcnbyPoPIS9ZsqRVq1aVK1eWR1ag rLqJiIiI6Gn1xKdNVSpQpLSJWz2t3WMlljax2AyQqvbmp7O0qep2fPsvRW/vsN0yYUzKOdVhggdp 02aAs7QJMkDYt9h48803McDPzw+31apV0++SW6zbMdqQQCrDMPNfGGvy9zYvXbok33+LQ4iMjFSt 7sMMoCoFatasiUb9nwm9c+cOWrTEq72hak8GEBEREdFT62n4lqCiKGPvbWoflL2Rb/klOnvufpJW 1e0MWbsfvS/4L8Btle4LVas5r7zyCqKIwSdp5T09/a9Q2gxo2LBhhQoV9F/A45B+FYeQzWQMdO3a VbW6T2ZQFefkHVR/f39Vd8XMd9ImJCRIIPz8888RO1WrRzAJqEqBNm3aoFGfNuWLiLS0+cILL6A6 e/Zs+b1NyMvLs0xk4g4hIiIioicb06axx5A2K/rNl6R3IMP2G2ukHYuq27VoXwLUZtamjGxLQrhz 737EgdNvTFBveem/JQhV7VuCkB5lgJBGLKpuB5PLV9Fi+WLhVtVqjvYtQampqagmJycjPerzSfPm zVH+9NNPs7OzUUXUrFu3rn7A+PHjUcaw+Ph4eUMyKytr4cKF+o93gn4VZ2rVqiXD4uLiVJP7ZAZV 0fniiy/kGNPS0hARMaZcuXLHjh2TXpdc/r3NoKAgpG7ck8ic0lIUlmOwO4qQkBA0tm7dGoeAKu5n ORDtrpaP2q5evVoeCDya7777rmUiV/c8ERERET3xmDaNPYa0+cm8LVrYk0V1OAqBNi35d39qPMry 9zDtF22A/HlM/YIWZ38BRdUdeXPyOhmDNKuazEFisfkLKBJgQAYgN0pVM2TIECnIAHj77belxYbq trJvsTds2DCMKcqXuNpT3Y4GICerPnNatWql1iyAFtXnfAdAe6fRJbWCHdVd8OW6euXLl4+Ntfxr Bcg30OrJvyaADCAiIiKipxbTprFHadMZyY2ecZg2L93M7xgcW7NviLNv9DFuQW4cti4RAbKi3/xy nebU6rf488Ct+q+Wzc67HbBil0+vYMyPW5TlG2717Ke1N3lLEgZU6DLvnvu/7piRkdGuXbuKFStW qFDhiy++sP/s5eTJk2vXrl2uXDlfX1/5KKnNAJg5c2azZs0wCYZhcMeOHffu3av6rOxXsTdgwACM Mf/pVj2Z357qfvhw9erViGrYPewk4rHB97g6k5+f37dvX4RhBDzc9u/fXx8j1fYc8WLazMnJwT7U qlULB4LHC3E3Pj5e9Vm/oEj2EL01a9YcMWIEGm1mICIiIqKnE9OmMZU29YqYMPUcps2youmY1Uib 7eZuVvWieVz5BGkW29XeqSMiIiIiIm9h2jTGtOlYVPJZefMzZPejb0wtiseSNmfj7rf7K51ERERE ROQVTJvGmDYdkJyJpUafYA8+RutQyadN2SIMGTJENRVQHY6oEUWmpnNEjSgyNZ0jagQRERERUXFi 2jTGtOlAhS7zsPj2X6r/ddAiqmClKiUCm6tYsWKHDh3s/8ym7IxDakSRqekcUSOKTE3niBpBRERE RFScmDaNMW0SERERERF5gmnTGNMmERERERGRJ5g2jTFtEhEREREReYJp0xjTJhERERERkSeYNo0x bRIREREREXmCadMY0yYREREREZEnmDaNPZ60+czsjrKoOhERERERUVnDtGmMafMp9UxhqrUse2IO hIiIiIjKCqZNY0ybjpXAHqanp/v5+dWqVat8+fIVK1Zs1apVdHS06it+ks00qrVkyaabN2+u6g8f oiyNqu4Oj1ckIiIiIvIM06Yx/t6mY8WdNmNiYipXriwBSU91l6DHtV2QTZcrVy4vLw/VnJwclKVR BhARERERlWZMm8aYNh0r1rR55cqVKlWqIFN9+eWXqampaLl37150dPS7774rA0rSY0x3sumGDRuG hoaiumzZsgYNGkijDCAiIiIiKs2YNo2VaNrUIpy2qA4raZmevLXifL9Xlg3Ydj717fVTys/tXGf5 D4euntWPwXLgSkaj8OHorbv8x3VnkqRXZN/O6xEfWj0oAL24Ddi1Ai2qr4A2z/m86202zcIWfYJ7 zUzerrXbL2pNq8lJW16NGIG1sAms+GnM/PisNNVnwpAhQxCo2rRpo+qOnD9/vkOHDi+88EL58uVx izJaVF9BTgsPD69cuTLSWlZWFuasWLFi3bp109IseyIDcnJyvvjiiwoVKqCrbdu2GRkZsrqejFSV wpCBhw0bVqdOHexDpUqV2rVrl56ervoePsQuYcV69erl5+ejilvJimiXAS5Zt/zMwIEDP/nkE1Qx f//+/aVRBsDevXsxYY0aNbAPONjWrVsfOHBA9VnJeI1qLaA1jh8/vnbt2pjE19d36tSp0ktERERE VBRMm8ZKXdosN6eTFBDkpIAFgVA/BkuN4D5aGatocTTv3p36KwZrXbI0CBuS/9NdGSC0rnqhg7Sy 8aLWfPgQ8dWmSxbVbUKzZs0QgWJiYlTdzqVLl5CvJClp0IJ2GSAt8gYpvPHGG1KATz/9VBuAFCcF 4ePjo82gkS5V0bl//75+WlG9evXMzEwZYBMvbcKnGdYpn0GeRJzG5nAbFxcnjWpEwRg9JMZt27ap brsBqrWANCIzS0ETEhKiRhAREREReYpp01gp+pYgaUm6eu7AlQwpJ1xOP3btAgrVgwL0Y7B02B50 /8GDjrHBUv18a6AMGJQQKS3owoDOOxZLFe0yQEgjFt+l/XdfPIWW7Nt5vXeHSS9oA1Rdp8K8LtIV e+E4qvfu34/OPPruxmnSa0bFihUReJCvVN1OQEAABiDLHTt2DFXcNmrUCC09evSQAZbAZM2rWjyL jo7evXs3CrVq1dIGaDOkpqbKDL1797ZO8IiMVBWdUaNGob1x48ZJSZa3jhFTkWPR4ufnJwMAD7H8 9umXX36JW5Tlg8EmYRVAATF4yJAhSJv6RtGiRYvw8PA7d+6gfOPGjc6dO6NX/8VCGpsVhTTWrVsX mRZVzCAJHIFfBhAREREReYxp01ipS5sOywh4WlkWpFBUU69nSbVmSF8ZoL2xiS79gLrLf5QBQhqx OPsErDZA1XW0t1VbR81cdnLf+TzLo+IWiUCq4kidOnUwAOlR1R8+lCT5yiuvSNU6gSWvgk0ZUVYb YDCDRkaqio68b6n/6CyiGlpq1qyp6lZLliyxTmCBsmo1R9ZCAWG1WrVq7dq10zc6dO/ePfRWqlRJ 1XUcriiN8fHxqm79pVm0yL1ERERERFQUTJvGykbaLDenk1bWd4FUtTiqff5WqmAzQEgjlvsPHqim wrQBqq6DhKl93FcWRNnZR2NVtwny3iaCk6rbKV++PAYgPaq69XOtaKlQoYJUUQaH5XLlymmNBjNo ZKSq6Mg+2EO7GlHg888/R/sXX3yh6qbJhChERESgIGFVaxRobNWqVeXKlbWvqwU5RhvSpSoFzDcS EREREbmLadNY2UibNmWtiqwoVWdp036AkEZtmD3jAek5V4bsX9s6auYLC/y1kQP3rVHdrjRu3Bhp x+D3NouSNqUsBfsZ7LOijFQVHWdpE9QIq/z8fHkn9pVXXjH/G5vCfjbQN44YMUKq9mSAnsN2841E RERERO5i2jRWVtOmtz5Jq+p2XA7QbMg4IiMrB3ZTTa4MHDgQaad169aqbsfkJ2kNylKwn8HX11fV C9gnW9GwYUOEW5cB0t/f37opi65du6pWc2QtVSmgb3zhhRdQnj17tvzeJuTl5ekH6DlsN99IRERE ROQupk1jZTVtyrcEaV8C9GnMfBmg/5YgVLUBQ/avlQFCGrGoup2K8/1kwIErtn81pOnqMYEpOzNy slHGPqw7kyQjbd4+NaD/e5vyLT4Ie9HR0e+//74MkG8Jql+/vvQmJycj+6HF5luCDMpSwAxYF9XU 1FSZATNbBz6CMWhHolP1AuPHj0d78+bN4+PjJYtmZWUtXLiwadOmMgCwzxiDUBoZGYlblA3esLWH 8aAqBfSNMufq1atlB3As7777rn6AnsN2841ERERERO5i2jTmOG3qqVaP2KRNSWUOF61XP9JZGYuz v4CS/9PdhuFDtS5Z0OLsL6Coup1PtszTxtiMtGnXFr84N74jJyoqSr7N1Yb0OvsLKMh7MkBaDMpS aNu2rRSEj4+PNoNm8uTJqttKtVq9/fbbqrUw6c3Ozq5ZsyaqmAFVmQctaJcBLlknK7RF0DfKN9Dq SQ4HGQBStafvlbLGYSMRERERkbuYNo05SJteVHxpMzn7fKPw4eXndq4XOmjdGcuf6NBk384L2LXC J7gXenGLMlpUXwFtHlW3cyn/ZsfY4Johfe2/dgjJFnM2jhhVwfqnUCrO92u2ZuzkpC2q27S0tDQ/ P79atWqVK1euQoUKiHaIoKrP+kZihw4dqlSpUr58edx++eWX2h+6BH1ecliWQk5OzhdffIHJK1as +Mknn2Rk2L5PK4YMGVK9enVZRTUVmDlzZrNmzbA6drJ27dodO3aUPyUC8uVAb7zxhlShefPmaJE/ +GmGdYO2W9Q33rt3r2/fvojZ2Dpy7IgRI2wGgFTt6XulrHHYSERERETkLqZNYyWaNotOgp8++5FD DFRERERERMWNadMY0+aTiWmTiIiIiKi4MW0aY9p8Mj32tCk74JAaQURERERUxjFtGitjabPCvC6y qDo5UcFKVR4H2QGH1AgiIiIiojKOadNYGUubREREREREpQTTpjGmTSIiIiIiIk8wbRpj2iQiIiIi IvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGnti0yb/MicRERERERUr pk1jJZo2SzIBluS2iIiIiIjoKcS0aYxpk4iIiIiIyBNMm8ae2LRJRERERERUrJg2jTFtEhERERER eYJp09jjSZvJ2ecbhQ8vP7dz/RWD151JUt1WN+7kB+xa4RPcC73VFvXsGBucdeuG6rOKz0prGD5U 1o05l6LNKb1aVVukXaO1H7p6ttmasRXmdakc2M0vbkn+T3fVCCIiIiIiIhOYNo2ptDnUOcmNnnGW NmsE99HK5eZ0QvCTAXn37jQIG6J1yYLBV/JzZUDajcsIh1pXpfldtbIM0KraIu0arV2/D1gQcdUI IiIiIiIiE5g2jT1Km5IPbRRT2uywPej+gwcdY4Ol+mnMfBkwKCFSWnrvDkN17KEoqWpR0C9uibR8 vjXw3v37WFGqWGSAxmW7/87l2IeQE7ul6hPcS40gIiIiIiIygWnT2ONJm8euXUA19XqWVGuG9JUB 9VcMlpacu7dRRRqUqu/S/jLglWUDpEVmwK1UscgAjcv27Nt5qGqbKDenkwwgIiIiIiIyg2nT2ONJ m6pe0FJhXheplp/bWRujX9BuM0CqWlbUWjTm2+1biIiIiIiIXGLaNFYobeJWT2v3mHHa1LKiy7SJ RQaUm9NJX2XaJCIiIiKix4Vp01ip+CRtjeA+MkD7JO2NO/nSYqPW4n4ywGYGLDJAY77dvoWIiIiI iMglpk1jj/NbgjrvWCxV+28JarNpVkZONlru3L8XcfrAG5ETZABW1FbBDEX5liBVZ9okIiIiIiKP MG0aezxp09lfQMn/6W7jiFFal36RAanXsyrO99MazfwFFG2xGSBVsG8hIiIiIiJyiWnT2KO06Yzk Rs84S5sHrmQ0Ch9efm7nOst/WHcmSXVbIXAOS1zXMHwoUiWCaK3F/T7fGhiflaa6Hz7cdj4VvVj3 lWUDNmQckQm1b5TVNmG/2AyQKti3EBERERERucS0aUylTb0iJkw9m7TpdTfu5EtQrBzYTTURERER ERGVCKZNY2UvbbaOmhmflXb/wYP8n+5qv8bZZtMs1U1ERERERFQimDaNlb20KfFSv5Sf2znhcrrq JiIiIiIiKhFMm8bKXtqMu3Cy3ea5lQO7VZjXBbdto2cfuJKh+oiIiIiIiEoK06axsv17m0RERERE RI8L06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGm TSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIi TzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9ok IiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE 06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIi IiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBt GmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0a8yRt7j+S MmLV7k9mbv7r+I1Y/jlry+jVu9GounX0afOZjrNtFmknIiIiIiIqi5g2jbmdNpdsO/C3SVGdF+8a s+nonJ0nsKCAaquJG9GlBhVg2iQiIiIioicV06Yx99Lm4m0HWk2MGh11ZPaOEzYLGtGFAWqolT5t apg2iYiIiIjoCcC0acyNtLn/SMo7EzYMXZ80ZWuqLLLTWhVdGJCg+0gt0yYRERERET2pmDaNuZE2 R0bs/teCuDHRR7Ul/WouFn0LBgxbGa9W8Cht3si/E7Bil0+v4PKd51bruahjcGzWjVvSJWtN35pc 0W/+KwOWbUs9//aU9RhW54flh85eNTNAxB6/0HZ2dOVugejCbYuJayMPnVF9RERERERE5jBtGlNp EwnTGcmN0G5GdEB44uD1SQYLBnw8I1qt4H7azLtzr8GQMG2ALDX6BF/JzUevVMt1miMFZEUpYGkz a5OZAUJr1C/RRzNVNxERERERkQlMm8YepU3Jhzb07X8Zs65vxIF+qx4tstP6lr4RiW+MXqtWcD9t DopMkK7eYbtRHRt1SKoBK3ahKuWkc1cPZFyRckL65WMXrqFQPSDIzADRfFxkeOKpO/fuo7z6YLqM 1MdRIiIiIiIil5g2jbmTNkev7Raa4L/i0SI7rW/pGrqv5dh1agX302b9wSukK+f2XVTvP3ggVd/+ S1GVsnWgbblCl3n2jfYDHJKRlbsFqjoREREREZEJTJvG3EibH02N+nxhXMfFu7VFdlrfggEfT4tS K7ifNvWffdUvaEevlGWkTblcpzn2jfYDAAl2bNShV0dEVPSbr33mFotsgoiIiIiIyCSmTWOF0iZu 9bR2MSw8/m9TNn++cKe2yE7rWzBgSJjn3xLkLG1iQa9WcFZ22GhT9l++U6r2iwwgIiIiIiIyg2nT mBvvbSYkpbQYHdlm9raP58XKIjutVdGFARimVnCSNrVIef/BA9VUQPsk7Y38O6pJR7oMyg4bbcoV usyTavTRTOzAvfv3paoNICIiIiIiMoNp05gbaROCYhKbj4x8b0ZM61nbbBY0ogsD1FArh2mz4dBw SXdD1u63CZzatwS1mbUpIzsHLXfu3Y84cPqNCZEoS5d1oOOyw0abspY2D529iq33Dd8jVW0AERER ERGRGUybxtxLm7BoS2KL0ZF/Hb/xnalb/jY9BgsKqKLRJmqCw7Q5NeaIFvC0Rbry7/7UeFSETZcs 6NUKzsoOG23KXy7aJlVZqgcEaWUZQEREREREZAbTprFHadMZyY16+4+k/Bga12bShmbDV/9lZORH UzcOCduJRtWt4zBtwsTNh+v+uFz/JT2qwxo4h61LbDg0XL7Fp1a/xZ8Hbo1Py0KXfqTDssNGm3LO 7btdl+6s0n0hJm8yetWhs1elVxtARERERERkBtOmMZU29RwmTM84S5tERERERERlHdOmMaZNIiIi IiIiTzBtGmPaJCIiIiIi8gTTpjGmTSIiIiIiIk8wbRorubS5/XQ2ltJfJiIiIiIiMoNp01hJv7fp LOOVtjIREREREZExpk1j/CQtERERERGRJ5g2jTFtEhEREREReYJp0xjTJhERERERkSeYNo0xbRIR EREREXmCadMY06ZTz8zuKIuqExERERER6TBtGnt60+al/JtfbF1YZWH38nM7O0yVTJul3zOFqVYi IiIiohLBtGns6U2b7TbP1fKkw1TprL00ePddBK2HvXurqggIsDS+/baqPg1UyiygWomIiIiISgTT prGnN21WmNdFwmRm7jXVVHakpj4sV+5h+fIP09JUCwpowXLsmGp5qjBtEhEREVHJY9o09vSmzdL8 1qUZXbta3sls21ZVUUDVz09VnzZMm0RERERU8pg2jT2NaVPLmTaLs15p13y+NVDa47MsbyziVqqf bJknA+DGnfyAXSt8gnuVn9u52qKeHWODs27dUH1Wk5O2vBoxouJ8PwzAsE9j5sts5l258rByZUvC 3Lv34e7dlkKlSpbG0kbLgcOGDatSpcoLL7wwdepU6YJ79+6hvU6dOuXLl69UqVK7du3S09NVn9Xe vXs7dOhQo0YNDKhcuXLr1q0PHDig+nS0rRARERERlRimTWNMm48WZ73Srsm+nVcjuA/am60Ziypu UUZivJKfKwPy7t1pEDZEW10WrKINQBC16ZVFes0bMcISMhs3tiwooOoByWmg6nZUt6dZTtadjRNB R7ru37//xhtvqKYC1atXz8zMlAGgWnUQO7dt26a6C0iXqhARERERlQimTWP8JK3TjGcwIOpssnQN 3LdGCqvTD6o+nHMJkdLYe3cYqmMPRUkVIVMGaL8yGnvhOKr37t+Pzjz67sZp0mvenTsPa9VC0LIs KKDqAclpoOp2VLenWU7WbdSoUUREBOLljRs3AgICpGvUqFHoaty4cVJSEqqXLl369NNP0eKn+0Bw ixYtwsPD71iPDet27twZA5o3by69Gss2mDaJiIiIqGQxbRpj2vQkbULnHYu1AV9sXahareqvGCzt OXdvo3r/wQOp+i7tLwPkrVEsraNmLju573ye5XH1TEiIJWpiQcEzktNA1e2o7qKlzZkzZ6q6ToMG DdCl/+gs8iRaatasqep27t27hwGVKlVS9QKWbTBtEhEREVHJYto0xrTpYdpEkqwZ0he9VRZ2z76d p1qttD/gabOgXQYgYZab00nfVXf5j7OPxkqvuyRtllqSAxEjVV2nfPny0msD7WrEw4dLlixp1apV 5cqVy5Urp7qfeQZl1V1A2lWFiIiIiKhEMG0aY9r0MG0eunpWG7D30mnVauUsbWJRIx4+TM+5MmT/ 2tZRM19Y4K/1Dty3RnW7o0ykTVUpzFnaBBkwYsQIVbcjAzQOG4mIiIiIihXTpjGmTQ/TZsPwoeiq HhSA2wZhQ1SrlfZJ2ht38lWToQ0ZR2R85cBuqskdCFmlOWcZ5MCGDRtWqFAhP9/pvfTCCy9g3dmz Z8vvbUJeXp7DCSW43r9/X9WJiIiIiIof06Yxpk1P0ubUIzFoLzen07bzqfKZ2LGHolQfzrmCbwlq s2lWRk42Wu7cvxdx+sAbkRNkQNPVYwJTdkrX/QcP1p1JkvEV5nWRAW4pYtqU8Aaqbkd1e7oNg3XH jx+PrubNm8fHx0tQzMrKWrhwYdOmTWUAsigGrF69WnqTk5Pfffdd63y2E9avXx+NyKWqTkRERERU /Jg2jTFt2oZJrd1+kQHn865XDuyGattoy6HhFuVK87tm5l6TAfk/3W0cMUpbS7/IAJtGbfGLWyID 3ILk5WkStJDwBqpuR3V7ug3jdd9++20ZYEN65Rto9QICAqQgAzSTJ0+WdqFaiYiIiIiKE9OmMaZN t9OmxEssCZctX6a6++IpqUr4FAicwxLXNQwfWnG+X7k5nWot7vf51sD4rDTpPXT1bMCuFUik8qdQ MKbZmrGTk7ZIr7uQrYoSr1Q+cz6F6vZ0Gy7XnTlzZrNmzSpWrFiuXLnatWt37Nhx79690nXv3r2+ ffvWqFEDXTVr1hxh/YuiziYcMmRI9erVnfUSEREREXkd06axpzdtEhERERERFQXTpjGmTSIiIiIi Ik8wbRpj2iQiIiIiIvIE06Yxpk0iIiIiIiJPMG0aY9okIiIiIiLyBNOmMaZNIiIiIiIiTzBtGmPa JCIiIiIi8gTTpjGmTSIiIiIiIk8wbRpj2ix7cssCta9ERERERE8upk1jTJtlj8pzpZvaVyIiIiKi JxfTpjGmzbJH5bnSTe0rEREREdGTi2nTGNOmrWdmd5RF1UsfledKN7WvRERERERPLqZNY0ybtspQ 2nzeyr4MbdqgJbdfP1UVffpYGj/4QFWNmZxBv119We0rEREREdGTi2nTGNOmrScjbR4+nFulSm7V qrnJyaoFBbRgOXhQtRgzOYN+u/qy2lciIiIioicX06Yxpk1bT0bahO7d0Zj7z3+qKgqo+vurqhlm ZtBvV19W+0pERERE9ORi2jT2NKbNyUlbXo0YUXG+X/m5nX2Ce30aMz8+K0316dJmcvb5ZmvGVpjX pXJgN7+4Jfk/3VUjHj7Mvp3XIz60elAAZsBtwK4VaEH7/QcP0IJ1c+7elpEaDEA7ejEGVeN9MCZx DvTpTl8WZ8/m1qhhyYdxcbmxsZaCj4+l0TwzM+i3qy+rfSUiIiIienIxbRp76tImkqGWJ/WL6tal zZohfbUyFqwoA/Lu3am/YrC+C0uDsCESR5uuHoPqujNJMlgTeeYQ2pusGo2yy30wJnEO9OlOX9aM HGmJiK+/bllQQFUj4x1SI6wMZhD6VfRlta9ERERERE8upk1jT13arDCvi0S72AvHUb13/3505tF3 N06TXtCyn//O5fcfPAg5sVuq1YMCZMCghEhp6RgbjAGddyyWKtrR6xe3BOWpR2JksGZy0ha0oxdl l/tgTOKcGdeu5data0mJWFBAVSPJ0CE1wspgBmNqX4mIiIiInlxMm8aeurRZI7iPJL3WUTOXndx3 Ps9yn+pJLxbtw7FSLTenkwzQ3thMvZ6FKm6lWnf5j6iGpiWg/PnWQJTbbZ6LMm5R/mTLPJTRi7LL fTCm8pw5QUEqK6LgGc9mUPtKRERERPTkYto09tSlTaQ75EYJe7IgJc4+Gqu6HX1LkE2L/Gam/YAK 87qgnJGTjfKrESNQrrW4H8o1Q/qi3Ch8OMrpOVdQdrkPxlSeM02yYlF4MIPaVyIiIiKiJxfTprGn 8VuCEPmG7F/bOmrmCwv8tbw3cN8a6dVapAo2LTZpU3vzU9ImVFvUE+WsWzfQ+Oa6ybhFGfES7TIA jPfBmMpzpjnMiupTs46oETpMm0RERERE9pg2jT2NaVNvQ8YRSXqVA7tJi5b9pAo2LcafpIU2m2ah OixxHW6jM4/iVn7VE+0ywIb9PhhTec40pk0iIiIiouLAtGnsqUubTVePCUzZmZGTjfL9Bw/WnUmS pKe9MylVLFIFmxb9twShqn1L0JD9a2XAqAMbUa0R3McnuBequJVf1ES7DHC5D8ZUnjPNg6xog2mT iIiIiMge06Yxx2lTT7V6pBSmTcl19ot8W6x+gFTBpiX/p7sNw4dqjbKgRfuDnPJ+JpZPtsxDVb4r CEvU2WQZIFX7RdsHYyrPmca0SURERERUHJg2jT11720euno2YNeKxhGjKlj/DEnF+X7N1oydnLRF dZtIm5B9Ow+T+AT3Kj+3M25Rli+wFffu35cvAZp3LA5V3KKMFrTLAJf7YEzlOdOYNomIiIiIigPT prGn/fc2yyKV50o3ta9ERERERE8upk1jTJtlj8pzpZvaVyIiIiKiJxfTpjGmzbJH5bnSTe0rERER EdGTi2nTGNNm2aPyXOmm9pWIiIiI6MnFtGmMabPsUXmudFP7SkRERET05GLaNMa0WfaoPFe6qX0l IiIiInpyMW0aY9ose1SeK93UvhIRERERPbmYNo0xbZY9Ks+VbmpfiYiIiIieXEybxpg2iYiIiIiI PMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGns6U2bl27mf7Fwa5XuC8t3nvtMx9lYVAcRERER EZEJTJvGnt602W7uZgmZ2qI6iIiIiIiITGDaNPb0ps0KXeZJyMy8xi9QJSIiIiIitzFtGnt60ybf 0iQiIiIioqJg2jRWomlTC3gHMq40Gh5evvPcuj8uX5d0RnUX0Iadv57XZtamin7zfXoFz9yeLL3Z ebd7hMZXDwjC6rgNWLELLdIlXA7Q5rdZVDcREREREZEJTJvGVNpEwnRGcqNnnKXNGn2CtXK5TnMO nb2qRlhpXfUGhWplLOjKu3Ov/uAV+kYsDYaE5d/9SdZ1OQBserVFdRMREREREZnAtGnsUdqUfGij mNJmh6Dt9x886BgcK9XPA7eqEVbaMN/+S3efuoiW7LzbvcN2ozAoMkG6sC5m6Lx4h1TRbl3V9QCN tGNRdSIiIiIiIncwbRp7PGnz2IVrqKZmXZdqzb4hMkBow+LTslRTAe19S6yLqjZD3R+XmxygkXYs qk5EREREROQOpk1jjydtqnpBS4Uu81TdSht2/8ED1VTA/m9jSlWbweUAjbTrR7rld4WpViIiIiIi emowbRorlDZxq6e1e8w4bSJMStVZ2lR1HZswaT+DywEaaddGukulzAKqlYiIiIiInhpMm8ZK9Sdp VV2Hn6QlIiIiIqJSgmnT2OP8liDtK3w+nR+jRlhpw1RdR/8lQKhqMwxZu9/kAI20Y1F1IiIiIiIi dzBtGns8adPkX0BRdZ38uz81HBquDZAFLdofOHE5QKP1qjoREREREZE7mDaNPUqbzkhu9IyztJl8 PrvR8PDynefWGxS6LumM6i6gDVP1wrLzbges2OXTKxir4xZltKg+K5cDhPFWiIiIiIiIjDFtGlNp U6+ICVPPWdpUdSIiIiIiojKLadMY0yYREREREZEnmDaNMW0SERERERF5gmnTWImmzQpd5smi6kRE RERERGUW06axEk2bRERERERETwymTWNMm0RERERERJ5g2jTGtElEREREROQJpk1jTJtERERERESe YNo0xrRJnsglIiIi8jZ1nUFUdjBtGmPaJE+o1wQiIiIi71HXGURlB9OmMaZN8oR6TSAiIiLyHnWd QVR2MG0ae+rS5jMdZ8ui6uQR9ZrgjgEDBrRo0UJVSiuDnTx37lzHjh19fHyet1KtublS1ajW0s3l Y/EYH6yWLVsOHDhQVYqHy00UfUBJ4k9W6VGaf3B4VnvdU3JWO1N8Z5S6ziAqO5g2jTFtlkbPWKmK IzLAXrly5dSIYqZeEwpeO+3LNg4fPlylSpWVK1equrcZbNo8453s2rWrbEWo1jJ49eDysXA4oE0b HGluv36qKvr0sTR+8IGq2oiPj8cdol2N7dmzp2fPnq+99lr16tWrVq1at25d3KVHjhyRXg22i61j H1TdCYd3tbc2UfQBJcbhg+VF1pOaP1mmODzM0vODU/QBJhX9wTI+YYrOekLxrHaqxE45/Z2gL6vr DKKyg2nTGNNmaSTRUVUckQH23n33XTWimMlLAuhfIfRlG+3bt3/ppZdu3ryp6t5msGnzjHcSXdhE bGysqtvxyj6UAJePhcMBuGCoUiW3atXc5GTVggJasBw8qFpstG3bFnfIhg0bpCr3jw0fH5+oqCgZ ILDd2rVrf/bZZ6peGPYtMTERBayLW5S/+uora4+FzGnD3U1A0QeUGP5klR6l+QcHij7AmPHPplt4 Vj9esm82iuOUk5nty+o6g6jsYNo0xrRZGkl0VBVzGjRogFVwgaLqxUxeEkD/CqEv66WlpVWpUsXj Kw8znG3aPJc76XITLgeUBi4P02BA9+44xtx//lNVUUDV319VbRw+fBj3RuPGjVU9N/f111+fPHly QkKCXJ+h8M4772DMa6+9JgM0X3/9NfYBe6LqOiEhIa+88kpERARWxC3KaFF9XtqEKPqAEmDwYHkL 7j1QFY+43EmXm3A5oDQwOMzS8IMjivWsNv7ZNM/lCVN0lvOJZ7VzJXbK6e8EfVldZxCVHUybxp7e tJl8PrvZ2DUVusyr3C3Qb0lc/t2f1IiHD2OPX2g7Oxrt5TvPxW2LiWsjD51RfQ8f1v1xOVZ/f3qU qj982GrqBrSgXdUfPryRfydgxS6fXsGYoVrPRR2DY7Nu3FJ9JribNvFigPE1a9ZU9eInLwmgf4XQ l/XGjx+PdvsrD208BtSrV69q1ar169efOnWq9Iq4uLhOnTrhwgW9NWrU+Pjjj/fs2aP6CmZwSI0w zXgn7aluHWftgNdaHAUeIBwFblG2efV1OQC0+YcPH/7SSy9hmM19ZYazw9QYDDh7NrdGDewGHpTc 2FhLwcfH0uhQly5dME9QUJCqO3L27FmMwbUInolUkxW2jnZc7qh6YcnJyU2bNsUAXBLZf7jLhmeb gKIPKAH8ySoTP1ml5AcHij7AmFs/m87wrC49Z7WmmE45yy4W3An6srrOICo7mDaNqbSJhOmM5EbP lOa0WbNviFbGgnCoRujG6Jfoo5nS2ztsN6oV/ebff/AAVdwisqKlb/geGZB3516DIWHairLU6BN8 JTdfBrjkbtrs3Lkzxg8cOFDV3SHbAlU3R14SQP8KoS/r/eMf/0C7/WeKZDxeC6Wg0V9pqSYdvL5G R0c769XIAPOMd9Ke6tZx1n7mzBlc/UivBi1oNzlASPusWbOkIFSfac4OU2M8YORI7Ebu669bFhRQ dejkyZO4LsG1oKo7cfHiRetBPH/hwgXVZIVLRjRiT1S9sJSUFLmixS3KqtUJzzYBRR/gjGVvnFAj THP2YMls/MkqPT9ZpeEHB4rvrBZu/Ww6Y3zC8KwuybNaU0ynnHVKtVf6srrOICo7mDaNPUqbkg9t PMFp03/5TgTFkN0npFo9IEiNePiw+bjI8MRTd+7dR3n1wXQZ0GbWJundlnpeWuLTslCNO3lBqmiX AYMiE6QFuRTVsVGHpKoPtMbcin95eXkVK1bE+PT0dNXkDtkWqLo58pJgUu3atfEqcu3aNVUvIK8u jRo1wgsSqngZ+9e//oWWli1bygBo1apVaGiorIsBXa1fvfDWW29Jr8Y6k+cvpeBsJzUuN+FsQJ8+ fdDeuHHjg9bf08KtXJD16tXL5ACBFkBXWFjYzZs3cW9gRdVnmsvDNB6A5rp1sSeWBQVn0/Tr1w+T uPyndBwghuE6SdULYOtox56ouk5ISEidOnVWrlyJAbjFuvZvL+h5sAlR9AHOYC1n1AjTnD1YMht/ skrPTxaaH+8Pjij6AAPu/mw64+yeRCPwrC7Js1pTfKecQ+o6g6jsYNo09vSmzey826gicEq1XKc5 MsCeDKjcLVCqWAVltCBGojpq4wGUX/BfIL1Qf/AKWSXn9l1UtU349l8qA1xyK/7Nxn38zDMtWrRQ dTfJtkDVzVGvCeZUqVIFrzeqooNG2L59u6oXfFynevXqqm4HpywG+Pj4qHoB60xFunpwtpMal5tw NqBhw4Zo1/8rOMpoadCggVRdDhBogRkzZqi6R1wepssBQUHYE8vi7LN+uKzBA+Tr62twKQYjR460 HtDzS5YsUU06aK9ataqq6LRv316usTAAtyijxdrjgGeb0BR9QHHjTxbay8pP1uP9wdEUfYAzbv1s GuBZjfZSclaL4j7l7KnrDKKyg2nT2NObNlXdrgXhEDHy1RERFf3mI4JqveU7z5UB0G7uZrTIr27i FuVP5m2RLsBIbS39op/BmFvxr1GjRhgcGhqq6iVCvSaYg1cavN6oio7l5cuu3aYxJCTkww8/rFGj hry6C5RVdwFpVxWPONtJjctNOBsgM8vXLQiU0VKtWjWpuhwg0AK4JFV1j7g8TJcDAP0GQ+Sjbnjq UHU7eN7p1KmT5WCef37ixImqtTB0YU9UxREMUCVHvLWJIg4obs4eLDTat9s08idLgxYo7p8sQL/B kBL7wSniAJcwgyp5xNk9iUb7dptGntUatEARz+qSOeXsqesMorKDadNYobSJWz2t3WNlMW36L9+p tdgsMgCW7TuJKuLovfv3cYsyWlSf87SJRY1wxXzaPHToEEbiZeb+fcvnfkuMek0wx/iTUapSQN+o /ZOqPRmgcdjoluL7ZJR3rx5UxVMuD9PlAMBeONsRrOjr6+vj4+PsKufMmTMtW7bEJrChiIgI1VoY JsGAl19+WdXd5JVNFH2AM1jLGTXCNGcPlsPZ9I38yVJ1K7SAqniqTPzgFH1ACeBZjfbScFaXzCnn kLrOICo7mDaN8b1N2xb5yh8s0Ucz7z94gDxpMwBybt+Vtz0nb0nCLcryoVmhfZL2Rv4d1eQm82lT vh+od+/eql5S1GuCOfKFCvpPQAk0gqoU0DfWrFkT5VmzZmkv6pcvX9YP0DhsdIuzndS43IT9RYDw 7iejVMVTLg/T5QDAXjjbkWnTpmF1Z78gFB8fX6dOHQz46quvbL7TQk8O39kXSxjz1iaKPsAZrOWM GmGaswfL4Wz6Rv5kSVWgBVTFUy4PE7ARZ9spmR+cog8oAc7uSTSCqhTQN/KslqpAC6iK+0rslHNI XWcQlR1Mm8aYNp2mzUNnryJt9g3fYzNANB8XiZZ6g0Jxi7JqtdK+JajNrE0Z2TlouXPvfsSB029M KDTMgMm0eefOnUqVKmFkamqqanKfbAtU3Rz1mmDO1KlT8Xpj/40RaARVKaBvrFatGsorV66Ul+TE xMQ2bdroB2h8fX3ROHfuXPsXb5Oc7aTGulmjF+/XXnsNA3Cto+oF5Esd0Cu/1ISjaNKkCVpsvvXB YIBAC6iKp1wepssBgL1wuCO48+UvE5w8eVI16SxcuBAPaNOmTXEdo5qcCAoKwj548GcYvLiJog8o AfzJQntZ+ckCbMThdkrsB4dnteBZbawkTzmH1HUGUdnBtGmMadO25ctF27QWLNUDgrSyDBDjo9U3 zWKZuPmwarXKv/tT41ERWq9+USNcUfnPETXCat68eWjBS4Kqe0SmBVU3R70mmJOW5vgPYVtfDY2u HuQbBfXkhRZkgKZ79+7SrlEdpjnbSY3LafGCKmOEanX+hfWnT582OUBIu6p4yuVhuhwA2AuHOyIX Fl26dFH1wmT/HdLeixCfffYZ9sH+L8i5pKZzxN1NFH1ACXD2YMkhq0oBfSN/smSAkHZV8ZTLwwRs xOF2SuwHh2e14FltTNZ1yOunnEPqOoOo7GDaNPYobTojudEzZTFt5ty+23XpzirdF5brNKfJ6FWH zl61GSCOXbimtaOsWgsgcA5bl9hwaLh81VCtfos/D9wqfzHFDJX/HFEjrF599VW0BAaqL8v1jEwL qm6Oek0wrX379i+99JLNPyTLq5eqFNA34gT97rvv8DqKl6s6deqMtP6VOv0AzcWLF3FhUbduXYx0 OMAMhzupMTMtfl7kX81tRuI6oFOnTpi8atWquO3YsaPNmxguB4D9tJ4xPkxwOQB74XBHGjdujD2U f3G3J/vvkP4KBtvF1nGNouruUNM54tYmij6gxPAnqwz9ZGEjDrdTMj84RR9QYnhWP96zWtZ1yLun nDPqOoOo7GDaNKbSpl4RE6ZeKUyb5BXqNcG05ORkvK6HhoaqeqlUJnay6Fwepmf3Q2RkJK5Fiv4b X2FhYdj64cOHVb0YuNxE0QeUGP5klR6l/AeHZ7V3PSVntYHiO6PUdQZR2cG0aYxpkzyhXhPcMXjw YPu/sl3alImdLDqXh+nB/fDOO+9Uq1bN5e/5uIR5Bg0apCrFw+Umij6gJPEnq/QozT84PKu97ik5 q50pvjNKXWcQlR1Mm8aYNskT6jWBiIiIyHvUdQZR2cG0aYxpkzyhXhOIiIiIvEddZxCVHUybxpg2 yRPqNYGIiIjIe9R1BlHZwbRpjGmTPKFeE4iIiIi8R11nEJUdTJvGmDbJE+o1gYiIiMh71HUGUdnB tGmMaZM8oV4TiIiIiLxHXWcQlR1Mm8aesrS5c2cZWIiIiIiIqCxg2jTGtFn6FiIiIiIiKguYNo0x bZa+hYiIiIiIygKmTWNMm6VvISIiIiKisoBp0xjTZulbiIiIiIioLGDaNMa0WfoWIiIiIiIqC5g2 jTFtlr6FiIiIiIjKAqZNY09j2pw8b82r/YMrdp5bvtMcH//AT0ctj18V/Sjs7dyZvTW2x6Sw6t3m YwBuAyaHo0U/AMszHWfLcn7z9jbDl2I2TDVzQaSZAdg62mv3XKANbtgvCC0N+i6yVImIiIiIqCxg 2jT21KVNREctB+oXLfjlbd9Rv+8im17kwPzYOG0MFq2rXp+FWhmLmQGzF0RKee/qzajeiY0r942l OmBahGVdIiIiIiIqC5g2jT11abNCpzmS9GJXWt7PvBcXF70i6t0hSywxz7oMmhEhAzqOW3E/Lq7z +BVSRbs2Bos0YvHtuWC3NTRmb43tPTnczICc7TvKW3ej75SVqEYu2ygjJXyqXSUiIiIiotKNadPY U5c2a3SfL9Gu9fClyxavP795uyXg6Rbtjc3UDVtRxa1U6/ZZqB8mjVhsPoWrLcYDvhizHF3yYdr+ U1eiXKtHoOolIiIiIqKygGnT2FOXNpEw5WOr2oIYOVv3+5byriMWrUWqFTrN0Vq0Riz34wp9wlZb jAdsC98kvXtXb24xaDEK/pPCVC8REREREZUFTJvGnsZvCUqP2jZkRkTr4Utf+HaeRD4sA6dbPtSK xSZtIitK1Vna1DfqF5cDfHsuQG/vyeGyxZjwTaqLiIiIiIjKAqZNY09j2tQvG0LV70xW9psrLe5+ klbfqF9cDkDiRa8k3irfznvURUREREREZQHTprGnLm02HRAcuGhtRvQ2lO/Hxa0rSJvaW5f6bwlC VfuWIIRDGSCLNGLRN+oXlwOwD9pner8Ys/xRFxERERERlQVMm8Ycp0091eqRUpg2tRBos/hNUL82 mR8bJ3/9Ur+gxdlfQNE36heXA7C8OdjyG5tYIpZueNRORERERERlAdOmsafuvc1DkVsCJoc3/j5I /hRKxc5zm/0QMnnemkdhz/qnSjDGxz+wfKc5uEUZLfoBWCQlYrFp1xaXA7BguxiAPbmn/yYhIiIi IiIqC5g2jT3tv7f5eJemA4KRNtuNXFaonYiIiIiIygKmTWNMm49tiVoRJW9+hgSvL9RFRERERERl AdOmMabNx7NIzsRSo/v8Qh+jxUJERERERGUB06Yxps3Hs1ToNAeLb88F8auibbrUrhIRERERUenG tGmMabP0LUREREREVBYwbRpj2ix9CxERERERlQVMm8aYNkvfQkREREREZQHTpjGmzdK3EBERERFR WcC0aewpS5tERERERERewrRpjGmTiIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aY NomIiIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmTiIiIiIjIE0ybxpg2iYiIiIiI PMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmT iIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aYNomIiIiIiDzBtGmMaZOIiIiIiMgT TJvGmDaJiIiIiIg8wbRpjGmTiIiIiIjIE0ybxpg2iYiIiIiIPMG0aYxpk4iIiIiIyBNMm8aYNomI iIiIiDzBtGmMaZOIiIiIiMgTTJvGmDaJiIiIiIg8wbRpjGmz1MklIqLHTT0jExERGWLaNMa0Weqo Kx0iInp81DMyERGRIaZNY0ybpY660iEiosdHPSMTEREZYto09tSlzWc6zpZF1UsfdaXjjgEDBrRo 0UJVHHE5wGMtW7YcOHCgqpRBzxemWu2UqsMsvkfTiwx28ty5cx07dvTx8bG5z6WqUa2l22P80XOp BE5al5so+oDHSD0jExERGWLaNMa0WeqoK52Ci2/7so3Dhw9XqVJl5cqVqm7H5QBnsOLo0aNff/11 g61jWkyOkape1sihaVSrHa8c5tatW6taoaCa3Ofxo2mS8f1gkvFOdu3aVbYiVGsZTJsuHwuHA9q0 wZHm9uunqqJPH0vjBx+oqo34+HjcIVpq3bNnT8+ePV977bXq1avjdKpbty7u0iNHjkivxuRJ6/Cu 9tYmij7gMVLPyERERIaYNo0xbZY66kqn8HW/vmyjffv2L7300s2bN1XdjssBzshGNaq1MExbu3bt zz77TNXLLINjhKIfZkpKiq+vb4MGDRo2bIjC8ePHVYebPH40TTK+H0wy3kl0YROxsbGqbscr+1AC PPvRQ7CqUiW3atXc5GTVggJasBw8qFpstG3bFnfIhg0bpCr3jw0fH5+oqCgZIIxPWuxbYmIiClgX tyh/9dVX1h4LmdOGu5uAog94jNQzMhERkSGmTWNMm6WOutIpfM2tL+ulpaVVqVJFf5low+UAA40b Nx4+fPjhw4edbV18/fXX2AQ2pOplk/ExQlEO8+LFi3/4wx/q1q2L1aFOnTqoolF1m4Z1PX40TXJ5 P7jkciddbsLlgNLA5WEaDOjeHceY+89/qioKqPr7q6oN+QHED6Oq5+a+/vrrkydPTkhIkByLwjvv vIMxr732mgzQGJy0ISEhr7zySkREBFbELcpoUX1e2oQo+oDHRT0jExERGWLaNPb0ps3k89nNxq6p 0GVe5W6Bfkvi8u/+pEY8fBh7/ELb2dFoL995Lm5bTFwbeeiM6nv4sO6Py7H6+9OjVP3hw1ZTN6AF 7ar+8OGN/DsBK3b59ArGDNV6LuoYHJt145bqc0Vd6RS+5taX9caPH492/WWiDZcDzLBu3OnVPyZH L65NVd3btK0j+r700ks1a9acOnWqdAFOYrQ3bNiwatWqPj4+n332WUpKiuqziouL69SpEy6mMaBG jRoff/zxnj17VJ+OthVninKYH3zwwcsvv6y9nynvc6JRquY5ezSt+27ZeQyoV68ejrR+/fr6ewmM 7weZwSE1wjTjnbSnunWctQMyCY4C5wCOArco26QUlwNAm9/hGWVSUX70zp7NrVEDu4EHJTc21lLw 8bE0OtSlSxfMExQUpOqOnD17FmOQ2fDjoJqsjE/a5OTkpk2bYgCypf2nZG14tgko+oDHRT0jExER GWLaNKbSJhKmM5IbPVOa02bNviFaGQvCoRqhG6Nfoo9mSm/vsN2oVvSbf//BA1Rxi8iKlr7he2RA 3p17DYaEaSvKUqNP8JXcfBlgTF3pFL7m1pf1/vGPf6Dd4EOJLgeYYd2446t/QIxBLzak6naMVwfj AdI7a9YsKQjpunnzprzloocgd/LkSRkAqlUHOSQ6Olp1F5AuVXHE5WE606tXL+ySfGpRgyoae/bs qermOHs0rfv+PLKTFDT6iKKadPT3g2pyRAaYZ7yT9lS3jrP2M2fOIC1LrwYtaDc5QEi7wzPKPJc/ WcYDRo7EbuS+/rplQQFVh3AmI+DVr19f1Z24ePGi9SCev3DhgmqyMj5pU1JSJG3i1ubfaOx5tgko +gBnLHvjhBpRNOoZmYiIyBDTprFHaVPyoY0nOG36L9+JoBiy+4RUqwcEqREPHzYfFxmeeOrOvfso rz6YLgPazNokvdtSz0tLfFoWqnEnL0gV7TJgUGSCtCCXojo26pBU9YHWgLrSMad27dq4tLp27Zqq 23E5wAzr9ZvTCzhMjl5sSNXtGK8OxgOkFxfEYWFhiJe42O3Tp490jR49Gl2vv/56QkICqggV7du3 R4u/7lOJrVq1Cg0NlXsA68pX1Lz11lvSq7Fsw3AnXR5mCXD2aFr3/flGjRrhwh1VHOa//vUvtLRs 2VIGgLfuB5dcnnIuN+FsAB53tDdu3Pig9RcccSthCXne5ACBFnB4Rpnn8jCNB6C5bl3siWVBwdk0 /fr1wyQu33rFAWIYcrWqF8DW0e7wpA0JCalTp87KlSsxALdYFy2qzxEPNiGKPsAZrOWMGlE06hmZ iIjIENOmsac3bWbn3UYVgVOq5TrNkQH2ZEDlboFSxSooowUxEtVRGw+g/IL/AumF+oNXyCo5t++i qm3Ct/9SGWBMXemYU6VKFeNLK5cDzLBev7mIB1WrVlUVO2ZWNxggvTNmzFB1HeQKdOnflkFyQAsu o1XdDk56DPDx8VH1ApZtuLqjMMDgMEuAs0fTuu/Pb9++XdULPvdYvXp1VbdTlPvBmMtTzuUmnA1o 2LAh2vXvFqKMlgYNGkjV5QCBFnB4RplX9B+9oCDsiWVx9iFZnMx4gHx9fZ1FVjFy5EjrAT2/ZMkS 1aSDdocnbfv27SWTYwBuUUaLtccBzzahKfqAx0I9IxMRERli2jT29KZNVbdrQThEjHx1RERFv/mI oFpv+c5zZQC0m7sZLfKrm7hF+ZN5W6QLMFJbS7/oZzCgrnTMwSUaLtRUxRHjAejSU612jHsBvcV3 sShbx5W3quvI0dnT70xISMiHH35Yo0YNufoXKKvuAtKuKk5gQPEdphnOHk3rvtu22zR68X4w5mwn NS434WyAzCzfWyNQRku1atWk6nKAQAs4PKPMc3mYLgcA+g2GyEej8SSs6nbwDN6pUyfLwTz//MSJ E1VrYejCnqiKIxigSo54axNFHPBYqGdkIiIiQ0ybxgqlTdzqae0eK4tp03/5Tq3FZpEBsGzfSVQR R+/dv49blNGi+pynTSxqhCF1pWOO8af1wHgAuvRUqx3jXvkg3Msvv6zq3mawdbmgd0gGaO/J2JMB GoeNesV9mGY4ezSt+250RF68H1xyeU663ISzAfJweyttqoqnivijJ7AXznYEK/r6+vr4+DhLxWfO nGnZsiU2gQ1FRESo1sIwCQZ4fNJ6ZRNFH+AM1nJGjSga9YxMRERkiGnTGN/btG2Rr/zBEn008/6D B8iTNgMg5/Zdedtz8pYk3KIsH5oV2idpb+TfUU3uUFc65sg3keg/QmnD5QAzrNdvTi/g5MOKHnzJ h0kGW2/SpAmCxNWrV1XdTs2aNbHurFmzcEUrLZcvX3Y4oX1QsVHch2mGs0fTcjx2R6RvNH8/OGx0 i8tTzuUmnD0W3v0krap4yuVhuhwA2AtnOzJt2jSs7uwXSuPj4+vUqYMBX331lc13IOkV5aT11iaK PsAZrOWMGlE06hmZiIjIENOmMaZNp2nz0NmrSJt9w/fYDBDNx0Wipd6gUNyirFqttG8JajNrU0Z2 Dlru3LsfceD0GxMKDXNGXemYM3XqVFxaGXy9h8sBZliv35xewAUFBaHX4A8YGK8OxgMMeuWPTLz1 1lu4ppdwcvr06cDAwBYtWsgAZFEMWLlypfQmJia2adPGOp/thK+99hoakcdU3Y7LwywBzh5Ny/HY HZG+0fz94Ovri8a5c+caBG9jLk8562YdP6DC2WMhXwKEXvmFQxxFkyZN0GLzLUEGAwRaQFU85ZUf PeyFwx3BnS9/yUb/7cqahQsX4gFt2rQpAqFqcsLjk9aLmyj6gMdFPSMTEREZYto0xrRp2/Llom1a C5bqAUFaWQaI8dHqm2axTNx8WLVa5d/9qfGoCK1Xv6gRhtSVjjlpzv+CvHA5wAAuAR1S3QU+++wz bML+rxpqHK6lZzzAuPeDDz6QATakV755VU8CCcgADS52pV2oVh2Xh1kCnD2aDvdZ32j+fujevbu0 a1SHaS5POZfTOnsszjj5AyenT582OUBIu6p4yuVhuhwA2AuHOyIBrEuXLqpemOy/Q9p718Ljk1ZN 54i7myj6gMdFPSMTEREZYto09ihtOiO50TNlMW3m3L7bdenOKt0Xlus0p8noVYfOXrUZII5duKa1 o6xaCyBwDluX2HBouHzVUK1+iz8P3Cp/McUldaVjWvv27V966SWDd6JcDnBGXV3aUd1WmBaT43pR 1R2xX8uG8QDjXpgxY0bLli2rV6+Oa9Z69erhGl3+EAjgFP/uu++QN9BVp06dkdY/a+hsQpzt8s6e fa+ZwywZDh9Nh/usbzR/P1y8eBFBtG7duhjpcIAZxqecmWmdPRbIjZ06dcLkVatWxW3Hjh1t3v1z OQDsp/VM0X/0sBcOd0S+bFneobUn+++QPgoW5aRV0zni1iaKPuAxUs/IREREhpg2jam0qVfEhKlX CtNm6aeudExLTk5GMAgNDVV1Oy4HFEVYWBgmP3z4sKo/oUrPYRbro+ktZWIni66YfvQiIyMR6jz7 ZUu9EjhpXW6i6AMeI/WMTEREZIhp0xjTZqmjrnTcMXjwYPs/06/ncoDH3nnnnUGDBqnKk6tUHWbx PZpeVCZ2suiK40cPJ1u1atVc/sKkSyVw0rrcRNEHPEbqGZmIiMgQ06Yxps1SR13pEBHR46OekYmI iAwxbRpj2ix11JUOERE9PuoZmYiIyBDTpjGmzVJHXekQEdHjo56RiYiIDDFtGmPaLHXUlQ4RET0+ 6hmZiIjIENOmMabNUkdd6RAR0eOjnpGJiIgMMW0aY9osddSVDhERPT7qGZmIiMgQ06axkkub6gWc iIiIqDSRCxUiIg8wbRpj2iQiIqKnmlyoEBF5gGnTGNMmERERPdXkQoWIyANMm8aYNp8EAwYMaNGi hao44nKAx1q2bDlw4EBVKYOeL0y12ilVh1n0R7P4zgcvMtjJc+fOdezY0cfHx+ZRk6pGtZZuj/Gx cHlWF31ASeJZXfqVwBnl8QxyoUJE5AGmTWNMm2Xe4cOHq1SpsnLlSlW343KAM1hx9OjRr7/+usFV DqbF5Bip6mWNHJpGtdrxymFu3bq1qhUKqsl9Hj+amqLPYMz4njTJeCe7du0qWxGqtQxelzs8zDZt cCC5/fqpqujTx9L4wQeqaiM+Ph7Hq8WYPXv29OzZ87XXXqtevTrOt7p16+IeO3LkiPRqXJ7VRR9g UtEfLOMTpuisJxTPaqdK7JRzyeUM+rtRX5YLFSIiDzBtGmPaLPPat2//0ksv3bx5U9XtuBzgjLwS a1RrYZi2du3an332maqXWQbHCEU/zJSUFF9f3wYNGjRs2BCF48ePqw43efxoaoo+gzHje9Ik451E FzYRGxur6na8sg8lwOFh4jq5SpXcqlVzk5NVCwpowXLwoGqx0bZtWxzvhg0bpCqHb8PHxycqKkoG CJdnddEHGMPhJyYmooDdwy3KX331lbXHbTyrHy/ZNxvFccq55HIG2Tf7slyoEBF5gGnTGNNm2ZaW llalShWDSzSXAww0btx4+PDhhw8f1r8k2/v666+xCWxI1csm42OEohzmxYsX//CHP9StWxerQ506 dVBFo+o2Det6/GiKos/gkst70iWXO+lyEy4HlAYGh9m9Ow4h95//VFUUUPX3V1Ub8hOKn1ZVz819 /fXXJ0+enJCQIMEGhXfeeQdjXnvtNRmgcXlWF32AgZCQkFdeeSUiIgL7hluU0aL63OHyhCk6y/nE s9q5kjzlXDKeQX836styoUJE5AGmTWNMm2Xb+PHj8WJpcInmcoAZ1ldkp1c5mBy9uNRQdW/Tto7o +9JLL9WsWXPq1KnSBTiJ0d6wYcOqVav6+Ph89tlnKSkpqs8qLi6uU6dOuJDFgBo1anz88cd79uxR fTraVpwpymF+8MEHL7/8svZ+przPiUapmlf0R9PZDJaDtx4+BtSrVw/3Vf369fX3MxjfkzKDQ2qE acY7aU916zhrB1yD4ihwFuEocIuyzVWpywGgze/wnDTJ4NE8eza3Rg1sBfd5bmyspeDjY2l0qEuX LpgnKChI1R05e/YsxuASHD8vqsnK5Vld9AHGkpOTmzZtihkQV+w/eGkSz+rSc1Zriu+Uc8l4BnSB fVkuVIiIPMC0aYxps2z7xz/+gRdLgw9fuRxghvUV2fFVDuByDb3YkKrbMV4djAdI76xZs6QgpOvm zZvyL+h6CHInT56UAaBadXC9FR0drboLSJeqOOLyMJ3p1asXdkk+MahBFY09e/ZUdXOK/mg6m8Fy 8M8/j6tMKWj0GUY16ejvSdXkiAwwz3gn7aluHWftZ86cQa6QXg1a0G5ygJB2h+ekecaP5siR2Eru 669bFhRQdQinOi7oEaJU3YmLFy/KTl64cEE1Wbk8q4s+wFhKSoqkTdza/DuRecYnDM/qkjyrNcV3 yrlkPINlnwqOS1+WCxUiIg8wbRpj2izbateujRfLa9euqbodlwPMsL4iO73swOToxYZU3Y7x6mA8 QHpxMRoWFoZ4iWuXPn36SNfo0aPR9frrryckJKCKi6f27dujxV/3ocNWrVqFhobKPYB15as43nrr LenVWLZhuJMuD7MEFP3RdDaD5eCff75Ro0a4UEMVd9S//vUvtLRs2VIGgLfuSZdcHqbLTTgbgDMH 7Y0bNz5o/Q1I3ErU6dWrl8kBAi3g8Jw0z/gw0Vy3LjZkWVBwdmf069cPk7h8Dwr7j2EIGKpeAFtH u8FZXfQBBkJCQurUqbNy5UrMgFvsnv1bf2Y4uyfRCDyrS/Ks1hTfKeeSZzPIhQoRkQeYNo0xbZZt VapUwcuqqjjicoAZmMF4EvRWrVpVVeyYWd1ggPTOmDFD1XVw/YQu/VsiuEJCCy5hVd0OTnoM8PHx UfUClm24uqMwwOAwS0DRH01nM1gO/vnnt2/fruoFH4SrXr26qtspyj1pzOVhutyEswENGzZEu/79 JZTR0qBBA6m6HCDQAg7PSfNcHmZQEDZkWZx9SBZnO+5/X19fgwwDI0eOlB1esmSJatJBu/FZXfQB zrRv317yD2bALcposfa4h2c12kvJWS2K+5RzyYMZ5EKFiMgDTJvGmDbLNryg4mVVVRwxHoAuPdVq x7gX0FvEiwMDsnVcWKu6jhydPf3OhISEfPjhhzVq1JCrPYGy6i4g7ariBAYU32GaYfxomuFsBsvB 27XbNHrxnjTm8jBdbsLZAJlZvshEoIyWatWqSdXlAIEWcHhOmmfm0US/wRD5jCiesVXdDp7iO3Xq ZN3Z5ydOnKhaC0MX9kRVHCn6AJcwgyp5xNk9iUb7dptGntUatEARz+qSOeVc8mAGuVAhIvIA06Yx ps2yzeWns4wHoEtPtdox7pWPLb388suq7m0GW5erKIdkgPZP7PZkgMZho15xH6YZLh9ul5zNYDl4 w/vEi/ekSy4P0+UmnA1wedntcoBAC6iKp8w8mtiIs+1gRV9fXx8fH2fx4MyZMy1btsQmsKGIiAjV WhgmwQCDs7roA0oAz2q0l4azumROOZc8m0EuVIiIPMC0aYxps2yTb57Qf1TMhssBZmAGUBU78qGs onypgzGDrTdp0gQXTFevXlV1OzVr1sS6s2bN0i7yLl++7HBC+wsyG8V9mGYU/dF0NgMaQVUK6BvN 35MOG93i8jBdbsLZo+ndzxyqiqfMPJrYiLPtTJs2Das7+826+Pj4OnXqYMBXX31l82Uwei7P6qIP KAHO7kk0gqoU0DfyrJaqQAuoivtK7JRzybMZ5EKFiMgDZSttrvH1NV4wRsVEL2HaLNumTp2Kl1WD r9ZwOcAMzACqYicoKAi9Bl9Yb7w6GA8w6JU/KvDWW2/hGk4uwk6fPh0YGNiiRQsZgCyKAStXrpTe xMTENm3aWOeznfC1115DI647Vd2Oy8MsAUV/NJ3NgEZQlQL6RvP3pK+vLxrnzp1rf1lsksvDtG7W 8SkhnD2a8nUp6JVfF8RRNGnSBC0236diMECgBVTFU2YeTWzE4XZw38qf9NB//bJm4cKFeLyaNm2K AKCanHB5Vhd9QAngWY32x3tWl+Qp55JnM8iFChGRB5g2jTlOm3qq1SNMm8UtLc3FXwx3OcCA5dLD EdVd4LPPPsMm7P96m8bhWnrGA4x7P/jgAxlgQ3rlGyb15MILZIAGlybSLlSrjsvDLAFFeTSFsxkc HrW+0fw92b17d2nXqA7TXB6my2mdPZpnnPwpiNOnT5scIKRdVTxl5tHERhxuR66nu3TpouqFye45 pL2JJ1ye1UUfUAKc3ZNyyKpSQN/Is1oGCGlXFTfJug55/ZRzybMZ5EKFiMgDTJvG+N5mmde+ffuX XnrJ4F/cXQ5wRl0s2FHdVpgWk+PVXdUdsV/LhvEA416YMWNGy5Ytq1evjiuMevXq4RJc/uAB4BT/ 7rvvcF2Frjp16oy0/tVCZxPizJd3MOx7zRxmyfD40dQ4nMHhUesbzd+TFy9exCV73bp1MdLhADOM D9PMtM4eTVxhd+rUCZNXrVoVtx07drR5e9DlALCf1jMuH01sxOF25NuY5a0qe7J7Dukv/V2e1UUf UGJ4Vj/es1rWdci7p5xLHs8gFypERB5g2jTGtFnmJScn4wIoNDRU1f9/e3cDHVV953/cY0gDptls bHjYnBzKsnL4a8uipa3oP0UOUl2qFBFRZHMoZRGMUSgi0lL+iEgjlfWBRWR5LEIEFCMiUsEHtLal VK1oKYupopRSSinSsilVSjH/78z3x4/LnZk7d27uPCXv1/mcnHt/9zd37tyZkfmYyUyMpBNa4skn n5Sd//KXvzTrrVTu3MyW35tpfTyEJS8OsuWC3cyNGzfKi/iW/GGbSvqobvmEjOFRnRcy8IgKvAd9 oQIAAdA2vdE2W4O777479uvInZJOCOxrX/vazJkzzUrrlVM3s+X3ZvoeDyHKi4NsuQA3Ux6N5eXl Sf9ALqmkj+qWT8gkHtW5LwOPqMB70BcqABAAbdMbbRMAALRp+kIFAAKgbXqjbQIAgDZNX6gAQAC0 TW+0TQAA0KbpCxUACIC26Y22CQAA2jR9oQIAAdA2vdE2AQBAm6YvVAAgANqmN9omAABo0/SFCgAE QNv0lrm22dy8l4SSs3xwXYTkceTe9I5rPiGEEEIIyVSibdM9mLNxdcvYyI0xNTEktM38S9IySdts VbGtMlFc8wkhhBBCSKZC2/RG28y/0DbbVmyrTBTXfEIIIYQQkqnQNr0Faptvv9W4eP47U2p3j7k+ kim1jUsWyKDZ6tAW2+Y117jjmtDiuMrkrl0vlJQUV1V9yY6k2ja/EOUazIssGtfsjGtrfkXuweLi cxobX3aNu7tlbFzzCSGEEEJIpkLb9JZy2/z1xvXv3Fz9m+9O+MO82R8ufVAiC7L6zs3/LpvMpFNo m5G4JrQ4zjJ58uT7vXr9Hxl54okFdpC2mcnI2fY+4TohVkFBgXPa+vWLZVDuTblPnePubhkb52RC CCGEEJLB0Da9pdY2pU82jrvx4IP3HF78gCsyKJtchbMttk2bjLTNOXOmymppaYmzojgntJHkY9sc PHigc5rcg3I/yrjcp85xd7eMjXMyIYQQQgjJYGib3lJpm2+/tXv8yN/P/X9/XHCvJlIhm5vtqmx6 Z/zId9/aYebTNtPcNo8ff7esrFRWR40aZrdK7IS2k1xum7Hp3ft8uchzzz3qGh8xYrCMl5ef+9FH jafHtVJ6xM4khBBCCCGZDW3TWwpts3HJgg/uGPeHB++2aT55UuIckQmNi+ebC+Rs29z1UvN9M5tv vKF52LWRn3dNbX590+mttiW+/9PmybdF5tw6vvmNH6YwwTXNNS6ZMiEyPm7M6ZHbb42MfOuW0yOJ Y7vNihX3R4rOWWetXv1fdqtEJ2zZ8tiUKbX9+lV9+ctf6tv34muuuXrWrDt/9asX7DR9A61lx51b X3ppbVXVpTfeOOzDD99esmTuJZf0HTbs6/v3/9xOOHZs9113TZb9y6Y777z14MFfOHeSNMf+/Nsf rWz6wcSTS2o+kZ+yLCN2q+2Qb79wZPV3TsicNdNO/Grrh3aCTaK2+fT3P5bxd7f/0Y7s+9UfZKTh e8ftSAujd4Fr0CNvvLFR5ldW/pNrXFJf/5DubfnyuafHtVJ6xM4khBBCCCGZDW3TWwptc/eU2v13 TTo4Z5rN348c/vufPnSOyIR3ptSaC+Rs27Q90Jm3tri3jvnG6eVrr23+YJvfCa5pzkHNltVm07uv RlZP7IlcXFYfe+SMaQkibUQXhg0bpOXkJz950m6VyMjDD39P22AsO82sn2LHnVv79++nC+PHf0MX xPTpk+yEadMm6oL66lcHHDnyS+d+PPLR//521Z1/16JoIyMyrhN05M1Nf7JbNc726JzpGpS889PD Mr7hvo/tyAuLjsnIzpfclVXPpHCNJ02ql6qpqZb5M2ZMdI1Ltm9/Wvc2fPhVp8e1UnrEziSEEEII IZkNbdNbKm1zzPUH7r79wKzJNh+/t/vjPY3OEZmwe8xwc4GcbZvT72j+2TORjifLP99oit/37zJb dVWy4PvNn3zQ/Mh9ZnVend8JrmnOQc1HjZHfiMqmlQ9HVl/fZGZq+UwWaSO6UFn5T1pOjh9/126V yEjfvhdL91u5ct6f/7xTB//wh188++yKsWOr7TQbLYpxB19//dm33tqsy9u3b9i58wVZ+NrXrrAT Roy49oMPfiqre/du+/d/Hy4jDz00y+7EOz9bd1SK35Ozjv/p97+TVfnZ8L3jMrLtiaM6QZYlj9/1 t0MfHJDV4x/te2npX2Tkmbkf6QQbnekalJw8uffR20/KpiMHIlfx8bF9S2o+kXz0l33OaRI9k8I1 njQpXerYsd0dOrSX+Xv3Rk6aK3I/6t4qKjqfHtdK6RE7kxBCCCGEZDa0TW+ptc393711//TbbP6y /dW//PzHzpHffvfW3TeNMBfIl7/b1KZ34w1nrEr2vxZZ/d3rZvU/Rvud4JrmHLT5r7rIJn0zbf2C yPJN3zxjQuJIG9GFgoICLSd2k0ZGBg8eJMXv9ttvnj590pw535We+cYbjncLn5lobYzfNk+efF/i Wr7kkr52gvRPexHtotdcc7Ud8c7j/+9v0gP/8P7v7Ygsy8ja6Sd0VTvkwT2nJ0hLlJFltZ/YEY3O dA1qtj8Z6bQ/fux/ZflXWz+U5S0LjjknaPRMCtd40qR0qUWL6mTywIFVrnEb3VthYbvTg7Jz79iZ hBBCCCEks6FtekvtnbR7J43Zd+d4G+mWEueITHjnztx+J+0nHzSvXx75y8nrh5v3r2qGXWsm2BF7 EV0dfp3fCc5B5zRnfvWS2fruq5E/HJWFpQ+65ySItBFdkE6i5cRu0sjI229vGTr0ai2E1rBhX//j H3e4Jkt0q8ega/mLX/yiHZT+qeMS7aJ9+15sR7yzpOYT6X6ffHJ6RJZlZOktpkzKssRuTXVQ03R4 v2ySgvq3j3+zvi7yZ5x73/qDa05LEvcuSJQ+fXrJZOfX1biie6NtEkIIIYTkRWib3lL7lKB3x98o fdLmo8ZdEueITMj1TwmSUqc1LzY6wbUq7VRXE7XN2Aka17TYjP+PyNYV/2XeVfvL078k9I60EV3o 2rVCy0nsO2l14Z13Xt6y5bHlyx+4885b/+//vVSq4O2332yn2URrYwptU5d1IbZtfvnLX7Ij3slM 25RsmvdX2fqT1f8rPx+9/aTzGlsevQtcg3Hz9tubZWZ5+bnOk+YM76QlhBBCCMmv5FfbNBUwMbkx ZikkKbTNd9/asXvcje/XVn8wYZRGjkbYVdkkE3L9G1CkE2oJfGtLpCj+fY9ZlegEu9rCd9Jqh5TI tTjHbR5fFNk6ckTkZ/VI99bEkTaiC/qFGSL2U4Kcq5ojR34pVTDuLx6jtTFg24x9J+3gwYPsiHd8 vpPWbvUYjC2uzvzm7cjn0Gp+uibyltoQo3eBazBu9POBpkwZ7xq32bbtKd2b3LOnx7VSesTOJIQQ QgghmQ1t01sqbfPdd3+9cf0737xuT81IKZauyKBskglmalROt80PtkV64MqHzapEJ9hV/RCg/55r Vh+c7XeCRr/URCKtMm7h/ONbp9/K+19nfsKQZ6SN6MLy5XO1nKxc+YDdKpGRb3xjxBNP/Pd7772q v0b78MO3Fy36vlRB/ZNLV6K1MWDbvP76oXv2/FhW9+7dduONw2TkgQfkOXd6Px7RTwlad/ff9FOC jhz4XcM9cT4lSJdt4g7KTmTwf1497Bq3eezbJ/SCv3/vdLl1Rs+kcI0njc9LHT/+bnHxOTKzsfFl 1yYb+w0oK1bcf3pcK6VH7ExCCCGEEJLZ0Da9pdY2xa+feWr3TTf++j+Gvzd+hDRMiSzIamTwzKop crFtzr/XFDzNN6pPL+sEu9rCb0DZtOr0VhvnBMnd3zbj2ze6NyWOtBFdkAJTXn6urJ7xq7DoBK2C sZYu/U87zQzFcG71WNaFO++8VRfUV786QJqtzkyaRN+A8tejZ3wDip3vMbjzpcjH/9i4tkr0a1Rk 565xm0jJi3KNJ425WDzOaUuXfl9Gqqq83masv6yW+/SMt0ZrpfSInUkIIYQQQjIb2qa3lNtmxNtv NS6e/86UW3Z/87rdY294Z+qt7yx5WAbNVodcbJsfNTYveSDyzlXph9+eFKmIripoV/dtb558W+QN sRNqmt/44ek9JJ1g88yjzbeOP+OziFwTnl0ZGRx+XeQNva5NieOsMXPmTJXVkpJi558Cysivf/2j Bx6YeeONw/r2vfiLX/xiVdWlkyfXvPLKE3aOxBTEGM6tHsu6cOzY7rvumizXcsklfadNm3jw4C90 ms9IsfzRyqYV3zq5pOYT+fnKo01/+ZOpmpK41TFRn/zFs39aOdl0V9cmyetP/1nGf/p4wrfRyklT rvGkMReLxznty1/uLSPLl891Djoj92BpaYnMkfv0jE1aKT3inEwIIYQQQjIY2qa3QG3Tt1xsm0mT qBnaJJ3gP9+5PbKf/7zbPe4ZZ42RitKr1/+REefHnLp6TpqibdM1mLNZMy3yTtrf/zr+22hzIevX L5Y7Tu5N92cIaaX0iHMyIYQQQgjJYGib3mibMUlaJpNO8JkdW8x+ftTg3uQZV5lsbHy5rKy0f//T f5BJ23Tlf149LFWzfmrCt9HmQgYMuFTuxzh/1WlbZaK45hNCCCGEkEyFtumNthmTpGUy6QQ/sTsZ 842U3kYrSVomaZvO6HtrJb949k+uTfkR2yoTxTWfEEIIIYRkKrRNb7TNmAy/zsQ1bpN0gp/oHsb/ R/M7r7g3JUuOtM2+fS+O+30quZalt3yyrPaTH61sCvdrNjMX2yoTxTWfEEIIIYRkKrRNb7TN/IuW yWe6d5foiGvZtk2POSznzbJtlYkSnU8IIYQQQjIf2qY32mb+Rcqkdz/RCbHjLOfjsrtbxiY6kxBC CCGEZD60TW+0zfxL0jfKJp1A8im2VSaKaz4hhBBCCMlUaJveaJv5FymTSbkuQvI4H/86SVzzCSGE EEJIpkLb9JbJtgkAAAAArUe0beYNUwET8zMnJbRNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI 2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt01tbbJtHjn086YltnSavLKxZIj8nr/uZ jJhtUd4Tzhq3SLNj3+E+32uQOeff9fimnb8xm6PmvbTzy3XrO9Quk61d7lhVvWzrtj0HzTYAAAAA rQJt01uba5vHjp/odfc62xg1vWc9+dHf/u5zgh2suHOVXS64efHbv/1QJ0g7tePO6FYAAAAArQNt 01uba5szN76h3W/cqldPfvJJzWM/1lUZ9zlBVyVjV/5IJsg0XR21/GWdUHTLUh159de/l9UTJ0++ 8D/7Bz+8WbcCAAAAaB1om97aXNu0v7dsPBg5m/JTV8+/63GfE3RVsvv3f3JOqJxarxPs7zyHLtyy 9vX3Dvz5mI4DAAAAaE1om97aXNssrFmiVdCsn2qPRbcs1dWkE3TVY4I0zIKbF9tpEmmqi179H90K AAAAoHWgbXpr623z5Cef6Gqithk7QVc9Joi9h5tmPfuLoQu3lE78gZ0/45nXzWYAAAAA+Y+26Y13 0ob/TlqX5361TyeUTFhuhgAAAADkP9qmtzb9KUGyaj8EaNazv/A5QVcl+ilBdkL1sq06oeq+Dct/ +s6+I02yLBM27fyNTnD+8hMAAABAvqNteovfNp3MaCA52DY/+tvfL7qnQeufjYzYLzhJOsEOJvoG FDvoSu3qn+gEAAAAAK0AbdNbnLYZohxsm+LIsY8nr/tZlztWFdYskZ+yLCNmW5T3BNsedx040ud7 DTLnczOf2LTzN2Zzc7PUTrlI3znri6JfhdKhdlm/uc/Me2mn2QwAAACgVaBtemuLbbOFbNs06wAA AADaJNqmN9pmymibAAAAAARt0xttM2W0TQAAAACCtumNtpmyoluWasw6AAAAgDaJtumNtgkAAAAA QdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16 o20CAAAAQBC0TW953zbPWjROY9YBAAAAICNom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABA ELRNb5lum0ePfzT5Z+u6rLqjcElN+aO3j3t11cG/HjXbHNXx7Q9/2++ZuUVLbylZPqH2J6s/+vvf zIzm5k2/2dlr3d1y8T4N39t15IC9iNkMAAAAABlB2/SW0bZ57MTx3k/Osv1QU7HqzsMf/UUnOAft skQKqk7YcXhfweKb7bhzmk4AAAAAgMygbXrLaNuc+cZGbYZTtj8pq3Pf3qKrtkzqqmTiTx8/+ckn 9e9u19Uuq+7QCaNeXq4j415ddeLkSfmpqxKdAAAAAACZQdv0ltG22Wvd3doMm/72saxKn9TV7mum 6QRdlRz5+JhzQsHim3WC1E4dafzzQVmVn7oq0QkAAAAAkBm0TW8ZbZuFS2psOXRGxnWCHdFV4Rqx b6PVVeGaAAAAAACZQdv0lhNtU6ITXKvCNeJqm/aXn3YEAAAAADKDtuktO++kPXr8IzN0ptjq6Bqp rJ+qq7yTFgAAAEB20Ta9ZedTgoY9/9/7mo7IyPGTJ9Z/sGPAxgd0Qmx1dI04PyVIVsf+aKVrAgAA AABkBm3TW0bb5kd//1vf9XNsP3RGJ7hWhWvk7Q9/6/wGFPurTolOAAAAAIDMoG16y2jbFFI4Z7+5 6aKGezosq5Xe2PWxb496efm2g3t0a2x1jB3Z9Jud5z9+V+GSmj4N39v54e9iJwAAAABABtA2vWW6 bQIAAABA60Db9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAA AAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAE bdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfa JgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAA AAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt 0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9om AAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAA CIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3T G20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYA AAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAI grbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdMb bRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK26Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAA AAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20TAAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiC tumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAABEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xtt EwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbpjbYJAAAAAEHQNr3RNgEAAAAgCNqmN9omAAAA AARB2/RG2wQAAACAIGib3mibAAAAABAEbdMbbRMAAAAAgqBteqNtAgAAAEAQtE1vtE0AAAAACIK2 6Y22CQAAAABB0Da90TYBAAAAIAjapjfaJgAAAAAEQdv0RtsEAAAAgCBom95omwAAAAAQBG3TG20T AAAAAIKgbXqjbQIAAABAELRNb7RNAAAAAAiCtumNtgkAAAAAQdA2vdE2AQAAACAI2qY32iYAAAAA BEHb9EbbBAAAAIAgaJveaJsAAAAAEARt0xttEwAAAACCoG16o20CAAAAQBC0TW+0TQAAAAAIgrbp jbYJAAAAAEHQNr3RNgEAAAAgiNbdNkePHm2WTokd8UbbBAAAAIAgWn3bdNZL16oftE0AAAAACKIt tE3hWvaPtgkAAAAAQbT6v9s0FfMUM+obbRMAAAAAgmgLnxJkimbqVVPQNgEAAAAgiLbQNkWwqilo mwAAAAAQRBtpm4HRNgEAAAAgCNqmN9omAAAAAARB2/RG2wQAAACAIGib3mibAAAAABAEbdNbpG1u zwi9hQAAAACAzDPFLFSmViaQubZprhAAAAAAkHGmmIXK7DoB2iYAAAAAtH6mmIXK7DoB2iYAAAAA tH6mmIXK7DoB2iYAAAAAtH6mmIXK7DqB7LfN0aeYdQAAAABAikytSlysTDELldl1Allum+Z8UDUB AAAAoGVMuUpQr0wxC5XZdQLZbJvmTFA1AQAAACAMpmLFK1mmmIXK7DqBrLVNcw6omgAAAAAQHlO0 YqqWKWahMrtOgN9tAgAAAEArYSpWG//dpjJngsIJAAAAAC1jylWCemWKWajMrhPIctsU5nxQOAEA AAAgKFOrEhcrU8xCZXadQPbbJgAAAAAg3UwxC5XZdQK0TQAAAABo/UwxC5XZdQK0TQAAAABo/Uwx C5XZdQK0TQAAAABo/UwxC5XZdQK0TQAAAABo/UwxC5XZdQKRtmkWAQAAAAAICW0TAAAAABA+2iYA AAAAIHy0TQAAAABA+GibAAAAAIDw0TYBAAAAAOGjbQIAAAAAwkfbBAAAAACEj7YJAAAAAAgfbRMA AAAAED7aJgAAAAAgfLRNAAAAAED4aJsAAAAAgPDRNgEAAAAA4aNtAgAAAADCR9sEAAAAAISPtgkA AIAsaMh/5pbkjHUNG0lexNxhp7i25njMQftD2wQAAEAWSFv7TT7LzbbZjJwXW9jy6I6jbQIAACAP 0DZDR9vMC7RNAAAAIL1om6GjbeYF2iYAAEDa9fHHzG5dzG1LxsxupWiboaNt5gXaJgAAQNpJmzKv XxILvXE9+eSTHTt2bN++vVnPkqzc9pY466zwXzGmu23KMZul9MhM20zpzNM28wJtEwAAIO0CNC55 5S2KioouvfTSN954w4ym4oILLnj++efNSgLer++9t/oUrG0ePnz405/+9D/8wz/IghmKEcrhxUq0 25ZcXUptU67ILEW5VuNKNMfPZf2I2za3b99+8cUXy0O0ffv2n//8581oC6R0hmmbecG7bR49erRL ly5mpbn5wIEDffv2LSwsrKqqOnjwYNwReShWVFTIpWQheqHmgQMHbtu2TZfDRdsEAAD5waNx7du3 79/+7d82b94c2zbl55EjRx566KF//dd/1cGUyEs0s5SY9+v7lF79JxLgtos1a9ZcffXVX//61x97 7DEzFCOUw4uVaLctubpW2TZ79uzpce8EkNIZpm1mi9xNHsykU7zbpusiY8aMmTVrlizIz5qamrgj ZWVl+6NKS0tldfv27QMGDJCFdKBtAgCA/JCocWndqq2t/etf/xq3bSrtjTKyd+/eyspKWd61a5fM l3H5KctxR6Iv5CJk2Vq8eHHnzp2LioqGDRsmq2bGqTkVFRWyh44dO86fP9+19b333rvyyivlgt26 dZN+GJ3uixyPubVn8rjtYuTIkffdd9+cOXOqq6t1RA9D6XL00CJkOfbmWzpB6bL8vPXWW+W2dO3a 9cc//rGMyK27/PLL5eIXXnihnR/i2Wh525SfN91006c+9Sl5ADz33HMy8uabb1522WXt2rXr1auX vcg//dM/ychnPvMZOXuyKuNKlmW+vC6XPcitTul4RNy2KTdfHpBmJSruaYk9jbEP46qqKt00derU T3/60zJ5xYoVkQufusti0TazKPKQisdsdvBum8J5qU6dOh07dkwWmpqa5BESd6SkpESqpvzXQxZk VR7SUjhlIR1omwAAID/EbVzOuiWrrsYlL8Lk55EjR6ZNmyZFSEeefPLJ6MY/f/WrX7333ntlQX7q 1tgR3YPLOeecIy/xZbdS5GQ17py33npLpsmCc+vw4cOfeOIJWdi6dWvPnj110I8At10O7x//8R/l RaRUQVmQVRl0HowuO0dib74V94Jr1qyRhYceeqhv376yILfuW9/6llyR9CXnfBHK2QilbS5dulQW 5AZ+6UtfkoUhQ4bU1NR88MEHUiNdF5HzJscsC85xmS8VThaeeeaZ8847Twd9its25SEkrXLChAlS 3Q8ePCgjHqfFeRrtw1geA/Lw1mUhmxYuXCj3wvPPP9+5c2c7qAsutM3skvvFxWw4U0pts6CgwCw1 NxcWFsrP2BF5FkjPLC0tlYXAv9j8+c9/bpYcYgdpmwAAID9Im9q8ebO8tpaWpa9jXHVLxLZNUVRU dM0110gF0hHdJGRcO5j8lOW4I8751oUXXvj1r399+fLlv/vd72TVOUeu5aabbvqXf/mX9u3b67jr GmVVyUtAM+pDgNu+adOmz3zmM7r8D//wDxs3Rl7zyfXqiNBl50jszbc8Lug8e/YPRHVruGcjlLap q1IvP/WpT8mC/NyzZ48O6lapnaNGjfrnf/5nPWY7rmS+rCo5ZjPqT9y2KaTWzpw5c8aMGSNHjpTV 2NOS9DTqvaacm5zLcdE2s07uI8sMxUipbWqfVLocO+Kkv9iUB6frLzm9HT16tLq62jVZVmVQNpn1 KNomAADID9KmpFlJv9LSFVu3RGzbNEunOEfsy3RnX3KNxO5BSMmUqjls2DD9WBfnHHmxdd99973/ /vuyBx2Pe42pCnDbb775ZrlqS1ZlUBZ0q9Bl50jszbc8LigNU3/h5rx1ujXcsyGvZU1v80FqoVRK XZYF6WmyINeuI9Iw9feWzmm69frrr581a9Zbb70l4zpiLyWc81Mlx29uSTxyKuQgZSH2tKR0Gp2b nMtx0TZzgdxNwqzEk1LblNLY1NQkC9L6ZDnuiCU988orr5QF119y+uEqnHGrpqBtAgCA/CBtSl67 2NIVW7dESm3zq1/96ve+9z1ZuOeee+w7aV0jsXsQ3/72t6VwvvPOO7Zl2b9y/PrXv/7GG2/Iq/8V K1boZZ1br7nmGqkNslWaw+jRo3XQjwC3vbKyUv/GTyxcuFBeZcpC586dn3/+eTmABQsWxB5e7M23 Yi8oP+UMyMiECROGDx8uI/369XvggQdkYe3atTon3LORUtscMGDAzJkzdXnGjBmXXXaZLMgxvP76 61IXx48fP2TIEBm59NJL5SbLwvLly2WrLAwaNOjll1+WOY888oiOSMP82c9+Jgviqquuki4qW6WO jhw5Ugd98m6bq1at0g+yij0tsadRfyo57XJLzcqZm+yyc9CJtpkXUmqbY8aMmT17tizIo2LcuHFx Ryx5mshDSxZcf8npky2cIm7VFLRNAACQH7RxCS1dsXVLpNQ2pfZ86UtfKiwslJ9agWJH4r5MHzFi hLSmjh07Ll68WFY3bdokPUGb59atW6XmydbJkyfrZZ1b33vvPekSslVIo5ARn1K97T/+8Y/l2u2X vkg1klU5NulUctif/vSnp0+fHnt4sTffir2g/LzwwgtlsrQdfZfy9u3be/bsKSP6a1UZCfdsyCta 09t8kFY5cODA0ihZkFUZlGPo1atXu3btpGS++eabMvLiiy+ed955MiKvyGWrjDzzzDPSzKVh3nrr rTry+OOPf+5zn5NjlmW5lBRO2SqkdsqIf3L85pY4yJG0b9++oKBATqacQBmJPS2xp1F/Krlz5ZTK aZddyapzk112DjrRNvOCd9uUO1fp6sGDB+WRoI8H/b6T2BG1bds2/cWmcP4lp474pIUzUdUUtE0A AJAfbOPy4GqbrUYO3nZ5dWuWMiWlthmXHLNZyoa4bTO7aJt5wbttZp30zERVU9A2AQBAfqBtesvw bS868w87M6DlbfNT0U8GyhbaJoLJ8bbpjbYJAADyg7QpP8zs1sXctmTM7Faq5W0zu2ibCIa2CQAA AKQXbTN0tM28QNsEAAAA0ou2GTraZl6gbQIAAADpRdsMHW0zL8Rtm3kUc9D+0DYBAACQBdLW8p25 JTnD1QpIzsbcYW0AbRMAAAAAED7aJgAAAAAgfLRNAAAAAED4aJsAAAAAgPDRNgEAAAAA4aNtAgAA AADCF2mb74bEfIMMAAAAACAPmZoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoakNbfNI0eOjBkzpri4 +KwoM5q6adOmVVVVmZV8069fv+nTp5sVAAAAAEjM1MSQtOa2WVNToz1TmdEUNTY2FhQUbNiwwazn GzlyOX65FWYdAAAAABIwNTEkrbltlpWVScncvn27WQ+kurpa9nPy5Emznm/kyMvLy0eMGGHWAQAA ACABUxND0prbZkt+pakOHDhQUFAwatQos56fRo8eLbdCbotZBwAAAIB4TE08kxQKs5SikNumFrym piY5oKKiog4dOgwfPnzfvn166JZOk4XZs2eXlZWVlpbOnz9fNwnpRWPHjpXBwsJC+SnLrqbkPUF3 HstsTsX9998vF1y9erVZP0V3mNabedFFF8llt2zZYtabm2VZRnr37m3Wm5tPnDghe+7Zs6fsobi4 eMSIEXv37jXbHOT45YLz5s0z6wAAAAAQj6mJDlJ5lFlPRVra5siRI3VBdenS5dChQ3r0SscXLVqk C0o3ycyKigozdIqM2D0knWCGYujWlAwbNkwuGPteXN1hWm/m3LlzZUTuVF0Vo0aNkpE5c+bo6smT JwcMGBC93GmdOnXav3+/TrBee+012SS3xawDAAAAQDymJp6iPdMyo76lpW327t179+7dstrY2Nin Tx8ZmTJlSvTgDZ0mm9avXy+t6ejRo5MnT9ZNsiCb7B7kp+5h0qRJPidYMijMSiDl5eWyh+PHj5v1 U3TPab2Z+/btk9Xi4uITJ07IqvzUD9e1v72U2imrffv23blzp6xKTa2urpaR2tpanWDJ8cu43Baz DgAAAADxmJoYZSpmtGSapRQLZ1rapvOXgbIsIz169DDrUTpt4cKFZt2hZ8+essljD0knWDIozEog BQUFcfege056DDot2M0UVVVVMtLQ0CDL0ldl2flFLNJUZcT51llpszJSWVlp1h1kvLCw0KwAAAAA QDymJka56qVr1Y+0tE3nJ7jKsowUFRWZ9SidJu3IrDtIKZJNHntIOsGSQWFWAtHrMisOuuekx6DT gt1MMX/+fBkZPny4LOt7ehcsWKCbhO4hloybGQ6JxgEAAADAMjUxKrZb5mjbdFUdnWZWzpS0hiWd YMmgMCuBeL+TNvYYQryZ4tChQwUFBTLz8OHD8lOWnX8XqnuIy8w4Rd9J26VLF7MOAAAAAPGYmhiS DL2Ttnv37mY9SqeZlTPl1Dtp9TeK27ZtM+un6J5jjyHEm6kGDhwog1deeaX8lGUzGnXRRRdJNf3o o4/MemK6Zz4lCAAAAIA3UxNDkpa22atXr127dslqY2OjfpOH/XQcpdPMypn043NkD/rxObIf3YPr U4I8JlgyKMxKIPpe1kTfgJLWm6mWL18e3UeELJvRKP12lv79+0sZ1t+RHjx4cMWKFc6/7VT19fUy k29AAQAAAODN1MSQpKVtDh8+XBdUly5dpAjp0SsdNytnSvTVIHYPSSdYusmsBHLgwIGCgoJRo0aZ 9VN0z2m9maqpqUnfMSs/ZdmMnjJo0CC9oIvZfMqIESPkVji/zBMAAAAAYpmaGJK0tE3pRaNHjy4q KurQocPIkSP37dunh27pNLMSQxrX2LFjy8rKpGLJzzFjxri+QzLpBOV9LT5VV1fLVTj/wFLontN9 M9WQIUNkJ/LTrJ9p4cKF/fr1kwOQPtmtW7dx48a99tprZluUHLnsXAqnWQcAAACABExNDEla2qYe aOuwZ88eKXL6NSRWHt3M9evXy/E3NjaadQAAAABIwNTEkNA2k5s5c2b//v3NSlQe3cwBAwbMmDHD rAAAAABAYqYmhoS2GUQbuZkAAAAA2hRTE0MSctssitIDbcXayM0EAAAA0KaYmhiSkNsmAAAAACBP mZoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoaEtgkAAAAAiDA1MSS0TQAAAABAhKmJIaFtAgAAAAAi TE0MCW0TAAAAABBhamJI8q9tnjVukTNmtAWmTZtWVVVlVnLGWVFmJUv0GCwzGqNfv37Tp083KwAA AADylqmJIWnrbbOxsbGgoGDDhg1m/RQZnzNnTt++fb2LVvpk63qd9BgsMxpDzp6cQzljZh0AAABA fjI1MSR5/E7aUNpmdXV1WVnZyZMnzfoppmCdYkYzKFvXG5f3wcjZKy8vHzFihFkHAAAAkJ9MTQxJ m26bBw4cKCgoGDVqlFl36N279+zZsxsbG72LVvpk63rjSnowo0ePljMp59OsAwAAAMhDpiaGJPy2 uf9Pfxm59KUOtcuKblk6avnLTR//zVULD/z52NiVPyqd+IPCmiXyU5ZlxGyLeu2DQzJYcecqmVAy YfnQhVt27Dtstjm0vG3ef//9UqJWr15t1uNJWrQSWbt27bBhw0pLSwsLC4uKinr06DF27NjXXntN t8bdrXNQl5uamqTIycU7dOgwfPjwvXv36la1f//+kSNHyiaZIJ1ZJuulzOZonZYr1WOQn7LsKoRy PDJYUVEhE0pKSoYOHbpjxw6zzcG121hyDmXCvHnzzDoAAACAPGRqYkhCbptHjn3c9duPaQ/USPPU BT36Q//7kdRIu1UjIzKuE4Rrq0Rq5yuN7t+b6SazEoi0QelI27dvN+vxRHtWym1z2rRpesFYOsG5 bDkHdXnEiBG6oDp16nTw4EGdcOTIka5du5oNUdI8dUEnHDp0SGqkjlgyIuM6QZhRB6mdr7zyitl8 im4yK/FIa5UJcj7NeoykewAAAACQdaYmhiTktjm14efSAHvdvW7XgSOyuvv3f+rzvQZnLZy87mey 3HvWk7LJOWHSE9t0ghj44LMNb75//ETkbymPfnS85rEfy4T+/7lRt1rO3QZTXl4uFej48eNmPZ5g NamoqEguNXfu3MOHzW9l9+/fv3Llyn79+ulq3N06B3W5d+/eu3fvltXGxsY+ffrIyKRJk3TC1KlT ZbVXr167du2SVZmmE4ROmDx5sizbPdgJdg9i4MCBDQ0NegaOHj1aU1MjE/r3769brchOPU+C7EEm yPk06zGS7gEAAABA1pmaGJKQ2+b5dz0uDXDbHvP7N7H9/T84a2HP/xeZIIO6KnRCj+lrzXqMEydP yoTi25aZ9VOcuw2moKAgaQUKVpO6d+8ulxoyZEh1dXVtba30TNcvDOPu1jmoy87fu8qyjPTo0UNX zz//fFndtu10S9cJQld79uwpyx57iHXixAmZUFxcbNZPiezUx4kqLCw0KzH87AEAAABAdpmaGJKQ 22ZhzRJpgCc/+USPVciysxYmmlB0y1Kz3ty8+rV3r5r/XMmE5QU3L9bLSmTZbD5Fx81KINKOklag YDVJSqCWPSfph/bPJnVEly3noC47PyxXlmXENjo9+NgJQlcTTSgqKjLr0b+3vOqqq0pKSrR4K1k2 m0/RcbOSgEzwaJsAAAAAcp+piSHJubZZ98MdOj82OsGKO5iS9L2TVu3YsWPt2rV1dXXDhw8vLi6W /QwZMkQ3xe7W1RV12aMrtrxtyoFFp8ehE6y4g076TtouXbqYdQAAAAB5yNTEkITcNvWNsi15J23p xB/I6qJX/0f/blMcO37CuQcrtrimSj8lyPlm1FjRnuVVtHw6dOiQ7Mc2vQ4dOsiq/atO4XofrC57 vA9Wf3faknfSlpaWyuqiRYts3z527Fjk8jG3N7a4uuiePT4lCAAAAEDuMzUxJGn5lKDz73pcPyVo zx+Pxv2UoF53r9NPCZJpF91zxqcEFd2yVFY3vLVXa6RMGPzwZuceLNmJDEovNeupmz9/vnSkdHwD St++fRcsWLBz505taAcPHpw5c6bsR0qmTujfv7+sVldXHzkSOVHS1vTvMIVO0GX7IUCNjY0XXXSR jEyZMkUn6KcEyaV0wp49e+J+SpDsQT8lSKbpHuynBOlHGW3YsEEPUiYMHjw4cvmY2ys7kUHppWY9 Rn19vUzw+AaU6F5TPo0AAAAAMsnUxJCE3DaPHPu4cmq9lkPNmEdf0QU9+kTfgHLw6F91gn4CrTNa UCU6wZr30k47J3arHwcOHCgoKBg1apRZd9B2FMtsTsbMjjF79mydsGLFCjN0yqxZs3RBJ+iy/VIT 5fz+EqmplZWVZkPUmDFjdEEnJPoGFPsdKvoJtE5aUIVOsKRG6rgyow4jRoyQM+n6Mk+nRBcEAAAA kDtMTQxJyG1T7P/TX0YufalD7bKiW5aOXvFy08d/kyro/BAgKZZjV/6o7FsrCmuWyE+po3IRsy36 CbRTG34u/bPg5sVSXOt+uEMGE/XJWc/+otPklYHbpqiuri4rK4t9j6i2o1hmczJvv/22NLeLLrqo qKhIalhJScnQoUM3bNhgNkdJhevWrZts7d69u/5W0HkVutzU1DR69GjZSYcOHaR57tu3T7eq/fv3 y6BskgkyTSbLReybdYUUy7Fjx8oNLCwslJ9SR+UiZlv0E2inTp0q/VOOQYprXV2dDOr16gQnKcOd OnWKu1XOnuxcCqdZjyfuBQEAAADkFFMTQxJ+23RpPPhnqYIeX3CSXXv27JGu1dDQYNbzWWNjozQ6 jy84SZP169fLOZRrN+sAAAAA8pOpiSEJv232m/tMw5vv62f87Pzdh1X3bZC2ObXh57o1B82cObN/ //5mJa/069dPerJ+xs/OnTurqqqkbU6dOlW3ZsyAAQNmzJhhVgAAAADkLVMTQxJ+29T3tTrT7Tur D//lI92KEEXfnXqGbt26OT/nFgAAAAD8MzUxJOG3zW17DlYv21o68QdFtyzt+u3HJj2x7dD/UjXT Ytu2bdXV1aWlpUVFRV27dp00aZL9DCEAAAAASJWpiSFJ+99tAgAAAADygqmJIaFtAgAAAAAiTE0M CW0TAAAAABBhamJIaJsAAAAAgAhTE0NC2wQAAAAARJiaGBLaJgAAAAAgwtTEkNA2kXYrV648cuSI WUFQGzdu5FmGpFrB062NP9RbeA/yHwoAQAuZmhiS1t82p02bVlVVZVYyq1+/ftOnTzcrbdioUaNe ffVVs4KgamtrN23aZFayhGeTyuJ5SKoVPN1y4aGeRS28BxOdPf49AgD4ZGpiSLLQNhsbG+fMmdO3 b9+zosxoesh1FRQUbNiwwayHx8+tkOuVa5eZZj2Qn/zkJ4VRsmCGMs7jNvoR98XT4MGy2+YpU8yq mjw5MjhokFlN1RtvvCHH6b8G7NixY+LEib169erQoYOc4a5du9bU1Ph/JLsEO0X+jyHrL8F5Nqn0 nQflcRL8aAVPtxY+1Fty9kIRvQNDvgdbfvZCeQYBANoCUxNDkoW2qf8SW2Y0Paqrq8vKyk6ePGnW w2OO/hQzeia53vLy8hEjRpj11O3du7dTp049evTo2bOnLOzbt89syCyP2+hH3BdP8pqnoKC5sLB5 zx4zIgsyItm924ykasiQIXKcL7zwgllPRm+XS3Fx8datW80MH+QxtmvXLlmQy8pPWZbbG93ii16p S9xjyHrb5Nmk0ncelMdJ8KMVPN2CPdRb+EwMkd40s5K6uPeg7tMlpbPX8mcQAKCNMDUxJFlom717 9549e3ZjY6P+e2lG0+DAgQMFBQVpesHh81aMHj1ajkGOxKynoqmp6XOf+1zXrl3l4qKyslJWZdBs ziDv25hU3BdP4rbbZM/Nw4ebVVmQ1dpas5oqvS/kfjHrPvTt23fevHk7d+7U5iALAwYMkJ306tVL J/ixevXqioqKjRs3ygXlpyzLiNnmg/9jyG7blEcgzyYhl03feVDeJyGpVvB0C/ZQb+EzMUSR+y/s ezCUs9eSZxAAoO0wNTEk2fy7zRb+k5zU/fffL/tP9wsO71sh1y5b5VWCWU/FoEGDunTpYn8Do7+Z kUFdTcoemJyHbt26FRYWdu/eff78+bpVvfbaa2PHjpWXZbK1pKRk6NChO3bsMNtO7SEuM8OfRC9/ Dx9uLimRa5HDaN6+PbJQXBwZDGbcuHFyYPX19WY9kMOHD8tO5AXZiRMnzJAPe/bs6dOnj1xQXhEG eCK4JDqG7LbNNv5sshKdh+iB83RLTegP9ZY8EyMnOrfvQZcAZ68lzyAAQNthamJIWnPbHDZsmOx/ u7ywSifvWyGvTmSrHIlZ923SpEnyaljfGGbJqgxOnDjRrHvSA5s9e7YuWM4XiGbIQV5FvfLKK4m2 WjrBJ48XT3V1ci3NfftGIguyGsz+/fvlVZe8OjTrQTU1NekNPHr0qBnyQaqLvsaVn7JsRoNKdAwB XoLrfuIyM3xr488mK9F5iB44T7fUhPhQVy15JuqR5Pg96BTg7AV+BgEA2hRTE0PSmttmeXm57P/4 8eNmPT28b4Vcu2yVIzHrGaQHdv7558srDFmVVyQjR46UkX79+ukEMXDgwIaGBj1FMqGmpkYm9O/f X7da0T0Fv6c8XjzJNXftKvuPRBYC31dTpkyRI3T9IiIAqSWyn4qKCrPuw+rVqysrKzds2CAXlJ8t f/9eomPIbtts488mK9F5iB44T7fUhPhQFy18JkZOes7fg04Bzl4uPIMAALnP1MSQtOa2WVBQkNb9 q6S3QrYWFhaalQzSA9u2bZtZP/XOqw4dOpj1GCdOnJAJxcXFZv2U6J7S9eKpvl72H0ngN+XJyz45 5k6dOsV2gJTU1dXpLV27dq0Z8qG6unp39INW9BTJsoxEtwThcQyBf+ETijb+bLISnYfogfN0S0Ho D/UWPhP1YHL/HlSBz55cJLvPIABA7jM1MSStuW3Kv6ke+9drt8xo6pJeXLZmsW2alVNcg6tXr77q qqtKSkr0NbSSZbP5FB03K6lL+uJJ9t2C3Tfrm99mzZpl1lMnrxrHjh2rN/PBBx80oymSy5qlQJIe Q3bbZht/NlmJzkP0wN3jrkGebirdD3XZrVlKhR6PWTnFNZgL92ALz55cKrvPIABA7jM1MSRt9520 eu2WGU2d98X1nUtdunQx6xkU98Ccg/b/jsfSCVbcQf/S+vJXznCnTp2Ki4uPpvKXlk6HDh3q16+f 3EB5wGzcuNGMZpafYwjwEjx6v8VnZvjWxp9NVqLzED1w95E7B3m6qTQ91Fsu7ml3DubCPdjCs5cL zyAAQO4zNTEkrf9TgpzvjEoH71uxfft22ZqVT2WIe2DOwdLSUlletGiRfel87Ngx5wQr7qB/aX35 u2DBAjm2yZMnm/UUvfHGG5WVlbIHOUh5JWdGM8vnMWS3bbbxZ5OV6DxED9zricPTTaTvod5y0bOe 0/dgy89eLjyDAAC5z9TEkORu2/Te6sf8+fNlDyl9UEQA3sdZX18vW7PyifNxD8w5WFRUJMsbNmzQ L3DbtWvX4MGDnROsTp06yeDSpUt1ZqrS9/JXjke/q2D//v1mKBUrV66Uk9CnTx95GWeGMs7/MWTl JbjVxp9NVqLzED1wnm5ecvyhHve+cA5m9x4M5ezlwjMIAJD7TE0MSRbaZvRf5zjM5lPiDqYkrd/D rocXy2w+ZcSIEXIMWfk27bjH4xzUD1R0mjx5si7oBOu2227Tccts8Cd9L3/1xdO4cePMeor0tsRl f32Rbub64nEdQ3bbZht/NlmJzkPcA3YO8nTT2xJXLjzU9UjMyinOwezeg2ZH8fg/e7nwDAIA5D5T E0PSmtumqK6uLisrC/Y/mL3p4cUym6PkeuXa5R94s55ZsccjnIMnTpyYOnVqRUWFvP6orKysi377 nnOC1dTUJK+runbtKjPjTvCWvpe/vXv3loPRD6IMQG9LXLTNWG352eQU9zzEHrBwDvJ009sSV160 zezeg7qfuHyevdx5BgEAcpypiSHJ5jtpM2DPnj3y731DQ4NZz6z169fLtTc2Npr1tirpy99gnnvu OXml1Xb+BinrbZNnk8rueUiqFTzdsv5Qz64W3oOJzh7/HgEAfDI1MSStvG2KmTNnxn77dmYMGDBg xowZZqUNS9PLXzm9RUVFWfyTywzLhZfgPJtUFs9DUq3g6UbbTEfb5N8jAIBPpiaGpPW3TWRdml7+ tjVt/CU4fGoFTzfaZjraJgAAPpmaGBLaJtKOthkKXkTCD9pmvqNtAgCyy9TEkNA2kXYzZ86srKzs FtW9e/d9+/aZDUhm/vz5et5ERUXFjh07zAYggTx9uvFQtwLcg5w9AECITE0MCW0TAAAAABBhamJI aJsAAAAAgAhTE0NC2wQAAAAARJiaGJJQ2+aPfkQIIYQQQgghJC9D2ySEEEIIIYQQEn5om4QQQggh hBBCwk+baptnRcUdtFxbAyfcveVF9CZbrq2tL0eefXbM175W3L59Dt7eNB1SmnZLCCGEEEJaZ3K8 beqr27jOuBn+EveCOmi5tgZOsL0Fu1SORA/ecm1tfakZMsTc1CjX1swk0VUnGm9h0rRbQgghhBDS OtOm2qZ3wt1tsL0Fu1SupXXciqQpKymRm7l94ULXeCaT6FQnGm9h0rRbQgghhBDSOpMXbfOMI05b wr2uYHsLdqlcS+u4FUmTCzcz0TEkGm9hEu120R13uEYIIYQQQghpDW3ztUWLxl59dUV5eWG7diXn nDP0K1/ZsWyZc4LuxHJucsZj64mtW2ePHduza1e5iuL27UdcfvneJ55wTti3bp0MyqaiwsLRgwY1 bd7ssbfY6OS47JwDTz0lN7O0uFiOQX7KsozYrX7ifaL06uTI5fjlVnQoKhrev7/cLv8TbHSma1By 6ec/L+P106fbkefmzpWRPj172hHvRHec/Bh0mizIvVZWUiKna/7EiXZr0jPpPUF3HstOSBqd33DP PXIvXNSjx8Gnn541ZozclvM/+9k9a9boHO+HnO4hLucEWbi/trZbly6yk+4VFc6TIEl6Hnw+qide d50MLr3zTtc4IYQQQghp62kFbVPnOMmr51fmzUs0wY67kmjryZdfHvCFL+hWq1NZ2f6GBp1waMOG LueeazZEDbvsMl2wO/GOTo5LJ8hVSEs0Q6fIiIzbnSSNuZiD80TpyMiBA3VBye2yV6EjHhNsdJNr ULL829+W8apeveyIdEUZmTdhgh3xTnTHyY9BxxfdcYcuKN2U9EwmnWCGYuhWP9H5+kZc4Xx0VV9x hUxI+pAzQ/E4J0hf1QXLVn0/58HPo3rFd74jB/bE3XdLI/3Jww87N9nEXooQQgghhLSJ5OnfbTpv w8A+fRruuef4iy/K8tEf/lA/u6X/hRc652hiL+tMoq1zxo+X8b4XXLBzxQpZlVfhUglkpHboUJ0w +YYbZLVPz57vrl4tq7tXrep93nmRfaX+CjvRpfQqZLeyc1mVn3J1MjLp+uud07zjfaIiV+y4isb6 er2KKTfe6HOCjc50DUpObN1aXloqm3Y9+qisHnn2Wam7ksMbNzqneUT3nPQYdJpsWj97tjQ3ubFy AnVT0jPp/1TLoHAN+olecOtDD0k90+UXHnhg+8KFstC1c2eZkPQhZxO5cLxj0PHzP/vZ1xYtklU5 A1rR+/XurRN8ngcZ9HhUy/Hbkqm1M6XfdRNCCCGEkFaeVtA2XZFKIxOK27d3jUu8L5toq77Idr6P UV67y0hlx4662qOyUladnxajzUHYEZ9JdKmeXbvKeOxVyFXbkVTjOlGRK/a8iqQTbHSma1AjtVA2 SdGV5fkTJ8rykKoq5wTvRHec/Bh02sLbb3cOapKeSf+nWgaFa9BP9IJSgyWu5Q5FRTIh6UPOJnLh eMeg49seecSOSKWXEd2/JOnNlIW4E4Su7m9okHrpfAOtlOFe3bs3bd5sRzTOSxFCCCGEkDaUVvBO 2tUzZlx1ySUl55xTcPbZOl/IsmuaRDe5Bm0SbS1s1043uci4c4K0BXsR2yLsiM8kulSiqygqLLQj SeN9onTV4yqSTrDRma5BjTQo2SSdRzrJl88/X5Y31NW55ngkuuPkx6DTpKE5BzVJz6T/Uy2DwjXo J84Lupb17tBjiCXjOtNGx12DkrjjzsHA50Ho6siBA8cNHmy3ai79/OenjxrlGiSEEEIIIW00+d42 6266SefEcs2UJBrXJNqa6KW/0Ala3jxel/tPoksl7QZJk/RE6XLsVdiGk3SCjc50Ddpc+eUvy9ba oUPlZ3lpqXOHSRPdcfJj0GnOEZukZ9L/qZZB4Rr0E+cF4y7rMcSlM23iDkrijjsHk97MpI/qoV/5 ytq77rJbNXK3xr7dlxBCCCGEtNHke9ssLS6WCYvuuEP/HFFybMuWRJdKNK6Jff2tuahHD3kJ/tEL L7jGbRK9KVHYEZ9JdKmWv5M26YnS5dir6F5R4XOCTaIzqdl4773RPUXcdu21rq3e0UslPQad5hyx yZ130nosJ33I2diLuBJ33DkY+DwIXaVtEkIIIYSQJMn3tikvymXChro67Ta7Hn108KWXJrpUonFN r+7dZWvsNwfeX1sr4/0vvHDbI4/otRx8+ukV3/mO/WxV+3kqjfX1sirHoLsSOsF/OpWVyaWW3nmn q6rpVchu9TNd5CqkkMiI/08JSnqidFmuQj/CR26LXoVctc8JNonOpE3Xzp2jOzsr0aeYJopeKukx 6DTniE3SM+n/VMugcA36ifOCcZeTPuRsEj1gontyH5tz0Od58HhU+2+bzksRQgghhJA2lHxvm/rB qk76KlnYOboay07QzJswwWyIcm4adPHFZvRMuvXwxo2uL5MYcfnlumD34DO3XXutXtDS8UTfVyEl xF7WO0lPlC7rV5JYXc49116FjnhMsPE4kxr9Zg45ftd40ugOkx6DjjtHbJKeSf+nWje5Bv3EecFE y94POZtEDxjnso1zMOnNTPqolrZZP3368RdfdEYeZrRNQgghhBBiku9t88TWrVNHjpSXxQVnn13Z sWPdTTfJoOtSuhrLTrCZNWaM/rIoduvC22/v17t3h6IiuaJuXbqMGzxYv1tCs2/duuorrpCtRZ7f g580ckEpgV07d9a/mnPuQWrA2KuvLispKWzXTn6O+drX7Lcv+knSE6XLcgBy/HIr5LaMHDjQ+YUW SSc443EmJdNHjZLxiddd5xpPGt1h0mPQaa5Bm6Rn0uep9r4WjzgvmGhZ4v2Q0yR6wDiXbVyDSW+m 96Na2qauutA2CSGEEEKISY63TZKxJK0ESSf4T/eKCtnVq/Pnu8aTJsRjIIQQQgghhKQ3tE2iSVrk kk7wmUV33CH7if3qSD8J6xgIIYQQQgghaQ9tk2iSFrmkE/xEdyJmjRnj2uQnelnXICGEEEIIISQX Q9skmqLCQolr0JmkE/xE9tChqGjs1Ve7PkPVZ0I5BkIIIYQQQkgmQtskhBBCCCGEEBJ+aJuEEEII IYQQQsIPbZMQQgghhBBCSPihbRJCCCGEEEIICT+0TUIIIYQQQggh4Ye2SQghhBBCCCEk/NA2CSGE EEIIIYSEH9rmWeMWOePaGiDTqqurevVyDWY9Z0W5BjMcPQbLtdWmX+/e00eNcg0SQgghhBBC8iy0 zXDbZmN9fcHZZ2+oq4sdnzN+fN8LLvAuWulLtq7XGT0Gy7XVRs6enEM5Y65xQgghhBBCSD6FtmkT StusvuKKspKSky+/7Bo3BesU19YMJFvXGzfeByNnr7y0dMTll7vGCSGEEEIIIfkU2qZNy9vmgaee Kjj77FFXXukal/Q+77zZY8c21td7F630JVvXGzdJD2b0oEFyJuV8usYJIYQQQggheZPcb5v7N780 sm5Nh5olRTcvHnXv2qaXXnbVwgObXxp73+OltUsKb14sP2VZRuxWyWtPbZHBim8tkwkltUuG3vPY jqefd07QtLxt3l9bKyVq9YwZrnFnkhatRFl7113DLrustLi4sF27osLCHpWVY6+++rVF5oDj7tY5 qMtNmzdLkZOLdygqGt6//94nnrCTJfsbGkYOHCibZIJ0Zpmsl7ITpP7JleoxyE9ZdhVCOR4ZrCgv lwkl55wz9Ctf2bFsmXOCxrXb2Mg5lAnzJkxwjRNCCCGEEELyJjneNo+8sLXrpOXaAzXSPHVBb8Ch LVulRtqtGhmRcXMLpducuVUitfOVJ56zE5zTXIMpRdqgdKTtCxe6xp2J9qyU2+a06mq9YCyd4Fy2 cQ7q8ojLL9cF1ams7ODTT+uEI88+27VzZ7MhSpqnLuiEQxs2SI3UEUtGZFwnSMyog9TOV+bNsxOc 01yDzkhrlQlyPl3jNkn3QAghhBBCCMlycrxtTn3oSWmAve5cseuZyG8jd298oc93HnXWwskPrpPl 3lMflU3OCZMeXKcTJANnrGqof/b41ldk+eiLW2vmPi4T+k9fZSdonLsNlvLSUqlAx1980TXuTLCa VFRYKJeaW1NzeONGHdnf0LDyu9/t17u3rsbdrXNQl3ufd97uVZEb3lhf36dnTxmZdP31OmHqyJGy 2qt7912PPiqrMk0nCJ0w+YYbZNnuwU6we5AM7NOn4Z579Awc/eEPa4YMkQn9L7zQTtBEdup5EmQP MkHOp2vcJukeCCGEEEIIIVlOjrfN86f8QBrgtobN9oi3N2x21sKed6yQZRl0Tegx+Qd2xJUTr7wi E4pvWewad+42WArOPjtpBQpWk7pXVMilhlRVVV9xRe3QodIzXb8wjLtb56AuO3/vKssy0qOyUlfP /+xnZXXbI4+4Jghd7dm1qyx77CE2J7ZulQnF7du7xiM79XGiCtu1cw3a+NkDIYQQQgghJJvJ8bZZ ePNiaYAnX4n8WlIjy85amGhC0c2ny+TqlRuvuvuxktolBeMjF9TIsp2g0XHXYEqRdpS0AgWrSVIC tew5ST+0fzapI3Z+7KAuOz8sV5ZlxDY6PfjYCcJ7QlFhoR1ZPWPGVZdcUnLOOVq8lSzbCRoddw26 IhM82iYhhBBCCCEk19Pq22bdgqd0fmzsRTRxB1NK+t5Jq9mxbNnau+6qu+mm4f37F7dvL/sZUlWl m2J36+qKuuzRFVveNuXAotPjsBfRxB10Rt9J2+Xcc13jhBBCCCGEkLxJjrdNfaNsS95JW1q7RFYX Ldugf7cpORbzqbaa2OKaavRTgpxvRo1NtGd5FS2fObRhg+zHNr0ORUWyav+qU+J6H6wue7wPVn93 2pJ30pYWF8vqojvusH372JYtkcvH3N7Y4uqK7tnjU4IIIYQQQgghuZ68+JSg86f8QD8laM+m+J8S 1OvOFfopQTLtoqlnfEpQUbRDbnhsk9ZImTD47sece7CRncig9FLXuP/MnzhROlI6vgGl7wUXLJg0 aeeKFdrQDj799MxvflP2IyVTJ/S/8EJZrb7iiiPPPiur0tb07zCFTtBl+yFAjfX1F/XoISNTbrxR J+inBMmldMKeNWvifkqQ7EE/JUim6R7spwTpRxltqKvTg5QJgy+9NHL5mNsrO5FB6aWucZv66dNl gsc3oET3mvJpJIQQQgghhGQuOd42j7ywtfLMLzgZ8/21uqA3INE3oBw89Q0o+gm0zmhBlegEm3mL n7ZzYrf6yYGnnio4++xRV17pGpdoO4rlmpYoZnaM2WPH6oQV3/mOGTpl1pgxuuDcg/1SE+X8/hKp qZUdO5oNUWO+9jVd0AmJvgHFfoeKfgKtkxZUoRNspEbquHJtlYy4/HI5k64v83Qm0QUJIYQQQggh uZIcb5uS/ZtfGlm3pkPNkqKbF4/+/tqm6PtgnR8CJMVy7H2Pl926tPDmxfJT6qhcxG498corUx96 UvpnwfhFUlzrFkQKTKI+Oevhhk4TTHd1bfKZ6iuuKCspiX2PqLajWK5pifL28uXS3C7q0aOosFBq WMk55wz9ylc21NU550iF69ali2ztXlGhvxV0XoUuN23ePHrQINlJh6IiaZ771p3+nhjJ/oYGGZRN MkGmyWS5iH2zrkSK5dirr5YbWNiunfyUOioXsVtPbN06deRI6Z9yDFJc6266SQb1eu0cGynDncrK 4m6Vsyc7l8LpGncm7gUJIYQQQgghOZTcb5uuNG58QaqgxxecZDd71qyRrtVwzz2u8XxMY329NDqP LzhJU9bPni3nUK7dNU4IIYQQQgjJp+R+2+w3fVVD/bP6GT87n3m+6rsrpW1OfehJcwNyLzO/+c3+ F17oGsyL9OvdW3qyfsbPzhUrqnr1krY5deRI55wMZMAXvjDjG99wDRJCCCGEEELyLLnfNvV9rc50 m7T88AvmzzJJiIm+O/UM3bp0cX7OLSGEEEIIIYT4Te63zW0Nm6vvXVtaG/m7za6Tlk96cN2hU58A RMLNtkceqb7iitLi4qLCwq6dO0+6/nr7GUKEEEIIIYQQklry7u82CSGEEEIIIYTkQWibhBBCCCGE EELCD22TEEIIIYQQQkj4oW0SQgghhBBCCAk/tE1CCCGEEEIIIeGHtkkIIYQQQgghJPzQNkneZeV3 v3vk2WddgyTVbLz33ndXr3YNEuJKK3i6tfGHegvvQf5DQQghpEWhbaaaadXVVb16uQYzk369e08f Nco12AYz6sorX50/3zVIUk3t0KGbvv9912CGw7NJk8XzkDSt4OmWCw/1LKaF92Cis8e/R4QQQnyl FbTNxvr6OePH973ggrOiXFvDjVxXwdlnb6irc423PH5uhVyvXLvMdI2nlJ88/HBhu3YSWXBtylg8 bqOfxH3xNPjSw7LLKTf+1jk4+YbfyuCgiz90DvrPG4sXy3H6rwE7li2beN11vbp371BUJGe4a+fO NUOGBP61QLBT5P8Ysv4SnGeTJn3nQeNxEvykFTzdWvhQb8nZCyXROzDke7DlZy+UZxAhhJDWn1bQ NvVfYsu1NdxUX3FFWUnJyZdfdo23POboT3Ft1cj1lpeWjrj8cte4/+x94olOZWU9Kit7du0qC/vW rXNNyEw8bqOfxH3x1Fj/WsHZnxS2+2TPmp/riCzIiGT3qtfttJQypKpKjvOFBx5wjSeK3i6X4vbt tz70kGumR+QxtuvRR2VBLis/ZVlur92aNHqlLnGPIettk2eTJn3nQeNxEvykFTzdgj3UW/hMDDF6 01yD/hP3HtR9uqR09lr+DCKEENIm0graZu/zzps9dmxjfb3+e+naGmIOPPVUwdlnp+kFh89bMXrQ IDkGORLXuJ80bd78uX/+566dO8vFJZUdO8qqDLqmZSDetzFp4r54ktx27X7Z6/D+h3RVFmS1dujv 7ISUoveF3C+ucY/0veCCeRMm7FyxQpuDLAz4whdkJ726d3dO887qGTMqyss33nuvXFB+yrKMuOZ4 xP8xZLdt8mzSpPU8aLxPQtK0gqdbsId6C5+JISZy/4V9D4Zy9lryDCKEENJW0pr+brOF/yQnzf21 tbL/dL/g8L4Vcu2yVV4luMb9ZNDFF3c591z7Gxj9zYwM2gnesQcm56Fbly6F7dp1r6iYP3Gic85r ixaNvfpqeVkmW0vOOWfoV76yY9kyu1X3EJed4yeJXv4e3rit5Jy/y85eW/Tm9oVvykJx+7/LoGua z4wbPFgOrH76dNd4Sjm8caPsRF6Qndi61bXJI3vWrOnTs6dcUF4RtvzzORIdQ3bbZht/NtkkOg/R A+fpllpCf6i35JkYOdG5fQ+6EuDsteQZRAghpK2Etuk/wy67TPa/feFC13i48b4V8upEtsqRuMaT ZtL118urYX1jmI2syuDE665zDiaKHtjssWN1wXK+QDRDDvIq6pV58xJttewe/MTjxVPdTe/Lzvpe cFQiC7LqmuAz+xsa5FWXvDp0jaeaps2b9QYe/eEPXZs8ItVFX+PKT1l2bU01iY4hwEtw3U9crplJ 08afTTaJzkP0wHm6pZYQH+qaljwT9Uhy/B50JsDZC/wMIoQQ0oZC2/Sf8tJS2f/xF190jYcb71sh 1y5b5Uhc4xmIHtj5n/2svMKQVXlFMnLgQBnp17u3nTOwT5+Ge+7RUyQTaoYMkQn9L7zQTtBE9xT8 nvJ48XT8xVe7dv5Y9i2RBVl1TfCZKTfeKEfo+kVEgEgtkf1UlJe7xj2yesaMyo4dN9TVyQXlZ8vf v5foGLLbNtv4s8km0XmIHjhPt9QS4kNd0sJnYuSk5/w96EyAs5cLzyBCCCG5Htqm/xScfXZa969J eitka2G7dq7BDEQPbNsjj9gRfedVh6IiO+LKia1bZUJx+/au8eie0vXiqX76btm3RBZcm3xGXvbJ MXcqK4vtACml7qab9Jauvesu1yaPVF9xxe5Vq2RBT5Esy4jdmmo8jiHwL3xCSRt/NtkkOg/RA+fp lkJCf6i38JmoB5P796Am8NmTi2T3GUQIISTXQ9v0H/k31WP/eu2Wa6v/JMLGg20AAAV/SURBVL24 bM1i2/QeXD1jxlWXXFJyzjn6GlrJsp2g0XHXoP8kffEk+5a4Bv1H3/w2a8wY17j/yKvGsVdfrTfz wVtvdW31GbmsaySlJD2G7LbNNv5sskl0HqIH7h53DfJ006T7oS67dY34iR6P92Au3IMtPHtyqew+ gwghhOR6aJv+4/3eP712y7XVf7wvru9c6nLuua7xDCTugTkH7f8dj2Xna+IO+k9aX/7KGe5UVlbc vv3RVP7S0plDGzb0691bbqA8YDbee69ra2bi5xgCvASP3m/xuWYmTRt/NtkkOg/RA/d64vB006Tp od7yxD3tzsFcuAdbePZy4RlECCEk10Pb9B/9PA/nO6PSEe9bsX3hQtmalU9liHtgzsHS4mJZXnTH Hfal87EtW5wTbOIO+k9aX/4umDRJjm3yDTe4xn3mjcWLKzt2lD3IQcorOdfWzMTnMWS3bbbxZ5NN ovMQPXCvJw5PN0n6HuotT/Ss5/Q92PKzlwvPIEIIIbmettM2vbf6yfyJE2UPKX1QRIB4H2f99Omy NSufOB/3wJyDRYWFsryhrk6/wG3Xo48OvvRS5wSbTmVlMrj0zjt1ZqpJ38tfOR79roL9DQ2uTX6y 8rvflZPQp2dPeRnn2pSx+D+GrLwEt2njzyabROcheuA83byS4w/1uPeFczC792AoZy8XnkGEEEJy Pa2gbUb/dY4j7jTXYEpJ6/ew6+HFck0bcfnlcgxZ+TbtuMfjHNQPVHSafMMNumDna2679lodt1wT vJO+l7/64mnc4MGucZ/R2xKX/fVFumOuLx7XMWS3bbbxZ5NNovMQ94Cdgzzd9LbElQsPdT0Sj8Hs 3oNmR/H4P3u58AwihBCS66FtppTqK64oKykJ9j+YvaOHF8s5R65Xrl3+gXcOZiyxx+MaPLF169SR IyvKy+X1R2XHjnU33eSaYNO0ebO8ruraubPMjDvBO+l7+dv7vPPkYPSDKANEb0tctM3YtOVnkzNx z0PsAbsGebrpbYkrL9pmdu9B3U9cPs9e7jyDCCGE5HRa0ztpM5A9a9bIv/cN99zjGs9M1s+eLdfe WF/vGm9rSfryN1iemztXXmm1nb9Bynrb5Nmkye55SJpW8HTL+kM9u2nhPZjo7PHvESGEEF+hbaaa md/8Zuy3b2cmA77whRnf+IZrsA0mTS9/5fQWFRZm8U8uM5xceAnOs0mTxfOQNK3g6UbbTEfb5N8j QgghvkLbJHmXNL38bWtp4y/Bic+0gqcbbTMdbZMQQgjxFdomybvQNkMJLyKJn9A28z20TUIIIdkM bZPkXWZ+85uVHTt269JF0r2iYt+6da4JJFHmT5yo501SUV6+Y9ky1wRCXMnTpxsPdZsA9yBnjxBC SGihbRJCCCGEEEIICT+0TUIIIYQQQggh4Ye2SQghhBBCCCEk/OR02wQAAAAA5C1TE0NC2wQAAAAA RJiaGBLaJgAAAAAgwtTEkNA2AQAAAAARpiaGhLYJAAAAAIgwNTEktE0AAAAAQISpiSGhbQIAAAAA IkxNDAltEwAAAAAQYWpiSGibAAAAAIAIUxNDQtsEAAAAAESYmhgS2iYAAAAAIMLUxJDQNgEAAAAA EaYmhoS2CQAAAACIMDUxJLRNAAAAAECEqYkhoW0CAAAAACJMTQwJbRMAAAAAEGFqYkhomwAAAACA CFMTQ0LbBAAAAABEmJoYEtomAAAAACDC1MSQ0DYBAAAAABGmJoaEtgkAAAAAiDA1MSS0TQAAAABA hKmJIaFtAgAAAAAiTE0MCW0TAAAAABBhamJIaJsAAAAAgAhTE0NC2wQAAAAARJiaGBLaJgAAAAAg wtTEkNA2AQAAAAARpiaGhLYJAAAAAIgwNTEks+596P8DFzZMN+MZTiEAAAAASUVORK5CYII= --=-EHFBo/s1N37XzgS2rKao Content-ID: <1550404866.14010.119.camel at jeltsch.info> Content-Disposition: inline; filename="query_19_02_16b.png" Content-Type: image/png; name="query_19_02_16b.png" Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAABM0AAANSCAIAAAD53663AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAOvwSURBVHhe7N0LlFTlveb/XqtDCMNBhoGQDgsZ wuiwGIdBJNE+Douow9EoMUr4d0SDxgsSLlFUBInHGMQb6iGGYJSbBAFREewoeggiXhARFUFAFIxE AUVUxCAQRIT+P1W/t3c2b9Xetbuqr/T3s95Va7+/9619qdpF74eqri7aunXrpk2b1q9ff9VVVz06 f8FmAAAAAAASU5D8++HImQAAAACA/JEzAQAAAADViZwJAAAAAKhO5MzqUVRU5JZyST7TjBo1qqys zHXqpdatW7/77ruuk69qWUkNyXvfop7ral9hmM1JsmmdV9OnT7dlAAAAoBpVIWcuefaZcXfemtme XrzIzahd2sNvf/vbrrN588svv9y9e/dvfOMbpaWlq1atctXDvfbaazbnBz/4weuvv67K7bffftxx x33zm9/s0qXL/PnzbVomb1ty44036pJdq7JufAAIjyaJCoG1a9e2b9/+rbfe0vLkyZO/853vaDe0 YKM9e/YsLy+3ZfHWHHTvvPPO733ve9pV3d51111W1Ojpp59uy9K3b1+br9swVXJu94wzznjggQds 2e6lx/Okk0567rnnrBjPthJeiccmJJF8pkk4P2bf4kWtP/MRE+vGSzLN5kTNDG9a51WnTp3s7AIA AACqURVypiKlhjKp7mbUrtS1eehiWvFy/PjxWrjiiit+9rOfWdGj+ogRI7Sg2wsvvFALffr0sTik ENWuXbvUpGy8bd17773Kq5ZUTXg0U3g0fqZn7Nixv/rVr2y5ZcuWr6S1aNFC3T//+c8nn3yyDRlv zdbVripLPPPMM1rW7THHHKOKjXbt2vXZZ5/VsiK6lm1+5u7l3O4vf/lLxXVbtru/9957FuCtmER4 JZ7MXYqSfGaVxOxbvKj98VZYvQdocxJuWmfXhAkTXAcAAACoJvnkzA8//HDbR9vkgw8+VNfLmatW rVIO+cY3vqHoUlxcrEr4kteWNee000775je/2aFDB3sXUfW1a9cq6Wm7zZs337Bhg4rvvPOOso0q qXtmE16zbUu081qDLXtat25ta37rrbe++93vWtEoGv2X//JfXCeb8LZ0gIpbrpOm0SFDhtgRLVy4 0FUradTY8vDhw7WH2hlFvvjjPfPMMx999FFb1jSFPWVCO7qs++CW0qx7/PHHh9+n1dqUkLWgUUXr vn37alnZQ8vB7qXmheTcro6iX79+thy+u73Zq4o9s1rWSrQ/qutWyzZqdwmvRMnn29/+th7Mn/zk J+raHLHlYG2iJ1Fr0yN555132qjRcuY5psopp5ySeWZmzvR2ILxvwSGUlpaGu8ERaW0//OEPbStR 6w+vUGyaeNuVzAP0TrPMldvaEm5a54OdAwAAAEA1qlrO/OCDDz7evv3THZ9+9tmOHZ/t+OTTTz/6 aJuXM3XZesUVVyi26bI7fMlrbPmcc86ZMWOGFp544oljjjnG6sHH+fr3729vueja+tJLL7ViVuE1 f+9735syZYoWnn32WV2aW9ETZFHx5owdOzb4XGhW4W1961vfssv39u3bBxf32rqOevz48T/4wQ9s WiB8Xy1rjmaWl5crVKgSc7zf+c53NNOWNaqkpyCqhcw3FUVr9qiowwzWIFrWzmvBRjt16vT000/b G49WSd/PUVdyblcPuGVXsXtpKyNGjFDcskrwzCrm3XjjjVrQrY2K3SW8EgV+nTxayZgxY9QN9kTC awu8+OKL9n8E4ZmZ55jylUKaVvv666/bTLvNnOntQHjfevfubW+Jm8wj0tpsK8p4UesPr1CC3fa2 GwgfoHeaZX0pBbc5N61XepcuXVwHAAAAyGXBgizf4JNZrFrO3L59+2effbbri1270zR7x6c7vJyp 9KXrYFsOX/IaW9YcLZjM9zwVZo4//ngt6Eo6/nf8wvdS3uvQoYNilS797aI8UzhbhpenTZs2a9Ys 14kQ3paWdb2uBd1RG7VKeiQVsXR0thzw7uuWKpdjjtcLwwF7U1HBOPybk+E1i3Xjc+bNN9+sNeg2 qHgr8WTdrtYZPOC6u+gR6NOnj4KWVWxIgnMj/CjZhPBKunbteuaZZ95zzz32q4PhNYSXtf6LLrro e9/7no7I6t621DV2jqkSfAWOisFt5kxvB8L7FhyCCbrBEelWL5/0YOT6wysU1W3B227MAYY3l1pv WvilZLc5Ny12PgAAAAA5KST+7Gc/mzp1quunqati+FOZUrWc+cnHH3/++ed79uz5x759//jHvt1f fKHY6eXMcLDR1W1wa2xZl7/BHBOeI126dJkyZUrwllcU717mySef7Nmzp+scTunIruB1dFq2osKS 4qItxwhvq0WLFkFisSgYjOqhy7xwD98363LU8WonvQdKlPRspvebk+E1i3WVYINP3oqWLdPaqPZW wcY2YRVvJWFR2xWt034FNPPu4UrwvOvWYpIEE4KV6DlS1vrJT35ib7WF1xBe1tk8duzYN954Q2uz etZtBaLOzMyZ3g5IsG/e5MwjCk+IWr8EK5Rgt73txhxgcJplrjw8M+emtZ7gGAEAAICcvKiZNWRK 1XLmp59++sWuL7788suDB7/++sCBf+z9x+d//9zLmaWlpbfemqo88MADdrH77W9/u7y8XNe7d911 l1X69OmjC2hVdA19wQUXqBJcQJubb75ZYeaRRx5x/QjevWTVqlXagXvTX3WTSQ/Btddeq4Wrr77a tvvggw/a2245hbel9djX8/zhD3+wjy9q1PLAFVdccc4556Rn/fMuuty3X96T8HqC5ajjVQi0z+WG nXzyycrSWvB+czK8ZrGucsv3vve9p59+Wsu61bL2ORgNs0pmPRC1XenXr5895lGrNaeccsoNN9yg hX//938PQnUwIViJnh0lrtdee83eeYt69PTgPPfcc3rMdS+rh2dmnmN6pu5M/5ajzkabb7eZM70d kGDf9CCMHj3aipJ5RJpg5//06dOj1i/BCiU4KG+7mQeoW+80i3opJdw0v58JAACAqgqiZlTIlCw5 8+23316zZs2rr76qKOXnzE8+2bVr175//OPAVwf2f7V/z969n3/u58xnn322U6dOuuL/yU9+Yhe7 ijqtW7dWJlHGs4qina6ANUd0HayK1QNr1679n//zf7pOBN3FuH46ZrRr184+zJnV66+/3qNHj298 4xu6tW+LdauoZNMyueHKCdp/xQmtp3v37hZsiouLbc2qB8E1mK8Aedxxx1l4CIoSLEcd75gxY4Lv mzXKSEFCC//mpLrhNUvQVbzv0KGDugqZ4b9rYgsBq+g2zIYkZruiZPXLX/5SC+G7mHBFj5UesfDj JsGEYCUKQnoqdc7YV6FGPXpPPPGEnm7N1ENk9fDMzHPsmWee0ZmpZ0rr1z6oYvfKnOntgAT79uKL L2oTuvtJJ52kbuYRaSvHHHOMKpdeemnU+iX8iBkte9vNPMDM0yxz5TbTbuM3LVpzcIwAAABAQhY1 o0KmZMmZb7311htvvLFixYphw4aFc2bU389U3c3IYBe7ebj55pt1New6jUDU8Qbfwev69dUDDzxw xhlnuE5VKO0HXx6b90qq6tFHH63qh0Wrfd9q7WAzBZvWK12RWLdWBwAAAJJTSInJKVly5rhx4265 5ZYxY8acffbZ4ZyZh29W/g5eVZ100knBL0CKvSET5gZiuakhbiCWmxriBmqSd7xho0aN+lnEnwOt P7Tz9t25VaWHN3iLNe+VJPfd735XW1S4Ki8vd6Vkqn3fauFgowSb7t+/v30bLQAAAFC9suTMqN/P BAAAAAAgJ3ImAAAAAKA6kTMBAAAAANUpd86k0Wg0Go1Go9FoNBqtSs3ly0qH5cy/1pjJRZPVKgAA AADgiDNmjFtoEFwWjJZkTjxyJgAAAAAUhJzpIWcCAAAAQEHImZ56mjOLBk225vpAXStKcx0AAAAg hJzpqcucGRMmY4ZQ+zZu3Dhu3LjS0tKorPXqq6/26dOnefPmTZs27dChw3XXXbd79243lsy+ffuu v/76kpKSJk2atGvXTsv79+93YxUVq1evHj58eNeuXZs1a6YJ2sSQIUN0XrnhZHIehSxatOiMM87Q VnQgJ5988uOPP+4GyJkAAACIRs70kDORm0WsgKtWWrZsmbKfG6vUs2dPN5yMYqq7ZyVV3FjGDhjF 2meffdbNSMDdrZKrhowfP96Nhbixyru7DgAAABBCzvToynlrUdGmoqL13/0uORPZdevW7ZZbbtm4 cWPWrNWrVy8VBwwYsH37dnXff//9vn37qjJ79mybkNPChQs1v23btitWrFBXt1pWRXWbUFpaOmHC hHXr1h08eFBdLZx22mma0LVrV5uQRPxRvP3221a/4IILdAiq6Ly9+OKLbVRs1HUAAACAkEaSM3V5 7JZyqYP3M4MMmdlsggSV9dt29rrriaZDp7W4cvqwOcv2ffW1m1FRsWvf/hGPvlxy7awmQ6a2ueaB QbOWbt/1DzeWtnPvl1fPXd52xExN0K0mq+LGKgUb2vb3vf0mPd1s2P1a4X0vrNfQibeVq97x13Ns pnS/eb4q3cbOc/0EtmzZ0r9/f/tAqZ6V3bt3h+NKeDngFQ8cOKB01Llz5yZNmmg9WpuloLDgLprZ qlWrli1bTpw40YZOPvlkDYUjn4W6Hj16uH5VpLfj77AOTcV9+/a5vp6aXbtUKSsrc/1cdFCaryTp +hUV2n9VFPlcP8OOHTs0obi4WI+PKyWmO4rrVLriiitUPPHEE10/g91Lz6CeRx1ys2bNdICZzwUA AAAaocaQM3UZbFw/lp8zb45miTE/eefM9tfNDpbVlBVtwt79B5T3wkNq7UbN2rHHpR1N6HrTo94E 3SWcVCUYOm7M3GBZTUOTl75ly6++94m6+w8cLB48Rd0b/vxa+q65ffLJJyUlJZZPjAUqsQnh5UC4 ePDgQXvjLqxt27YffPCBTTBWn6zHOMSGpk+fruXwp1iVjlQJh7rk0iv2d9g+NJuZM9u3b+/6uXTs 2FHzdZ64fvq9RFU6derk+hmCxK5tuVJidkfXqdStWzcVH374YdfPYPcKnkGj58LexQUAAEBjdsTn TBcxK7lqtCw5M5ULM1RjzgxYilNz/ZBgaPgjLx08dGj2ir9at+2ImTZhzIKVVhk5L/VJy7sWrbFu EESDCYNmLdUahjz4onVVtwnGimqdrn9oxd8+VmXn3i9tnbu//KrJkKkaum7+K+ouWLPZZlrsTGLE iBGKIj169NAjoO7bb7+tZcsnNiG8HAgXx40bp+XS0tJ169apq+A6YMAAVYYNG2YTTPoeqQ2Vl5cr mip6adM2dODAgTZt2mhUT7G6O3fuVCyUHTt22IQqsQ25TiWFWBWDz83qdLIo26xZM5uQk2Zqvn0m 9uQ0Lcev4eqrr9aEdu3auX5V6I7iOpVsHxTgtebmzZurq+NavHixG668l+Konkd1N27caM+m5tsE AAAANFpHds504TIdL91SrqhZ33OmfdJVQdG6xYOn2ITgvUqlwfAExUVvwsbtqYdJt9bt8ttHbIKx otryTVnelbp4xnMaso/OXl/+qpY7jH7QhpLo3Lmzcoj9zqHRcjqtJM2Z9iZb+MOZWd8qTN+j6L77 7nP9w40cOVKjQ4YM0bJ9HvWcc86xoapKb8ff4UWLFlk9YJ9BVZp1M3Kxe9myQrVyphWj1nDbbbfZ XWLefoxh93WdSlYcPny4LQSC3xG1buazeeyxx7o+AAAAGqvGkDNdJ6ObVX3Pma6fUbF3GjOb6t4E 64p1mw6d5vppVlRTUnWlkOc3brPRV9/7pPfdT2ph+CMvubEEiouLlUPsbTpjb9OJdcPLgXBRQcu6 Hi+AWTHqE6SKqRpt1qzZ7t27TzzxRC2H/1xHlaS34++wLF68uFevXvZbi4pqW7Zs0bSYdyM99l5i 5gOVuYYDBw4MHDgwtRNFRXfffberVpHd3XUq2W+Z9u3b11L99u3b7a3j4CPH6Ttl2cnkcRoAAABH qiM+Z7qlSnnmTN2GBfW81VrOVPMmWDd4wzMqZ7p+hk7XP6TRkfNW2Aqf3fChG0ggj5zpTYjKmWIT TGbFc8YZZ2jCsGHDdNumTZvwLlVJejtxGzJz5szRtORfBpvw9zM/+eQT+25bHcKCBQtcteq0BnGd Su3bt1cx/Gc/9+/fr0qQddN3yvJsKqC6PgAAABqrxvA9QFXSUN/PDD4Wu2vfP/+af1hVPzfr+hnG Pvm6RlsO/5NuW101w1WTOfbYY5VDYj43a+/jhX9V0pvQvXt3xZjwV+xkFb5LVkplNkeuuOIKV606 W4PrRLN3TYcPH+76uST5vtmVK1daFLzooosUOF01L1qJuE6lfv36qRjOmfZVQ17O5HOzAAAAyETO 9NRlzmw27H7LeKu3+N9JY3U118+oBF/z02/S01t2prLB/gMHy1e/d9rv3Ntc4e8BUjf4HiDlRptg rKjm+hm0cvuaWbWLZzznqskE3wO0ceNGdfUgKzem04oLOaeccoqWBwwYsHPnTnWVW7p06RKeMH78 eC1r2vLly+2dtO3bt8+YMSP8/bESvkuUDh062LRly5a5UtXZGlwn5OKLL7Zj1LmkcKg5xcXF9n05 SeT8+5kzZ85U3tYjqbRplUKkjiHjKGbPnq1i3759dQjq6nG2A/E+N9u1a1c9j+rqeO3ZHDlypE0A AABAo0XO9NRlzrxg2pIg5llzA9nin1fZ99XXpeNSf98yswUT7M9dhpsqUX/XxPWzOWPCUzZHOdaV klFW8f6uiUUXsQlKjNYNjB071hZsgpx55plW8bjhtMxKpltuuUVzCvmC1kxuONsEJWQ3lkyfPn3c PSup4said0D278/+hnYmd4cMbrjyi3PDmjRpsnRp6v8pxCrBM2j0eBb45ioAAACOAORMT5acGcUS Y36y5sxPvtg3aNbS9tfNjvrOnviKEuMtT61SdGw27P7iwVM6jH7wounPhb82dufeL0c8+nLJtbO0 ft1q2b69NixztZkmLFmnCU2HTjtQ9V9r3LJlS//+/Zs1a9a0adOLL7547969lk/csFY+YULHjh2L i4s7depkHxz1Jsh9993Xq1cvrUTTNHnQoEGvvvqqG0vLvEumG264QXOSf5Y1zNafyQ1XVDz++OMK ado97aSCcfA+ZHL79u277rrrFNsU7XR7/fXXhwOk21421Zgzd+/erX3o0KGDDkTPl4Lu8uXL3Vjl 3TVHz6NGdaTKnHp+3TAAAAAaMXKmp6jo54flzLACs2VY1pzZUPS883HlzP5Tn3H9wlhccZ1apByr 7QbvzgEAAACoLkdezny9KtzdQorGvEjOjLNo/VZ7w3P2in9+G2oh6iRnTtbDn/FXNwEAAABUC3Km x//cbBg50xKmWrtRs/L40GxWtZ8zbYsyduxYV6rkBrJxMwrmVpeNm1Ewt7ps3AwAAACgJpEzPeTM OE2HTlPrdP1D4V/7LFDTNNepFfbLhAMHDsz8s5m2M1m5GQVzq8vGzSiYW102bgYAAABQk8iZHnIm AAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABAQciZHnImAAAAABSEnOkhZwIAAABA QciZnjrOmUWTB1lzfQAAAABoaMiZHnJmY1d0OFdtyI6YAwEAAEBDQc70kDNzqIU9fP/994cNG9ah Q4cmTZo0a9asT58+ixcvdmM1z1JZwFVrl236lFNOcf2KCi1b0fWrIu87AgAAAPkhZ3r4/cwcajpn Pvvssy1atLBoFOaGa1FdbVds08XFxXv37lV39+7dWraiTQAAAADqM3Kmh5yZQ43mzB07drRq1Upp 6tJLL924caMqBw4cWLx48dlnn20TalMd5jrbdPfu3efOnavuww8/3K1bNyvaBAAAAKA+I2d66iZn BuEtaG4gzSp/XP9cs/uHHfvwDc9v23jmf/6hydQhnR/5zZrPtobnqK3esaXH/Fs12uWR3z61eZ2N mp1f7r16+dy2M0doVLcjXn5UFTdWKVjPtr1/7/f0JG2xZNa1961/IahnNnfPtAnrlpxYfpvupU3o jgOevX/59k1uLIGxY8cqSvXr18/1s9m2bdvAgQNbtmzZpEkT3WpZFTdWmdDmz5/fokUL5bTt27dr nc2aNevSpYue1mDC7t27L7744qZNm2qorKxsy5Ytdvcwm+k6h1P6veWWWzp37qx9aN68ef/+/d9/ /303VlGhXdIdjzvuuH379qmrW0uJqtuEnNJbLrrxxhsvuOACdbX+66+/3oo2QV599VWtsF27dtoH HWzfvn1Xr17txtJsfsBVKwXF8ePHd+zYUSvp1KnTxIkTbRQAAAAoBDnTU39zZvGUwbagCGcLaoqC 4Tlq7WaNCpZ1lyCI7j2wv+ujNwVD1rrNG7vv669sggmGjps7JliOb+6eFRUKrt6QNTecQK9evRR+ nn32WdfP8MknnyhZWUYKqKK6TbCKvSkqp512mi3IgAEDggnKb7ZgSkpKgjUEbMh1Qg4ePBherWnb tu0HH3xgE7xg6cXOJNKrLFKSVJDW5nS7bNkyK7oZlXPClBWff/55N5wxwVUrWVFp2RYCs2fPdjMA AACAfJEzPfXxe4Cssu6zD1fv2GLLKz99/+3PP9JC25kjwnPUBr4w8+ChQ4OWzrLuRc9NtwljVi6w ioY0YciLD1pXdZtgrKjW6aHrV3z8N1V2frl35Ip5NirBBNcPaTptqA0t/egddQ8cPLj4g7fO/ss9 NppEs2bNFHWUrFw/w4gRIzRBKe7tt99WV7c9evRQ5eqrr7YJqaiUTqpBMFu8ePGKFSu00KFDh2BC sIaNGzfaGkaOHJlewT/ZTNcJGTdunOqlpaXr1qXeLlZAVYJVZdiwYTZB9BTbb5leeumlutWyfQw4 Id1FtKAAPHbsWOXMcNH07t17/vz5+/fv1/KuXbuGDBmi0fBXBwW8OxordunSRWlWXa3Bsreivk0A AAAA8kbO9NTfnJl1WdEuWLam/Knuxr9vt2772dfZhODNTA2FJ3R55Lc2wVhRLerzrsEE1w8J3krt u+i+h999bdve1PNRJRZ+XCebzp07a4Jyo+tXVFiGPPbYY62bXkEqqYq3rBAbTIhZQ8Bmuk6IvVcZ /qCsQpoq7du3d/20OXPmpFeQomVXTcbupQXF1DZt2vTv3z9czOrAgQMabd68ueuHZL2jFZcvX+76 6V+OVcUeJQAAAKAQ5ExPA8uZxVMGB8vhIbFuEESDT9taV7wJxopqBw8dcqXDBRNcP0TZMvhwrzWF 2MlvLXXDCdj7mYpMrp+hSZMmmqDc6PrpT7Gq0rRpU+tqWbIuFxcXB8WYNQRspuuE2D5kUt3NqHTR RRepfvHFF7t+YrZCLZSXl2vBYmpQNCr26dOnRYsWwVfRih2jx4Zcp1LyIgAAAFBV5ExPA8uZ3nLQ VUq0blTOzJxgrBhMyxQ/4f3dO8a+/mTfRfe1/NPwYOaNrz3hhnMpLS1Vzon5/cxCcqYt20LmGjJT os10nZConCluRtq+ffvs3ddjjz02+W9mmsy1Sbh42223WTeTTQjLWk9eBAAAAKqKnOnRZfbWoqJN RUXrv/vdBpkzq+tzs66fIeeEwMItb9rMFtOvdKVcbrzxRj0Bffv2df0MCT83G7NsC5lr6NSpk+tX ysy0pnv37oq1OaPj8OHD05tKueKKK1w1GbuX61QKF1u2bKnlyZMn2+9nyt69e8MTwrLWkxcBAACA qiJnehr8+5n2PUDB1/wMePZ+mxD+HiB1gwljX3/SJhgrqrl+hmb3D7MJq3f4fwuk5+N3Tt/w0pbd O7WsfXhq8zqb6b1lGiP89zPte3oU8xYvXnzOOefYBPseoK5du9qonialPlW87wGKWbYFrUH3VXfj xo22Bq05PfGfNEd1ZTnXrzR+/HjVTznllOXLl1sK3b59+4wZM3r27GkTRPusOYqjCxYs0K2WY96k zaT54jqVwkVb5+OPP247oGM5++yzwxPCstaTFwEAAICqImd6cuTMMFfNi5czLY9lbcFoeGbUslrU 3zXZ9/VX3effHAxZUyXq75q4foYLlkwL5ngzvXrQhi2rwrfgLFq0yL6p1WOjUX/XREnPJlglZtkW ysrKbMGUlJQEawhMmDDBDae5atqZZ57pqoez0Z07d7Zv315drUFdW48qqtuEnNIrO2yLEi7at8uG WQIXmyDWzRQeteVA1iIAAABQVeRMT1zOrEY1lzPX79zWY/6tTaYOOW7umKc2p/7wRmDnl3tHvPxo yaxrNapbLavixioF63H9DJ/s+2LQ0lntZ1+X+cVCyrRaZ2n5uKbpP3DS7P5hvZ64a8K6JW44MT3+ w4YN69ChQ3FxcdOmTRXqFD7dWPrNw4EDB7Zq1apJkya6vfTSS4M/XCnhpJR12RZ279598cUXa+XN mjW74IILtmzx35s1Y8eObdu2rd3FlSrdd999vXr10t21kx07dhw0aJD9gRCxr/857bTTrCunnHKK KvYHPJNIb9DfYrh44MCB6667TgFbW1eCve2227wJYt1M4VFbDmQtAgAAAFVFzvTUTc4snEW+cOpD VkQpAAAAoKaRMz3kzCMcORMAAACoaeRMDznzCFfnOdN2ICs3AwAAAGjgyJkeXe1vPeGETZMaWs5s Om2oNddHhKZprlMXbAeycjMAAACABo6c6Um/n7lkU9nx6wc2qJwJAAAAAPUEOdPjPjc7qWz9WQPJ mQAAAABQZeRMDzkTAAAAAApCzvTwuVkAAAAAKAg509NQvwcIAAAAAOoJcqanof5dEwAAAACoJ8iZ niM/Z/KXNgEAAADUKHKmp25yZm1mv9rcFgAAAIBGiJzpIWcCAAAAQEHImZ4jP2cCAAAAQI0iZ3rI mQAAAABQEHKmp45z5vqd23rMv7XJ1CFdH73pqc3r3HDarv37Rrz8aMmsazXa5oFrBi2dtf0fu9xY 2vLtm7rPv9nu++yHG4J12mjQDZrVA0F9zWdbez1xV9NpQ1tMv3LYsjn7vv7KzQAAAACABMiZHj9n 3hzNEmN+onJmu1mjguXiKYMV+WzC3gP7u80bGwxZ0+Qd+/bYhE27PlUsDIaa339FsGwTgm7QrB4I 6uF9UFO4dTMAAAAAIAFypidLzrRk6KmhnDnwhZkHDx0atHSWdQc8e79NGLNygVVGrpin7l1rFlk3 CIHDls2xykXPTT9w8KDuaF01mxDIWR/+0iPah9l/XWHdklnXuhkAAAAAkAA501PHOfPtzz9Sd+Pf t1u3/ezrbELXR2+yyu6vvlRXOdC6nR663iYc+/ANVrE16Na6ajYhkLO+88u96gabKJ4y2CYAAAAA QBLkTE9RUdHWE/pvOv74usmZrl9ZaTptqHWbTB0SzAk31b0J1g1SYlAJJK9nVgAAAAAgJ3KmJ/V+ 5pL7NxUdnjN1GxbU8xafM4OUmDNnqtmE4imDw11yJgAAAIC6Qs70pN/PPGHTpIX14nOz7WaNsgnB 52Z37d9nFU+HB0fbBG8NajYhkLyeWQEAAACAnMiZnqKtL25d8hv//cxMNZQz7XuAhrz4oHUzvweo 39OTtuzeqcr+gwfK31t92oLf2QTdMbiL1lDI9wC5PjkTAAAAQF7ImR73udnjy+omZ0b9XZN9X39V Wj4uGAo3m7Dx79ub3T8sKCb5uyZB8yZYVzIrAAAAAJATOdOT+txs0eGfm41iiTE/UTlz9Y4tPebf 2mTqkM6P/OapzevccJqi5i2rnuo+/2blSUXQDg+Ovui56cu3b3LDFRXPb9uoUd332IdvWLjlTVth 8G2xwSYymzfBupJZAQAAAICcyJke/++ahBWYLcO8nFntdu3fZxGxxfQrXQkAAAAAagU509OAc2bf Rfct377p4KFD+77+Kvh1zX5PT3LDAAAAAFAryJmeBpwzLViGW5OpQ1Z++r4bBgAAAIBaQc70NOCc ueyjd/s/M7XF9CubThuq27LFk1fv2OLGAAAAAKC2kDM9R8jvZwIAAABAXSFnesiZAAAAAFAQcqaH nAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAA AFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFn esiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkA AAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQ cqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqaHnAkAAAAABSFnesiZ AAAAAFAQcqaHnAkAAAAABSFnesiZAAAAAFAQcqanoJz5+psbbvvzigvue+bfxv9F7eeTltzx+AoV 3XBIOGcWDZrsNasDAAAAQENEzvTknzPnPL/6x79fNOTBl+98+q0pL/1VTQvq9rn7LxpykyqRMwEA AAAcqciZnjxz5oPPr+5z96I7Fr05+cW/ek1FDWmCm5oWzpkBciYAAACAIwA505NPznz9zQ1n/W7h zf+57g/PbbRmuxt0NaQJK0MfoCVnAgAAADhSkTM9+eTM28tX/OJPy+5c/FbQ3v9sj1q4ogm3PLbc 3SGvnLlr3/4Rj75ccu2sJkOmtrnmgUGzlm7f9Q8bsnv98bn1zYbdf+wNDz+/cduZf/hPTev8m0fW bP0syQSz9J2PyiYvbnHldA3ptvfdTy5Ys9mNAQAAAEAy5EyPnzOVLaNYYpT+9y4eMX/VTf+5LqZp wnn3LnZ3qHrO3Lv/QLex84IJ1tqNmrVjzz6NWrd48BRbUEq0BbV+k55OMsEExXBb/NYHbhgAAAAA EiBnerLkTEuGnnD9/9351HXlq0f/+Z/Ndjdcua581Wl3POnuUPWcOWbBShsaOW+FunctWmPdEY++ rK4tr/vws9Vbdtjyyvc/ffujz7XQdsTMJBPMKf+xYP6qv+0/cFDLj7/xvs0MB1EAAAAAyImc6ckr Z97x5JVzVw5/9J/NdjdcuWLua6ff9ZS7Q9VzZtebHrWh3V9+pe7BQ4es2+n6h9S15fREf7np0GmZ xcwJWdnMFldOd30AAAAASICc6cknZ/5s4qKLZiwb9OCKoNnuhiuacN49i9wdqp4zw590DTfVNWrL NtNbLh48JbOYOUGUXe9atObE28qbDbs/+IStmm0CAAAAABIiZ3qy50zdhgV1c8v85T/+wzMXzXgp aLa74YomjJ2X//cAReVMNY0GC1HLWYve8vBHXrJuZrMJAAAAAJAEOdOTz/uZK9dt6H3Hgn6Tnz9v 2lJrtrtBV0OaoGnuDhE5MwiTBw8dcqVKwedmd+3b70ohNhSznLXoLTcdOs26i9/6QDtw4OBB6wYT AAAAACAJcqYnn5wpM59ddcrtC35y77N9Jz3vNRU1pAlualrWnNn95vmW68Y++boXNYPvAeo36ekt O3ersv/AwfLV7532uwVatqH0xOzLWYvecpAz12z9TFu/bv4r1g0mAAAAAEAS5ExPnjlTHliyqvcd C/5t/F/Omrjkx398Vk0L6qrohUzJmjMnPvtmEO2CZkP7vvq6dFy5N2RNo8FC1HLWord86QPPW9da 2xEzg2WbAAAAAABJkDM9WXJmFEuMYa+/ueG3c5f1+/3CXrc+/v9uX/CziX8ZO+8lFd1wSNacKXc/ s7bLbx8Jfw2PG0hHzVueWtX95vn2PT0dRj940fTnlm/arqHwzKzLWYve8u4vv7rioZdaXTVDKz/5 jj+v2fqZjQYTAAAAACAJcqbHz5lhWbNlfqJyJgAAAAA0dORMDzkTAAAAAApCzvSQMwEAAACgIORM DzkTAAAAAApCzvTUQc584b2davV/GQAAAACSIGd66uz9zKh0V9+WAQAAACAeOdPD52YBAAAAoCDk TA85EwAAAAAKQs70kDMBAAAAoCDkTA85EwAAAAAKQs70kDNzK5o8yJrrAwAAAEAIOdNDzqz4ZN8X Fz83o9WMq5pMHZI1T5Iz67+iw7kqAAAAUCvImR5yZkX/Z6YGSTJrnoyq1wdnn62IVTFypOuaESNS xTPPdN3GwOXLSq4KAAAA1Apyp